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ABSTRACT

In this work, we propose noise and signal activity
estimation method that discriminates noise from signal 
based on local and global properties of the image data. The
method yields pixel-wise maps of the noise variance and of 
the signal activity. Using these maps to guide imaging 
algorithms such as image enhancement and print defect 
detection improves their performance. The proposed 
method does not assume a white Gaussian noise model; it is 
very efficient computationally and, as such, is useful for a 
wide variety of applications.

Index Terms— Noise estimation, signal activity, texture

1. INTRODUCTION

Noise in images has become a more serious problem 
recently as the pixel size in the image sensors have been 
shrinking dramatically to allow for the large megapixel 
counts that consumers demand for digital cameras.
The noise problem can also be exacerbated by low quality
optics and sensors included in camera phones and PDA 
cameras. Thus, noise affects most images and compromises 
all imaging algorithms. Visual perception of noise depends 
on both the noise and the underlying image content; this 
phenomenon is known as the masking effect. Therefore, for 
imaging applications to be effective, maps of both noise and 
signal activity are required. We substantiate this claim by
showing significant improvement in image enhancement 
application relative to a noise-estimate-only driven
enhancement.
The main technological hurdle we face in implementing the 
proposed approach is accurate estimation of local noise and 
signal activity. Indeed these are challenging and related 
problems. Noise estimate (either local or global) should not
be affected by image structures, and therefore should be 
derived from featureless areas, that is the areas not
containing edges or textures. Unfortunately, many natural
irregular textures (e.g. some low resolution foliage textures)
are statistically indistinguishable from noise. Consequently,
such textures are often misclassified and treated as noisy
smooth areas. This results in a significantly higher, image 
dependent noise estimate. On the other hand, noisy areas

are occasionally misrecognized as high signal activity
areas. In both cases, the result is a poor performance of 
imaging algorithms. For example, in the former case of an 
overestimated noise level, image enhancement using noise 
dependent threshold might apply a more aggressive 
denoising and yield a blurry image. In the latter case, image 
enhancement might apply sharpening to noisy areas, thus 
magnifying the noise. Most state-of-art noise estimation 
methods (e.g. [1],[2], and references therein) preprocess an 
image to reduce the influence of image features, but still 
suffer from residual structures. Many methods in literature 
assume white Gaussian noise either explicitly or implicitly.
Additionally, often algorithms depend on heuristically or
empirically chosen parameters. The method proposed in 
this paper solves noise and signal activity estimation
problems in a systematic, statistically sound way.

2. LOCAL NOISE AND SIGNAL ACTIVITY 
ESTIMATION

2.1. Statistical noise estimation

In this section, we describe briefly the intuition and the 
main ideas of the proposed statistical noise estimation 
(detailed in [3]). To estimate the noise variance, we first 
divide the image into non-overlapping blocks. Note that,
whereas the underlying variance for featureless blocks is 
the variance 2ˆ nσ , of noise n, the underlying variance of the 
other blocks is larger, namely the noise variance plus some 
bias due to the local features. Therefore, ordering the 
sample (block) variances on a scale, results in a separation 
between featureless blocks on the low end of the scale and 
other blocks above them. Within the low part of the sample 
variance scale, the addition to the variance due to image 
features may be very small, if any. Thus, although in some 
cases it is impossible to tell locally, whether a given pattern
is noise or texture, global analysis of variances can easily 
make this distinction. 
The proposed noise estimate uses a set of T (usually up to 
30) image blocks with lowest sample variances. In [3] we 
show that with high probability these are blocks from 
featureless areas. To take into account rare cases wherein
some of these blocks are from texture regions, we test the
block set for 'irregular' behavior using e.g. F-test statistics 
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[3], and trim it appropriately. This yields a subset of
301 ≤≤ T blocks.  Further influence of image features

within this subset is minimized by using the median 
absolute deviation from a mean as a measure of the noise 
energy in a block. The proposed noise estimate is:

( )2 2
1, ,ˆ { }T

t tn T K NC w sσ == ⋅ , (1)

where w is some statistic, e.g. a weighted average, of a set 
Ttts ,...,1, = of the lowest block noise measures, and 

CT,K,N is the bias constant that is dependent, in general, on
the block size K, on T, on the choice of w and on sample 
size N. An important contribution of this noise estimate is
that it is based on a function of a set of lowest order
statistics; this ensures the resilience to image textures. Its
accuracy is due to a statistical estimation of the bias
constant CT,K,N. The main idea here is that by the Central 
Limit Theorem, the noise can have arbitrary distribution,
but for sufficiently large K, its sample variance has a nearly
Normal distribution. Therefore, we derive CT,K,N based on 
known tables relating ordered statistics for Normal 
variables. In [3], we analyze the statistical properties of the 
proposed estimate (1) and show that it is accurate for
general noise distributions (including Gaussian).

2.2. Spatially varying noise

In many cases of practical interest the noise is not spatially
stationary over the image. Accurate estimation of local 
noise level is a difficult problem. On one hand, the local 
noise estimate should not be influenced by distant data 
samples. On the other hand, in order to have a reliable
estimate we need to use sufficient data samples. In order to 
cope with these difficulties we use prior knowledge of the
noise mechanism, and cluster blocks having similar noise 
factors for common estimation, separately for each such 
cluster.
For example, one reasonable choice of the noise factor is 
the mean local lightness. The luminance dependence of 
noise in raw (sensor) data can be modeled based on the 
sensor physics (see for example [4], [5]). However, accurate 
modeling of the image noise at a device output is usually
impossible because of various image processing steps such 
as local and global contrast enhancements, various non-
linear transformations, and compression.  Nevertheless, 
even in processed images, noise reveals strong dependence
on lightness [5]. Figure 1 shows an example of luminance
dependent noise standard deviation (STD) measured in 8 
different lightness intervals in the image of Figure 3, left.
Note the increased noise level in the lower lightness values.

A block-diagram of the proposed method for the case of 
luminance dependent noise is depicted in Figure 2. First,
the lightness range is adaptively segmented into M
(typically up to 10) intervals. Then, the statistical noise 
estimation from the Section 2.1 is applied separately to
each interval. The M resulting noise variance values are 
tested for the presence of outliers; after the outliers are 
removed, the remaining noise variance values are 
interpolated to a noise function )(ˆ 2 Lnσ of the lightness L
(usually, L=0,1,2,…,255). Note that although we assume
some smoothness of )(ˆ 2 Lnσ , we do not fit any parametric
model of noise generation to the measured data. Finally, the
function )(ˆ 2 Lnσ is translated into a pixel-wise noise

variance map ),(ˆ 2 kjnσ , based on mean local lightness.
Figure 3, middle depicts corresponding noise STD map.

Figure 1. Luminance dependent noise STD measured in 8 
different lightness intervals in the image of Figure 3, left.

2.3. Spatially varying signal activity estimation

The proposed local noise estimate allows one to detect 
image features more reliably. We measure the local feature 
content with respect to the local noise level ),(ˆ 2 kjnσ , and 
calculate the signal activity map as:

ˆ: ( , )
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where, in general, ci can be coefficients of an image
representation in some dictionary of functions (e.g., the
Wavelet, the Discrete Cosine, etc.). In a simple and 
efficient setting, the coefficients ci are calculated as the 
local directional derivatives, or the differences between a 
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Figure 2. Block-diagram of the proposed noise and feature estimation method in the case of luminance dependent noise.
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pixel and its neighbors: 
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where I(j,k) is an image intensity value in the pixel (j,k).
For p = 1 or p =2, f(j,k) depends on the signal activity
strength (contrast), thus emphasizing strong image features
(e.g., strong edges). For p = 0, f(j,k) is virtually
independent of image feature contrast, and emphasizes 
weak image features (e.g., textures). Note, that in (2) the
‘feature threshold’ ˆ ( , )n j kασ is dependent on the spatially
varying noise estimate from the Section 2.2; therefore, in
general, this threshold is different for each pixel.
An example of such pixel-wise signal activity map, where 
the coefficients ci are calculated as local pixel differences, 
and p = 0, is presented in Figure 3, right. The middle 
image in Figure 3 indicates that the noise STD varies from 
0.3 to 3.5 gray levels. Signal activity values close to 1 in the 
right image, reflect high signal activity. Let us compare two 
areas in the picture: texture in the trees and noise on the 
face and neck. Actual measured variance in the trees area 
was lower than the one measured on the face. Yet, these 
weak textures are correctly detected as activity areas, while 
the strong noise on the face is detected as a feature-free,
noisy area. 

3. APPLYING NOISE AND SIGNAL ACTIVITY 
MAPS TO VARIOUS APPLICATIONS

Depending on the application, noise and signal activity
maps can be combined in various ways. We show here two 

examples of applications that benefit from these maps. The
importance of the reliable noise and signal activity
estimation for image enhancement tasks was briefly
discussed in the introduction. In image enhancement, the 
noise map provides correct values for a local threshold, 
separating the noise patterns from the intrinsic image 
features. In addition, the signal activity map guides the 
image sharpening filter. Therefore, the combination of 
these two maps allows one to better denoise smooth areas, 
while enhancing intrinsic image features without 
magnifying the noise. In particular, we use noise and signal 
activity maps for image enhancement based on non-linear
denoising-sharpening filters (e.g. Bilateral filter [6]) as
follows. The threshold, separating noise and image 
features, is set to be proportional to the ratio:

( )ˆ( , ) ~ ( , ) / ( , )th j k j k f j knσ ε+

thus, taking into account the masking effect. This threshold
defines the faith of each pixel; roughly speaking, noisy
pixels will be averaged with their neighbors, while the local 
contrast of ‘signal’ pixels will be magnified. This improves
denoising in smooth regions and sharpening of details in 
feature containing areas.
Another type of imaging applications that can use the
proposed method is automatic image defect detection. A 
significant problem with automated techniques for various 
defect detection tasks, namely print defect detection, dust
and scratch detection and removal in scanned images and 
others, is that such techniques often fail to adequately
distinguish actual image features, such as line segments 

Figure 3. The original image (left), noise standard deviation map (middle), and signal activity map (right).
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and various textures, from true defects, such as scratches or 
other artifacts. This results in a poor trade-off between 
missing defects and false-alarms, especially for applications 
targeted at low contrast defects. In order to overcome this 
problem we set the defect detection threshold to be 
proportional to a local activity:

( , ) ~ ( , )detectth j k f j k .

This allows better detection in feature-free areas, and, at the 
same time, lower false alarms in feature containing areas. 

4. RESULTS

Statistically good behavior of the noise estimate from 
section 2.1 was proved in [3] by theoretical and 
experimental study. In one of the experiments, white 
Gaussian noise of various STD’s was added to 130 natural 
images. Noise STD was estimated for the artificially noised
images, and compared to the added noise, after the intrinsic 
noise estimated from the original images was subtracted. 
The worst-case estimation error of the competing methods 
([1],[2]) was 260%; the one of the proposed estimator was 
7.3 %. In another experiment, we cropped manually a few 
featureless image areas, and applied the proposed and
competing methods to estimate the noise from these areas.
The methods yielded similar estimates. Then, the methods
were applied to complete images. The competing methods 
consistently overestimated the noise level, while the
proposed method yielded nearly the same estimates as in 
the ‘manual’ case, showing high robustness to image 
content.
The performance of the proposed local noise and signal 
activity estimation was further extensively tested in various 
experiments on natural images having various formats 
including JPEG [3]. Figure 4 depicts an example of general
image enhancement implemented in a non-linear

denoising-sharpening filter. Here we compare the proposed 
method against the same filter with a fixed noise threshold 
chosen manually to optimize the trade-off between noise 
removal and image feature preservation. The enhanced
image of the proposed method looks more natural, is
sharper and has less residual artifacts. Similarly, image
enhancement based on the proposed method was tested on
the set of 130 images and compared favorably to results of 
competing methods (e.g. [7]).

5. CONCLUSIONS

In this paper, we proposed noise and signal activity
estimation method that discriminates noise from signal 
based on local and global properties of the image. The
obtained pixel-wise maps of the noise variance and of the 
signal activity guide imaging algorithms such as image 
enhancement and print defect detection, and improve their 
performance.
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Figure 4. Original image (left); enhanced with a non-linear denoising-sharpening filter driven by manually chosen
threshold (middle); enhanced with the above filter driven by noise and feature maps of the proposed method (right).
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