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Fig. 1. Our method enhances the output of standard foveated rendering (left) by adding carefully tuned procedural noise (right). The enhancement replaces
accurate rendering of spatial details, which are detectable but not resolvable by the human visual system, and allows applying more aggressive foveation
during the rendering process. This images are designed to be viewed at an 80-degree wide field-of-view, with gaze at the center. Scene courtesy of Morgan McGuire
and Frank Meinl, Crytek.

Human visual sensitivity to spatial details declines towards the periphery.
Novel image synthesis techniques, so-called foveated rendering, exploit this
observation and reduce the spatial resolution of synthesized images for the
periphery, avoiding the synthesis of high-spatial-frequency details that are
costly to generate but not perceived by a viewer. However, contemporary
techniques do not make a clear distinction between the range of spatial
frequencies that must be reproduced and those that can be omitted. For a
given eccentricity, there is a range of frequencies that are detectable but
not resolvable. While the accurate reproduction of these frequencies is not
required, an observer can detect their absence if completely omitted. We use
this observation to improve the performance of existing foveated rendering
techniques. We demonstrate that this specific range of frequencies can be
efficiently replaced with procedural noise whose parameters are carefully
tuned to image content and human perception. Consequently, these fre-
quencies do not have to be synthesized during rendering, allowing more
aggressive foveation, and they can be replaced by noise generated in a less
expensive post-processing step, leading to improved performance of the ren-
dering system. Our main contribution is a perceptually-inspired technique
for deriving the parameters of the noise required for the enhancement and
its calibration. The method operates on rendering output and runs at rates
exceeding 200 FPS at 4K resolution, making it suitable for integration with
real-time foveated rendering systems for VR and AR devices. We validate our
results and compare them to the existing contrast enhancement technique
in user experiments.
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1 INTRODUCTION
The quality of rendered images directly impacts user experience,
immersion, and comfort. While today’s computer graphics tech-
niques offer endless opportunities to improve image quality, either
by more accurate lighting simulation or modeling of the virtual
world, additional constraints, such as frame rate or power efficiency,
can significantly limit image quality. Rendering efficiency is criti-
cal in the context of new virtual and augmented reality headsets
that require rendering systems to operate at high spatial and tem-
poral resolutions. Therefore, it is essential to save computational
resources whenever possible, ideally matching the quality of the
images with the capabilities of human perception.

Significant computational savings can be achieved when the ren-
dering quality is guided by the estimation of viewers’ gaze location
provided by an eye-tracking device. So-called foveated rendering
techniques [Mohanto et al. 2021] reduce the rendering quality ac-
cording to the decay in the sensitivity of the human visual system
(HVS) to image distortions in the periphery. The most common
approach is to reduce the shading rate or spatial resolution for im-
age regions distant from the gaze location. This process aims to
omit the costly synthesis of high-spatial frequency details irrele-
vant for human perception. The benefits of foveated rendering are
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Fig. 2. Subjective appearance of gratings located at 20◦ retinal eccentricity
in the nasal visual field. Redrawn from Thibos et al. [1998].

already being exploited by the latest VR displays such as the Sony
Play-Station VR21 and Varjo VR-32.

Unfortunately, there is no clear distinction between the spatial
frequencies relevant to a human observer and the spatial frequencies
that can be excluded from the rendering procedure. In fact, there is
a range of spatial frequencies that are detectable by the HVS but not
resolvable, i.e., the human sensitivity to its spatial localization and
orientation is low [Thibos et al. 1987a]. This means that even though
these frequencies do not need to be accurately synthesized, they
cannot be omitted in the process of foveated rendering since this
would lead to visible quality degradation (Figure 2). As a result, to
provide images perceptually equivalent to full-resolution rendering,
foveated rendering techniques must synthesize this frequency range.

Inspired by the existence of spatial frequencies that are detectable
but not resolvable, we argue that a direct rendering of this range
of spatial details is not necessary and can be replaced by an inex-
pensive procedural noise synthesis. Consequently, we propose a
foveated rendering procedure where we first use foveated rendering
to synthesize the image content that falls into the spatial frequency
range which is both detectable and resolvable by a human observer.
Next, we use the synthesized information to estimate the parameters
of the noise, which we synthesize and combine with the previously
rendered content in a post-processing enhancement step. Figure 3
shows the human visual acuity regions, and how they are addressed
by different rendering approaches. The main contribution of our
paper lies in the derivation of the method for estimating the noise
parameters, based on the underlying content. Our procedure is based
on the perceptual literature and consists of several simple image
processing steps, making it efficient to implement and temporally
coherent. The method is calibrated by a series of perceptual experi-
ments to fine-tune the range of spatial frequencies added with the
noise and their amplitudes. In additional evaluation experiments,
we demonstrate that our noise-based enhancement step can success-
fully improve the fidelity of aggressive foveated rendering. We also
compare our method to the recent work on contrast enhancement
for foveated rendering [Patney et al. 2016]. Code for our technique
can be found at https://github.com/taimoor6864/Noised-Foveation.

1https://blog.playstation.com/2022/01/04/playstation-vr2-and-playstation-vr2-sense-
controller-the-next-generation-of-vr-gaming-on-ps5
2https://developer.varjo.com/docs/native/foveated-rendering-api

Fig. 3. Characterization of spatial acuity for peripheral vision. Resolution
acuity, detection acuity, and the region of spatial aliasing are shown as a
function of retinal eccentricity [Thibos et al. 1996].

2 BACKGROUND AND RELATED WORK
In this section, we introduce the previous studies on the character-
istics of peripheral vision, which form the basis of our work (Sec-
tion 2.1). We discuss the existing applications of foveated rendering
(Section 2.2) and introduce works on metamerism (Section 2.3).

2.1 Peripheral Vision
While observing our environment if we fixate on a point with our
eyes, we notice that we cannot see everything at high acuity in
our visual field [Rosenholtz 2016; Strasburger et al. 2011]. This is
due to a decreasing limit on the visual acuity as the distance from
the point of fixation increases [Aubert and Foerster 1857; Hering
1899]. Our eyes feature a central high acuity region called fovea that
is approximately 2◦ wide and peripheral vision that covers whole
hemisphere outside fovea with low acuity [Lettvin et al. 1976]. The
decreasing peripheral visual acuity was systematically measured
using square-wave spatial contrast gratings at different retinal ec-
centricities [Wertheim 1894] and those measurements were initially
related to the sampling rate determined by the density of retinal rod
and cone type of photoreceptor cells [Curcio et al. 1990; Fick 1898;
Hirsch and Curcio 1989; Levi and Klein 1986; Østerberg 1935]. More
recent studies show that the contrast sensitivity in the peripheral
vision can be as high as those measured at the fovea, provided that
the stimulus size is magnified depending on an estimate of ganglion
cell density in the periphery [Legge and Kersten 1987; Rossi and
Roorda 2010; Rovamo and Virsu 1979; Rovamo et al. 1978; Virsu
et al. 1987]. These studies on the retinal anatomy have led to models
of peripheral sensitivity for computing visibility across the visual
field [Haun 2021; Schütt and Wichmann 2017; Watson 2018; Watson
and Ahumada 2016].

The neural resolution of the photoreceptor cells is only one of the
factors defining the spatial frequency limits of the human eye. The
other factor is the optical system mainly represented by the cornea
and the lens. The neural resolution limits were measured in isolation
from optical aberrations using an interferometer for both fovea and
periphery [Thibos and Walsh 1985; Williams 1985a,b]. Although
both the optical quality and neural resolution decline with retinal
eccentricity, the decline in neural resolution is more significant
than the optical limit [Anderson et al. 1991; Green 1970; Millodot
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et al. 1975]. As a result, the photoreceptors in peripheral vision
may get stimulated by spatial frequencies beyond their resolution
limit, which manifests itself as aliasing [Thibos et al. 1987b]. Beyond
resolvable spatial frequency levels, the presence of the stimuli in the
peripheral vision can still be detected; however, low-level details
are not resolvable (e.g., orientation of isolated gratings) [Anderson
et al. 2002]. In experiments with filtered images, this may lead
to participants reporting a subjective visual change in the image
without being able to define what exactly changed [Sere et al. 2000].
Thibos et al. [1998; 1987a] studied the perception of signals beyond
neural sampling limit and identified the range of spatial frequencies
where visual stimuli are detectable but not resolvable (Figure 3).

2.2 Foveated Rendering
Foveated rendering techniques reduce the rendering quality ac-
cording to the loss of human visual sensitivity in the periphery.
Earlier applications involved image-video compression, spatially
adaptive ray tracing and tuning parameters such as the resolution
and bit-depth [Browder and Chambers 1988; Glenn 1994; Kortum
and Geisler 1996; Levoy and Whitaker 1990; Tong and Fisher 1984;
Tsumura et al. 1996]. More recently, Guenter et al. [2012] demon-
strated that eccentricity-dependent shading rate reduction can lead
to computational savings without significant quality degradation.
Stengel et al. [2016] made use of additional information from the
geometry pass in rendering, such as depth, normal, and texture
properties, to derive the local information on silhouettes, object
saliency, and specular highlights from the last frame to reduce the
shading rate. Patney et al. [2016] introduced a cost-effective method
based on contrast enhancement of attenuated spatial frequencies
that significantly reduces the visibility of peripheral blur in foveated
rendering. Swafford et al. [2016] extended the HDR-VDP2 [Mantiuk
et al. 2011] quality metric for peripheral vision and introduced a
method for tuning ambient occlusion, tessellation, and ray-casting
quality. Meng et al. [2018] used kernel log-polar mapping for an
efficient GPU-based implementation of foveated rendering. Tursun
et al. [2019] modeled the influence of underlying content on the vis-
ibility and proposed a model that takes both the retinal eccentricity
and the content into account. Kaplanyan et al. [2019] showed an
application of neural networks on foveated image reconstruction
with very sparse sampling but with a significant computational
overhead similar to other neural reconstruction techniques. For a
comprehensive survey of foveated rendering methods, please refer
to the work of Mohanto et al. [2021].

2.3 Visual Metamerism
Visual metamerism refers to the phenomena of physically differ-
ent images being perceptually indistinguishable. The concept has
recently attracted research interest, aimed at finding perceptually
equivalent stimuli that are computationally simpler to reconstruct
in the context of gaze-contingent applications. Initial studies on the
neural representation of vision hypothesized that the role of early
vision is to have an efficient representation by removing statistical re-
dundancy in natural images [Barlow 1961; Simoncelli and Olshausen
2001]. Portilla and Simoncelli[2000] showed that a statistical model
based on wavelet representations can be used to synthesize visually

plausible natural and artificial textures. Inspired by Portilla and
Simoncelli, there have been more recent studies aimed at synthe-
sizing visual metamers using deep convolutional neural network
representations [Deza et al. 2019; Freeman and Simoncelli 2011].
Very recently, Walton et al. [Walton et al. 2021] exploited spatial
pooling in human peripheral vision and proposed a technique for
foveated graphics to synthesize visual metamers. The technique
requires the full-resolution image statistics; therefore, its applica-
tion is limited to tasks where the reference image is available, such
as foveated compression, but it is not applicable to the real-time
foveated rendering pipeline.

A comparison of our noise-based enhancement method to the
most relevant works from the state-of-the-art is shown in Table 1.
For foveated rendering, it is essential for a method to avoid a prelim-
inary full-resolution rendering pass to compute the input. Among
the compared methods, only Walton et al. [2021] requires the full-
resolution input to compute the image statistics for the output;
therefore, it is more appropriate for compression tasks rather than
foveated rendering. In addition, a desirable property motivated by
the work of Thibos et al. [1987a; 1996; 1987b] is enhancing the
output by synthesizing novel image details at detectable & not re-
solvable band (Figure 3) that do not already exist in the input image.
Among the compared methods, Kaplanyan et al. [2019] uses neural
reconstruction trained on natural and synthesized images for this
task while Walton et al. [2021] captures the required statistics from
the full-resolution reference input. Although Patney et al. [2016]
enhance the input image contrast, they do not add novel spatial
details to their output. Regarding running times, due to the com-
putational efficiency of the simple contrast enhancement, Patney
et al. [2016] is the fastest among compared methods. Our method
has second place with our computationally efficient real-time GPU
implementation. Walton et al. [2021] report real-time running times
for low resolutions, their application becomes challenging at high
resolutions due to the costly image analysis step. Kaplanyan et al.
[2019] is the most costly method among all compared because their
network inference requires 4 GPUs to process a 1920 × 1080 input
at interactive rates.

Table 1. Comparison of our method with relevant works from the literature.

Method Requires
full-res
input

Spatial-
Frequency
synthesis

Running
time

Patney et al. [2016] No No Fastest
Kaplanyan et al. [2019] No Yes Slow

Walton et al. [2021] Yes Yes Moderate
Ours No Yes Fast

3 METHOD OVERVIEW
Our method enhances the output of adaptive-resolution foveated
rendering techniques [Mohanto et al. 2021] by synthesizing novel
image details whose spatial frequencies fall into the range of de-
tectable but not resolvable frequencies by the HVS (Figure 3). We
show that these details can be synthesized using carefully controlled
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Fig. 4. The figure demonstrates our noise-based enhancement for foveated rendering. The input is a foveated image that is processed to estimate parameters
for Gabor noise, i.e., orientation, frequency, and amplitude. The resulting Gabor kernels are convolved with random impulses to synthesize procedural noise.
Next, the noise is added to the contrast-enhanced foveated image.

procedural noise. While several types of noise can be considered, we
rely on sparse Gabor convolution which provides good frequency
control and is computationally efficient for real-time performance
[Lagae et al. 2010, 2009]. The main contribution of this work is the
perceptually inspired method for estimating the parameters of the
noise based on the underlying content. Our method relies solely
on the information available in the foveated image and it does not
require a full-resolution rendering pass. This makes it suitable for
practical real-time foveated rendering applications.

The overview of our noise-based enhancement is depicted in Fig-
ure 4. The input to our technique is a single frame from a foveated
rendering sequence. We assume that the rendering does not con-
tain significant spatial or temporal aliasing already. Consequently,
following the studies of Albert et al. [2017], Hoffman et al. [2018]
and the previous work on foveated rendering [Patney et al. 2016;
Tursun et al. 2019], we assume that the resolution reduction due to
foveation can be modeled with a spatially-varying Gaussian filter.
We denote the standard deviation of Gaussian filter as f (x), where
x = [G� GE] is the vector of normalized horizontal and vertical im-
age coordinates such that G�� GE ∈ [0� 1]. Given the input foveated
image and f (x), our technique estimates the local noise parameters:
amplitude, spatial frequency, and orientation. The parameters are
later used to generate the additive noise for the input. In a separate
step, we apply the contrast enhancement [Patney et al. 2016] to
the foveated image. The technique effectively enhances the spa-
tial frequencies that have been attenuated but not removed by the
foveated rendering. In the final step, we add the generated noise
to the contrast-enhanced version of the input image to introduce
novel spatial details in the aliasing band.

Below, we describe the method for noise-based enhancement
(Section 4) and its calibration to the data collected from perceptual
experiments (Section 5). For details of the procedural noise genera-
tion and contrast enhancement methods that we use, please refer to
the original papers [Lagae et al. 2009; Patney et al. 2016].

4 NOISE-BASED ENHANCEMENT
In our work, we use sparse Gabor convolution to generate the noise
[Lagae et al. 2009]. The method convolves Gabor kernels with sparse,
random impulses (Figure 4), which is equivalent to placing Gabor
patches at random locations across the image. The noise character-
istics are controlled by the properties of individual Gabor kernels,
i.e., amplitude, spatial frequency, and orientation. In this section,
we describe our technique for estimating these parameters from
a foveated rendering input. For a given impulse location x, our
method estimates the spatial frequency, 5 (x), amplitude,  (x), and
orientation, l (x) of the Gabor kernel convolved with this impulse.

It is critical that these parameters are not estimated using a full-
resolution image as that would require a full-resolution rendering
pass and hinder any potential computational gains from foveated
rendering by making it as slow as standard full-resolution rendering.
Instead, we assume that there is a sufficient correlation between
the low and high-spatial frequency components of an image that
allows us to derive the noise parameters based on the foveated
image. This assumption is motivated by the fact that the power
spectrum of natural images follows a power-law [Hyvärinen et al.
2009; Ruderman 1994]. In addition, such an assumption has already
been used in the context of foveated rendering to estimate missing
luminance contrast [Tursun et al. 2019]. While it does not hold in
all cases (Section 7), we demonstrate its successful application in
our scenario.

4.1 Frequency
Our method generates noise that is detectable but not resolvable
by the HVS (Figure 3). We follow the study of Thibos et al. [1996]
which provides the range of spatial frequencies with these prop-
erties as a function of eccentricity. We denote the upper limit of
the range by )� (4x) and the lower limit by )! (4x), where 4x is the
retinal eccentricity at location x in the input image, i.e., the distance
from the gaze location measured in visual degrees. While the orig-
inal work provides only a few measured data points of the limits
(Appendix A), we linearly interpolate the measurements to obtain

ACM Trans. Graph., Vol. 41, No. 4, Article 143. Publication date: July 2022.



Noise-based Enhancement for Foveated Rendering � 143:5

)� (4x) and )! (4x) for a wider range of eccentricities. The result of
the interpolation is shown in Figure 3.

To respect the limits defined by Thibos et al. [1996], we define the
bounds of the spatial frequency of the noise, 5 (x), as )� (4x) and
)! (4x). Additionally, 5 (x) should also be bounded by the range of
frequencies that are absent from or attenuated by foveated rendering.
This additional lower bound on 5 (x) can be computed from the spa-
tial frequency cut-off point depending on the rendering resolution
of foveated rendering or in our case, from the standard deviation
of Gaussian kernel, f (x), as we use this low-pass filter to simulate
the adaptive-resolution effects of foveation. We use the fact that
the amplitude attenuation of a Gaussian blur is also a Gaussian in
the frequency domain with standard deviation f5 = 1

2cf , where
f is the standard deviation of the Gaussian in the spatial domain.
The Gaussian filter has an infinite-band impulse response and it
does not have a sharp frequency cut-off. In our work, we define the
cut-off frequency at 3f5 , where the filter response is approximately
1% of the peak. Consequently, we compute the lower limit on the
noise frequency as the maximum of the lower bound from Thibos
et al. and the cut-off frequency:

�! (x) = max
�
)! (4x)� 3

2cf (x)

�
� (1)

It is common to define the cut-off frequency at the 50% of the peak
filter response in signal processing applications. We make this con-
servative selection of the cut-off point at 3f5 to avoid adding noise
to the resolvable frequency range because it would be perceived
as undesired distortions to the image by observers. Apart from the
frequency spectrum of the foveated image, the noise added to the
image must also respect the physical limitations of the display. Con-
sequently, we define the upper limit on the noise frequency to be
the minimum of the upper bound from Thibos et al. and the limit of
the display:

�� (x) = min ()� (4x)� 53 ) � (2)

where 53 is the highest spatial frequency the display can reproduce.
According to the Nyquist–Shannon sampling theorem, this limit is
equal to 0.5 cycles per pixel. Note that for brevity in our derivation,
we omit conversion between different units of spatial frequency,
which are either cycles per visual degree or cycles per pixel. The
equations hold as long as the units are the same, and the conversion
is performed based on the display pixel size and the viewing distance
of an observer.

Given the theoretical frequency limits on the noise (�! (x) and
�� (x)), we model the local noise frequency 5 (x) as a random vari-
able jx (5 ). In the early vision, the bandwidth of cortical simple
cells is symmetrical in log spatial frequency domain [De Valois et al.
1982]. In order to establish a closer resemblance to this bandwidth
symmetry, we define the distribution of jx (5 ) as log-normal, with
the mean, ‘= (x), at the midpoint of �! (x) and �� (x) in log domain
and standard deviation, f= (x), as the quarter of this range such that
the range between �� (x) and �! (x) is spanned by ‘= (x) ± 2f= (x)
in log frequency domain. In order to fine tune the bandwidth around
‘= (x), we additionally define a scaling factor B5 as a free parameter
of our model for adjusting f= (x):

‘= (x) = 0�5 · (ln �! (x) + ln �� (x))� (3)
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Fig. 5. Examples of different distributions of random variable jx (5 ) , for
Gabor kernels, with all considered limits.

f= (x) = 0�5 · B5 · (‘= (x) − ln �! (x)) � (4)

Using these mean and standard deviation parameters, we formally
define the distribution of jx (5 ) as:

jx (5 ) ∼ 4‘= (x)+f= (x)/ � (5)

where / is the normal distribution N (0� 1). Figure 5 shows all the
limits considered when estimating the frequency distribution, jx (5 ),
and three examples of the distributions for different values of B5 .

We calibrate bandwidth scaling factor, B5 , using the participants’
responses from a subjective experiment (Section 5). B5 is a scalar
that is independent of location, eccentricity and underlying content
as these factors are already considered by �! (x) and �� (x) in our
model. Since the distribution of jx (5 ) has infinite falloff, we addi-
tionally truncate it to range (0� �� (x)). While generating the noise,
for every location of an impulse, x, we compute the corresponding
spatial frequency 5 (x) of the Gabor patch by randomly sampling
from the truncated log-normal distribution of jx (5 ).

4.2 Amplitude
While estimating the local noise amplitude,  (x), we aim to syn-
thesize novel details, which resemble those in full-resolution ren-
dering. The challenge comes from the fact that our noise-based
enhancement generates spatial frequencies that are not present in
the foveated input. Inspired by previous work [Tursun et al. 2019]
and natural image statistics literature (Section 2), we assume that
there is a sufficient correlation between low and high-frequency
components of an image to infer the amplitude of higher frequen-
cies from lower frequency information. More precisely, we propose
to estimate the noise amplitude  (x) based on the amplitude that
corresponds to the highest frequency component generated by the
foveated rendering around location x.

To efficiently analyze the amplitude of different frequency bands
in the input foveated image, we compute its Laplacian pyramid
decomposition, !, where !; (x) is the value at the level ; at the
location x. We treat each level ; as a frequency band with cut-off
frequency 2−; cycles per pixel, and the central frequency

5 ; = 2−(;+0�5) � (6)

which is the mean of the cut-off frequencies of two consecutive
bands in the log domain. It is important to remember that while
the Laplacian pyramid does not provide strict separation between
different spatial frequency bands [Peli 1990], it can be efficiently
implemented on a GPU using MIP maps.
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In order to estimate the amplitude of the noise at location x, we
first calculate the highest spatial frequency present in the foveated
image. As discussed in Section 4.1, the frequency attenuation due to
foveation can be modeled in the frequency domain using a Gaussian
function with f5 (x) = 1

2cf (x) . Given the Gaussian function model-
ing the frequency attenuation and the attenuation factor 0, we can
solve for the frequency value that was attenuated with this factor.
The solution gives the frequency value:

52 (x) =
q

−2 · f5 (x) · ln(0) =

s
− ln(0)
cf (x) � (7)

In other words, the above formula estimates the cut-off frequency
due to foveation at location x for a given attenuation cut-off, 0,
beyond which we consider the spatial frequencies to be absent
or unreliable. Furthermore, by combining the above equation with
Equation 6, we can compute the Laplacian level ;0 (x) that represents
the highest reliable spatial frequencies:

;0 (x) = log2

 s
−cf (x)
ln(0)

!

− 0�5� (8)

We use this equation to infer the amplitude of the noise. We assume
that the amplitude of the spatial frequencies omitted in the foveated
rendering is directly related to the amplitude of the frequencies that
are present in the foveated image. Consequently, we estimate the
noise amplitude  (x) as:

 (x) = B: · |!; (x) | with ; = ;0 (x)� (9)

where B: is a constant parameter that is calibrated in the subjective
experiment (Section 5). There is a trade-off in setting the attenu-
ation cut-off, 0. Higher values make the estimation of  (x) based
on the lower frequencies. These are more reliable, but they may
correlate less with the amplitude of high frequencies we seek to
estimate. While this correlation is potentially better for low values
of 0, the content of these frequencies might be less reliable. For all
our experiments, we set 0 = 0�25, which provides good trade-off. It
also is important to mention that the value ;0 (x) is not guaranteed
to be an integer. For non-integer values, to compute Equation 8,
we perform a linear interpolation between two Laplacian pyramid
levels in the log domain.

The above derivation does not account for the fact that adding
noise may result in clipping the image values. This is critical for our
technique which relies on precise control of the noise frequency
spectrum and any untreated clipping may significantly alter it. To
prevent changes to the noise frequency spectrum, we propose to fur-
ther attenuate the estimated noise amplitude according to the mini-
mum and maximum image values in a small neighborhood. More
precisely, for a given location x, we compute a minimum, #min (x),
and maximum,#max (x), image value in a small image neighborhood.
Given these values, we can estimate the remaining range of image
values available for the noise as min(1 − #max (x)� #min (x)). Using
this range, we scale previously estimated amplitude (Equation 9) to
respect this range.

Efficient implementation of estimating minimum and maximum
image values in a neighborhood is critical for the real-time perfor-
mance of our technique. Therefore, we build two additional image

pyramids of the foveated image to which we add the noise. One pyra-
mid contains local minimum values of all the image pixels located
below, while the other pyramid contains corresponding maximum
values. Such pyramids can be efficiently constructed subsequently
for each level by using the minimum and maximum values of 2×2
neighborhood from the previous level. The resulting pyramids at
level ; encode minimum and maximum from 2; × 2; -pixel neighbor-
hood. It is important to note that such a pyramid decomposition is
not equivalent to computing exact minimum and maximum values
directly at the original resolution, but it serves as a computationally
efficient approximation of it. In all our results, we use third pyramid
levels, which provide a neighborhood size similar to the spatial
support of the Gabor patches used for generating the noise.

4.3 Orientation
Similar to the amplitude estimation, we seek an orientation estimate,
l (x), that closely follows underlying content. Consequently, we
compute it from the lower frequency component of the foveated
image. To this end, we use the Sobel operator and convolve the
foveated image with horizontal and vertical Sobel filters, which
provide corresponding image gradients. Then we use them for esti-
mating the local gradient direction. To ensure spatial and temporal
smoothness of the gradients, we apply the orientation estimation to
the third level of a Gaussian pyramid of the input foveated image
and interpolate the results to the original resolution using bicubic
interpolation. The Gaussian pyramid does not introduce any ad-
ditional computational cost since it is an intermediate step when
building the Laplacian pyramid for amplitude estimation and we
reuse the result of that computation.

4.4 Noise Generation
The noise generation is based on the work of Lagae et al. [2009].
The authors propose a technique that generates Gabor noise by
convolving a random set of impulses with Gabor kernels. To enable
efficient implementation, the impulses are generated in cells that
divide the image into a regular grid. While the size of each cell
corresponds to the width of the spatial envelope of the Gabor, the
number of impulses in each cell can be adjusted to control the trade-
off between the quality of the noise and the computational efficiency.
The density of impulses is expressed in their number per kernel, i.e.,
the area of the truncated Gabor kernel. The authors report that 25-50
impulses provide a good quality noise, but their analysis suggests
that even lower numbers provide satisfactory results.

Our generation of noise follows the above procedure closely. We
chose the size of our Gabor kernels to accommodate the lowest
spatial frequency we aim to generate, which resulted in setting the
width of the Gabor patch in the frequency domain to be 0.06 cycles
per pixel. The size of the Gabor patch also determined the size of
each cell. For all our experiments, we used 64 impulses per kernel
unless mentioned otherwise. We use the same random number
generator as the original implementation for generating impulses.
Before generating the noise, each impulse at location x, is assigned
a Gabor kernel parameters: frequency, 5 (x), amplitude  (x), and
orientation l (x), estimated using our method described above. To
avoid temporal instabilities, the locations of impulses throughout
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the entire input image sequence are the same. This is achieved
by using a constant seed value for the random number generator.
Constant positions of impulses ensure that the Gabor patches do
not change their position. Only their parameters change smoothly
according to the underlying motion in the content.

4.5 Implementation
We implemented two versions of our enhancement method. The
prototype version was implemented in MATLAB, and the real-time
counterpart was implemented in OpenGL. As an input, both im-
plementations take a foveated image together with all display and
viewing parameters from accurate conversions of spatial frequen-
cies. The output is an enhanced version of the foveated image.

Our prototype in MATLAB relies on a straightforward implemen-
tation of the method for estimating the noise parameters. The noise
generation is performed using the C++ implementation provided by
the authors of the original paper [Lagae et al. 2009]. Our OpenGL
implementation takes advantage of the simplicity of all the opera-
tions, which can be performed in a per-pixel fashion. The method,
including the noise generation, is implemented as a series of GLSL
fragment shaders. We leverage the MIP maps to efficiently imple-
ment the construction of all image pyramids used in our technique.

In all our experiments, we generate the input foveated images
with the fovea region radius equal to 8 visual degrees. Beyond this
region, we assumed the resolution fall-off to be linear as a function
of eccentricity and defined by blur rate. The foveation was simulated
using spatially-varying Gaussian blur.

Our enhancement method processes only luminance information.
Consequently, the input color images are first converted to linearized
luminance values which are then processed by our technique. The
resulting noise contains only luminance information that is added
to the input color images after gamma correction.

5 CALIBRATION
Our enhancement method contains three free parameters that allow
us to fine-tune the technique. The first two are the scaling factor
for the amplitude of noise, B: , and the scaling factor for the noise
bandwidth, B5 . The third parameter is the parameter of the con-
trast enhancement method [Patney et al. 2016], 54 , which scales
the amount of high-frequency content added to the input foveated
image. While 54 is fixed in the original work, the authors mention
that it can be adjusted. Below, we describe the subjective experiment
for estimating the values of B: , B5 , and 54 . With this experiment, we
aim to find the parameters such that the result of our enhancement
to closely matches the full-resolution rendering. In our experiments,
we assume that their optimal values solely depend on the strength of
the foveation. Figure 6 shows the effect of our calibration parameters
on the spatial frequency spectrum of our enhanced image. Figure 6
(left) shows that increasing 54 increases the amount of contrast en-
hancement. However, as expected, the contrast enhancement has
very little influence on high spatial frequencies that are lost due
to foveation. Figure 6 (middle) shows that increasing B: increases
the energy of the frequencies we synthesize. Figure 6 (right) shows
that increasing B5 increases the bandwidth of the distribution of
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varying B5 on the spatial frequency spectrum of our final enhanced image
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Fig. 7. Representative stimuli used in the calibration experiment.

frequencies we sample from and a wider range of frequencies are
synthesized.

5.1 Experiment Setup
Hardware. The experiment was conducted using LG OLED55CX.

The 55-inch screen has 4K spatial and 120Hz temporal resolution.
The peak luminance of the display was set to 167.33 cd/m2. The
position of the participant’s head was fixed using a chin-rest at a
71.5cm distance from the screen. This allowed covering 80◦ field of
view and display of spatial frequencies up to 24cpd at the center
of the screen. We used the Tobii Pro Spectrum 600Hz eye tracker
to track the participants’ gaze location. All the experiments were
conducted under diffuse office illumination behind a dark curtain
to prevent any reflections on the screen. The experimental setup is
presented in Figure 10.

Stimuli. We selected five 4K images from two rendered video
sequences: Big Buck Bunny3 and Tears of Steel4 (Figure 7). We
chose the images such that they include both dark and bright scenes
with high-contrast and high-spatial-frequency details.

Task. In each trial, the participant’s task was to adjust one of the
parameters of a technique such that it best matches the reference
full-resolution rendering. To this end, participants were shown half
of the full-resolution image on the left. A mirrored version of the
reference image was foveated using the adjusted parameter value
and shown on the right. The participants were able to manipulate
one of the parameters of our technique using a mouse wheel, and the
image on the right (test image) was updated in real-time during the
experiment to reflect the result of changes in the value. Participants
were asked to adjust the parameters such that the foveated image
3https://peach.blender.org
4https://mango.blender.org

ACM Trans. Graph., Vol. 41, No. 4, Article 143. Publication date: July 2022.

https://peach.blender.org
https://mango.blender.org


143:8 � Taimoor Tariq, Cara Tursun, and Piotr Didyk

0.1

0.2

0.3

10

20

30

2

3

4

Foveation
0.11 0.570.34

Foveation Foveation

f�� s
k

sf s

s  = 1.0 

s  = 1.9 

s  = 3.6 

s  = 6.8 19

20

22

21

s

s

0.11 0.570.34 0.11 0.570.34

f

f

f

f k

f

k 

Fig. 8. Results of the calibration experiment. Le� : contrast enhancement pa-
rameter (54 ), middle: amplitude scaling (B: ) for different values of the noise
bandwidth parameter (B5 ), and Right : the final combinations of amplitude
scaling (B: ) and noise bandwidth parameter (B5 ). The error bars visualize
the standard error of the mean (SEM) for each measurement point.

on the right best matches the full-resolution rendering on the left,
and confirm their choice by hitting the Enter key on the keyboard.
During the experiment, participants were asked to keep looking at
the center of the screen marked with a cross and their gaze position
was constantly monitored with the eye tracker. In order to ensure
the correct retinal positioning of the stimuli during the experiment,
stimuli are hidden by rendering a black frame whenever participants’
gaze position moved outside a small circular region with a radius
1�25◦ at the center of the screen.

Participants. University students were recruited for this experi-
ment. Prior to the experiment, they were naive about the purpose
of the experiment. All of them had normal or corrected-to-normal
vision and received financial compensation for their participation.
The experiment procedure was approved by the ethics committee
of the hosting institution.

5.2 Experiment Procedure
Each procedure of adjusting a parameter is performed separately for
a different amount of foveation. For adaptive-resolution foveated
rendering techniques, the cutoff point of spatial frequencies shift to
lower frequencies as the eccentricity increases as a result of lower
resolution rendering in the periphery. In order to simulate this effect
with our low pass Gaussian filter, we linearly increase the standard
deviation of the Gaussian kernel with increasing eccentricity. We
refer to the scalar representing this linear increase as blur-rate in
arcmin-per-degree units, and we represent it with fBlurRate. We de-
fine the foveal region with 8◦ radius around the gaze position where
the content is rendered in full resolution. The increase in kernel stan-
dard deviation at 8◦ eccentricity and beyond. We considered three
levels of foveation for data collection: fBlurRate = 0�11� 0�34� 0�57,
based on the previous analysis of Tursun et al. [2019], which re-
ported percentiles of foveation detectability for different blur-rates.
We included the limits so that they may encompass variation of
detectability across scenes.

Contrast enhancement parameter. We first investigated the param-
eter of the contrast enhancement step [Patney et al. 2016], 54 , which
scales the amount of added high-frequency signal to the foveated
image. Here, we consider the contrast enhancement alone; therefore,
the test image shown on the right did not contain additional noise.
The participants could freely manipulate the parameter 54 within

the range (0,0.4). A total of five people performed the adjustment
for each of the five images (Figure 8, left).

Amplitude scaling. We used the estimated 54 values to investigate
the remaining parameters, amplitude and bandwidth scaling. Again,
our design choice was to study one parameter at a time. Therefore,
in the next step we asked participants to adjust B: parameter within
the range (0,45) for a small set of B5 = 1� 1�9� 3�61� 6�81. In total, 10
participants adjusted the B: parameter for all combinations of five
images, three B5 values and three foveation levels (Figure 8, middle).

Bandwidth scaling. The previous experiments provided an opti-
mal scaling factor for contrast enhancement as well as a relation
between optimal amplitude, B: , and bandwidth scaling, B5 , for differ-
ent levels of foveation, ffov. To choose the final parameters for our
method across different foveation levels, we ran a final experiment
where participants adjust the bandwidth scaling factor, B5 , and the
amplitude, B: , was computed by linearly interpolating the values
from the previous experiment. Again, the total of 10 participants
performed this experiment (Figure 8, right).

5.3 Results and Discussion
Figure 8 shows results obtained in the three experiments described
above. The range of values obtained for the contrast enhancement
parameter (left plot) matches the default parameter value, 0�2, re-
ported by Patney et al. [2016]. The users prefer more aggressive
contrast enhancement (higher 54 values) as foveation increases,
which can be explained by more visible loss of spatial details due
to the foveation. The participants choose higher amplitude scaling
(B: ), for our noise enhancement as the bandwidth parameter (B5 )
decreases (middle plot). This is explained directly by the fact that
the increase of the bandwidth parameter widens the spectrum of
the noise beyond the aliasing range, which makes it distinguishable
from the image content in the reference image. The participants
compensated for this by lowering the noise amplitude. The final
parameters B: and B5 (right plot) demonstrate that the spectrum of
the noise has to be restricted (lower B5 values) more as the foveation
increases. The same trend holds for corresponding amplitude scal-
ing (B: ), even though the relative change in the parameter is less
significant. We attribute this trend to the fact that for more aggres-
sive foveation, the range of missing high-frequency details which
are easily resolvable increases. Any attempt of compensating for
this loss with noise makes it visible due to the ability of the HVS
to resolve the details. Therefore, the participants prefer to limit the
noise-based enhancement. All the final parameters of our technique
for each considered foveation level are listed in Table 2. We pro-
vide a detailed statistical analysis of the user-data obtained from
calibration in the supplementary.

Table 2. The optimal values of our parameters after calibration.

Foveation (fBlurRate) 54 B: B5
0.11 0.15 22.4 3.45
0.34 0.23 21.02 2.21
0.57 0.28 18.68 2.19
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Fig. 9. Representative images of the stimuli used in the validation experiment. San Miguel and Vokselia Spawn scenes courtesy of McGuire Computer Graphics Archive.

1 2 3 4 5 6 7 8 9 10
Scene ID

F
ov

ea
tio

n 
(a

rc
m

in
-p

er
-d

eg
re

e)

0.2
0.25
0.3

0.35
0.4

0.45
0.5

0.55
0.6

Contrast-
Enhancement
Ours

Reference 
image

Test 
image

Eye-Tracker 
Adjustment 

wheel

Fig. 10. The experimental setup of our subjective experiments is shown on
the left. The average foveation strength (with higher value representing
lower spatial frequency cutoff) selected by the participants in the validation
experiment (Section 6.1) for each scene is shown on the right. Overall, our
enhancement (orange line) allows using more aggressive foveation without
undesired visual artifacts compared to contrast enhancement (blue line)
(? � 0�001, C -test). The error bars visualize the standard error of the mean
(SEM) for each measurement point.

6 EVALUATION
We evaluate the effectiveness of our noise-based enhancement with
a subjective experiment. The main goal was to demonstrate that
subjects can tolerate more aggressive foveation when our noise-
based enhancement is used in a post-processing step. We compare
our method to contrast enhancement [Patney et al. 2016], which to
the best of our knowledge, is the only technique with similar goals
(Section 2), i.e., low-cost enhancement of foveated rendering.

6.1 Subjective Experiment
Stimuli. We used 10 rendered scenes to create results for contrast

enhancement and the combination of our enhancement with the
contrast enhancement. We selected the stimuli manually to include
scenes with different brightness levels, contrast, and luminance
spatial frequencies (Figure 9). For both techniques and for all results,
we used the same parameters determined in the previous calibration
experiments (Section 5). We simulated adaptive-resolution foveation
using spatially-varying Gaussian blur whose standard deviation
parameter depends on the visual eccentricity similar to Section 5.2.
In Figure 11, we provide foveation and enhancement results of
four scenes for visual comparison (please refer to the supplemental
materials for other scenes).

Task. The task of each participant was to select the blur-rate at
which the loss of image details due to foveation became visible with
respect to the reference (full-resolution) image. To this end, in each
trial, we showed the original image on the left half of the display,

while the right half was used for showing the output from the evalu-
ated techniques (i.e., our method and contrast enhancement [Patney
et al. 2016]). The stimuli were randomized during the experiment
and the participants were not aware of the enhancement method
being shown in any trial. The participants were asked to keep look-
ing at a cross at the center of the screen during the experiment. The
eye-tracker is used for monitoring the gaze position throughout
the experiment and ensuring that they adhere to the instructions
(similar to our calibration experiment in Section 5). The partici-
pants were asked to adjust the blur-rate using the mouse-wheel
(initially starting with no foveation) and press enter at the highest
blur-rate at which they could not perceive foveation with respect to
the reference image on the right.

Hardware. The hardware setup was identical to the equipment
used in our calibration experiment (Section 5).

Participants. 10 university students (3 females, 7 males) with nor-
mal or corrected-to-normal vision, were recruited for the experi-
ment. Prior to the experiment, the participants were given a written
description of the experimental procedure. In addition, we explained
the general concept of foveated rendering and showed a sample
adaptive-resolution foveated image generated using sub-sampling
and nearest-neighbor interpolation. In order to avoid introducing
bias to their preferences, the sample image and the foveation method
is chosen different from the techniques evaluated in the experiment.
The participants received financial compensation after complet-
ing the experiment. The whole experiment took approximately 15
minutes and was completed in a single session by each participant.

Results. The average values of fBlurRate selected by the partici-
pants for each scene are shown in Figure 10. The selected fBlurRate
values represent how “aggressively” high-spatial-frequency details
can be removed from the reference full-resolution image by foveated
rendering before the loss of high-frequency details become visible
to the observers. In comparison to contrast enhancement, our tech-
nique allows for higher fBlurRate without visible artifacts (? � 0�001,
t-test). The results demonstrate that our method reduces the amount
of perceived loss of spatial details from foveated rendering and en-
ables rendering in lower resolution in the periphery.

We provide an analysis of spectral characteristics of our outputs
in Figure 12. As expected, foveation effectively removes higher-
spatial frequencies which cannot be properly recovered through
contrast enhancement, especially in the Aliasing Band (5 ≥ )!). The
attenuation increases with eccentricity and blur-rate, fBlurRate. This
analysis confirms that our technique is effectively able to compen-
sate for the lost high-frequencies. Interestingly, the noise sometimes
over-compensates in the aliasing band; however, the participants
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Fig. 11. The comparison of contrast enhancement and noise-based enhancement methods with input foveated images. The insets show magnified views of
two image regions for visual comparison. These images are designed to be viewed at an 80 degree wide field-of-view with the gaze at the center. For more
results, please refer to the supplemental materials.
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did not report visual artifacts and we relate this to the frequency
band being not resolvable by the HVS.

Additionally, we report the outputs from FovVDP [Mantiuk et al.
2021] objective quality metric for our method, contrast enhance-
ment, and standard foveation in Figure 13 (FovVDP reference: full-
resolution image). Overall, the average JOD scores obtained from
FovVDP are significantly different between the standard deviation
and both contrast enhancement and noise enhancement methods
(? � 0�001, t-test). However, the visual quality difference between
the contrast-enhanced and noise-enhanced images is not signifi-
cantly different (? = 0�07, t-test). We believe that relatively close
JOD scores obtained for our method and contrast enhancement
are due to the greatly reduced contrast sensitivity function used
in FovVDP for the frequencies in the aliasing band. We find this

Foveation (arcmin-per-degree)

5

6

7

8

9

JO
D

Foveated
Contrast Enhanced
Ours

JOD = 7.71 JOD = 7.650.23 0.45 0.68 0.9 1.14
Contrast Enhanced Ours

Fig. 13. Output of FovVDP for our noise-based enhancement, contrast
enhancement, and standard foveated rendering results (FovVDP reference:
full-resolution image). Le� : FovVDP produces very similar JOD scores for
our method and contrast enhancement, whereas standard foveation always
has worse JOD scores. Right : FovVDP input images and error maps for
contrast enhancement and our method with similar JOD scores at the same
amount of foveation. (fBlurRate = 0�68).

observation intuitive because contrast sensitivity functions usually
represent the measurements from psychovisual experiments where
the visibility threshold is defined by resolvable contrast rather than
detectable contrast. Hence, we believe that FovVDP and similar
objective quality metrics are not suitable for evaluating the visual
quality of methods that enhance the aliasing band. This is further
supported by the results of our subjective evaluation which indi-
cates a difference between our and contrast enhancement method.

6.2 Temporal Coherence and Motion Preservation
Enhancing videos with additive noise requires efforts on two fronts:
avoiding temporal artifacts and preserving temporal motion charac-
teristics of the foveated input. During the derivation of our method,
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Fig. 14. The figure demonstrates the temporal coherence of our method
compared to full-resolution rendering, foveated input, and contrast enhance-
ment. The error bars visualize the standard error of the mean (SEM) for each
measurement point. On the right, we demonstrate temporal slices of pixel
intensities for two image locations. On the left, we measure the temporal
coherence by computing SSIM metric values between consecutive frames
and averaging them across the image sequence.

we took various steps to mitigate potential issues regarding tem-
poral stability without significantly disturbing motion cues. Our
method for estimating the noise parameters relies on simple image
processing operations, e.g., Gaussian/Laplacian pyramids and So-
bel filtering. Due to their filtering nature, these operations usually
preserve the temporal coherence of the input image sequence and
generate stable results as long as the input is stable. Furthermore,
the frequency spectrum of our noise is defined using a smooth log-
normal distribution which prevents any abrupt changes. We also
fix the impulses locations for noise generation for the duration of a
rendered sequence. As a result, the locations of the Gabor patches
do not change, and only their parameters adapt to the underlying
content. Finally, our noise is generated for less sensitive regions of
our visual field, making potential temporal problems less visible.

Achieving temporal consistency alone is not enough. Noise, which
does not reflect the motion in the scene, can alter motion perception.
In particular, the static nature of our impulse locations could lead
to the shower-door effect, which occurs when a dynamic scene
is overlaid with static content. We let amplitude and orientation
change according to the underlying content to limit this effect and
make the noise pattern follow temporal content changes. Consider
a single line moving across the screen. Even though the impulse
locations are fixed, the amplitudes and orientations at each impulse
adjust for underlying content such that noise appears only at the
line edges. This effectively makes the noise follow the line, i.e., the
noise is not static and adheres to underlying motion.

To the best of our knowledge, there is no established metric for
evaluating the temporal stability of a video sequence, especially for
wide-field-of-view setups. To hint at the temporal coherency of our
solution, we first visualize the temporal pixel intensity variation for
two locations in one of our sequences and compare it to the corre-
sponding signal in the full-resolution rendering. Figure 14 (right)
shows the results of this analysis. While the temporal variation for
our technique is slightly larger than in the full-resolution rendering,
the deviation remains low without creating significant temporal
instabilities. Additionally, we follow the procedure used in previous
work [Kaplanyan et al. 2019], where the temporal consistency was
measured using SSIM metric [Wang et al. 2004] values between
consecutive frames averaged across an image sequence. Figure 14

(left) shows the results of this analysis for one sequence and dif-
ferent levels of foveations. For comparison, we report values for
our method, full-resolution rendering, foveated input, and when
only the contrast enhancement is applied. The foveated sequence
has the highest average SSIM between frames because of spatial
smoothing introduced by foveation. It is followed by the contrast
enhancement, our method and ground truth, respectively. As our
method synthesizes noise over the contrast-enhanced frames, a de-
crease in SSIM with respect to the contrast enhancement is expected.
Still, our method delivers a high average inter-frame SSIM when
compared to the reference sequence.

The above analysis gives only hints on the temporal properties of
our technique. We refer to our supplemental materials for rendering
sequences processed with our method.

6.3 Performance
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We evaluated the performance of
the noise-based enhancement method
using a PC with Intel(R) Core(TM)
i7-9700K CPU at 3.60GHz, 32 GB
of RAM, and a single NVIDIA
GeForce RTX 2080 Ti GPU. Con-
sidering the practical requirements
of foveated rendering, we measured
the performance for 4K resolution
(3840×2160 px) input images. We con-
sidered the two main steps of our
method: noise parameter estimation and noise synthesis. The pa-
rameter estimation component consists of building all the image
pyramids and estimating frequency, amplitude, and orientation for
each Gabor patch. The synthesis considers sparse convolution of
impulses with Gabor patches. Furthermore, we consider different
impulse densities for the noise generation as it provides a trade-off
between the noise quality and performance (Section 4.4). The corre-
sponding performance plots are shown in Figure 15. We can observe
that the main cost of our technique is the parameter estimation for
the noise. Overall, the increase in performance is approximately
linear as the number of kernels increases. Note the running times
are plotted in a logarithmic domain. Our initial choice of 64 impulses
per kernel was motivated by the recommendation in the original pa-
per [Lagae et al. 2009]. However, this recommendation did not take
into account more flexible perceptual requirements of showing the
noise in the peripheral visual field. Consequently, we experimented
with lowering the number of impulses. Our initial visual inspection
revealed that the noise pattern preserves its quality even for as little
as 12 impulses per kernel (Figure 16, left). To evaluate that this num-
ber is still sufficient for our noise-based enhancement technique,
we repeated the validation experiment (Section 6.1) for 12 impulses.
The results of this experiment (Figure 16, right) demonstrate that the
advantage provided by our method over the contrast-enhancement
method remains unchanged when compared to the experiment for
64 impulses (? � 0�001, C-test). This suggests that reducing the
number of impulses to 12 is a viable option for improving the per-
formance of our method. This brings down the time required for
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Fig. 16. Reducing the number of impulses per kernel for noise generation
has little effect on the quality (left). The results of the additional experiment
(right) demonstrate that also using 12 impulses per kernel allows more
aggressive foveation (? � 0�001, t-test), and the gains are similar to those
obtained for 64 impulses. The error bars visualize the standard error of the
mean (SEM) for each measurement point. The bar plot shows the estimated
sampling-rate reduction of our technique over contrast enhancement.

running the entire enhancement process to 4�6 ms (217 frames per
second), compared to 27�7 ms (36 FPS) for 64 impulses.

We report the scene-independent running times from an unopti-
mized implementation of our method on GPU. It may be challenging
to quantify the actual gains from foveated rendering when using ras-
terization because the gains are highly dependent on the complexity
of the scene, i.e., geometry and shading. Overall, the computational
savings should compensate for the overhead of foveated rendering
before a net gain is observed [Tursun et al. 2019]. For ray tracing,
however, it is more straightforward to estimate the computational
gains from our method by correlating the tolerable amount of in-
crease in the blur-rate from our experiments with the sampling-rate
reduction for ray tracing. Assuming a maximum tolerable blur to be
f (G) at location G , the corresponding minimum sampling rate re-
quired to represent the spatial frequencies is inversely proportional
to the f (G), according to the Nyquist theorem. Using this scheme,
we aggregate the sampling-rate reduction with respect to contrast
enhancement across the entire image. The gains for all the stimuli
used in our experiments are reported in Figure 16 (right).

It is also important to note that for stereo rendering on VR-HMDs,
our noise synthesis is performed only once, followed by a compu-
tationally efficient warping [Didyk et al. 2010]. We believe that
foveated rendering applications on higher resolution (e.g., 8K) dis-
plays will benefit even more from our technique.

Our technique is designed for real-time foveated rendering. How-
ever, it is also applicable to foveated image compression. In order to
compute potential gains in foveated image compression, we apply
JPEG compression at a quality factor of 90 to foveated images and
compare the file sizes. We measure up to 23% reduction in foveated
image file size for our method compared to contrast enhancement
for the set of images used in our evaluation. The blur rates used
were in accordance with user experiments in Figure 16 (right).

6.4 Stereoscopic Content
Application to virtual and augmented reality devices requires stereo-
scopic rendering. The results presented so far consist of monoscopic

Fig. 17. The image shows our technique applied to a stereoscopic rendering
of the Sponza scene. The image is presented in red-cyan anaglyph colors.
This image is designed to be viewed at an 80-degree wide field-of-view, with
gaze at the center.

images. As a simple extension to our technique for stereoscopic ren-
dering, we propose to generate the noise only for one eye and use
an image-based warping technique [Didyk et al. 2010] to generate
the noise for the second eye by warping the noise according to the
disparity. Such a technique creates an illusion of noise being a part of
the object’s surfaces and textures. Due to the random nature of our
noise, we did not observe visible problems at disocclusion regions.
Figure 17 shows a red-cyan anaglyph version of our enhancement
applied to a stereoscopic image. Please refer to supplemental ma-
terials for more examples of our technique applied to stereoscopic
content.

7 LIMITATIONS AND FUTURE WORK
Our technique estimates the parameters of the noise based on the
available information in a foveated image. In particular, it propagates
the statistics such as spatial frequency amplitude and orientation
from lower frequencies to higher ones. This process relies on the
assumption that low and high spatial frequencies share similar sta-
tistics. However, this does not always need to be the case. Some
parts of the scene or textures may inherently contain only low-
frequency content, for example, sky, water, or image regions with a
depth-of-field effect. Despite this, our technique will still generate
high-spatial frequency noise. Scene 10 in our evaluation validation
experiment (Section 6.1) is a particular example of it. In future work,
it would be interesting to look for ways to address this limitation.
For example, the particular case of the depth-of-field effect could be
addressed by exploiting the camera parameters used for rendering
the scene during the estimation of the noise parameters. Similarly,
information about the frequency spectra of textures could be pre-
computed and stored prior to the rendering. This would inform
the noise-based enhancement technique not to generate noise for
regions containing only low-frequency content.

The efficiency of our enhancement method is limited in very high-
contrast regions where adding noise leads to clipping image values.
Our method accounts for such situations by attenuating the noise
amplitude. However, such a strategy may prevent enhancement in
very dark or bright image regions. Examples of such cases can be
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Fig. 18. Saturation & Noise ((24=4-8). Le� : Our enhancement after contrast
enhancement leaves less range for the noise to be applied.Center : Saturation
after contrast enhancement. Right : Dynamic range reduction after contrast
enhancement leaves more range for noise.

found in Scenes 1 and 8 in our validation experiment. The scenes
contain dark regions that are clipped after contrast enhancement,
which prevents adding noise. It would be interesting to investigate
the possible trade-off between the dynamic range and our enhance-
ment. In particular, it is possible to compress local image contrast
such that the noise can be added. We provide an example of such
an operation in Figure 18.

Our technique assumes that the input is a foveated rendering
sequence that does not contain any spatial or temporal aliasing.
Furthermore, following the studies of Albert et al. [2017], Hoffman et
al. [2018] and the previous work on foveated rendering [Patney et al.
2016; Tursun et al. 2019], we simulate and model foveated rendering
using spatially-varying Gaussian blur. An exciting venue for future
work is to investigate the enhancement of the foveated rendering
containing some form of aliasing. An analysis of the aliasing could
provide additional information to the noise generation technique on
the range of spatial frequencies that were not correctly synthesized.

We calibrated our technique using static images. However, we ar-
gue that the obtained parameters can be directly used for animated
sequences as images represent the most challenging case in this
regard. This is because motion is known to mask spatial distortions,
in particular, any spatial artifacts due to foveation or our technique.
In the future, it would be interesting to exploit this type of masking
and design a technique that accounts for potentially higher toler-
ance of observers to noise in dynamic content when estimating the
noise parameters. We believe that such a more accurate modeling
would further increase the computational gains of the noise-based
enhancement technique.

Most of the widely available virtual reality headsets provide lim-
ited spatial resolution, especially for large eccentricity [Beams et al.
2020]. Therefore, we performed all experiments using a large 4K
screen, which, for our viewing conditions, can reproduce spatial
frequencies up to 24 cycles per visual degree for the fovea region.
In comparison, the upper limit on the spatial frequency reproduc-
tion for the HTC Vive Pro Eye headset is 5 cycles per visual degree,
which is insufficient to fully exploit the benefits of our enhancement.
Newer display models such as the Varjo VR-3 HMD can represent
up to 15 cycles-per-degree in the periphery, which is sufficient to
exploit the full benefits of our method.

In this work, we demonstrate the utility of our technique in the
context of rendering. However, we believe that similarly, the method
can be used to enhance foveated video compression and complement

such techniques as [Walton et al. 2021]. Furthermore, we believe
that there is significant potential in applying noise-based techniques
for many problems in real-time foveated graphics. We have only
explored temporally-coherent spatial characteristics of 2D Gabor
noise for our technique. In the future, other noise variations, such as
3D Gabor noise, which can effectively control temporal character-
istics of the content, or techniques that explicitly preserve motion
cues during noise synthesis [Bénard et al. 2010] can pave the way
for efficient rendering of temporal metamers. Considering the spec-
tral nature of various psycho-visual models, the ability to precisely
control spatio-temporal spectral properties of synthesized content
presents an exciting tool to bridge human perception and graphics.

8 CONCLUSIONS
Foveated rendering enables significant computation benefits for
high-resolution wide-field-of-view displays. Therefore, it becomes
a crucial component and key enabler for high-quality rendering
systems in virtual and augmented reality headsets. In this work,
we present an efficient technique that can further reduce the cost
of the foveated rendering by allowing more aggressive foveation
without perceived quality loss. We achieve this goal thanks to our
new noise-based enhancement step, which replaces the rendering
of high-spatial frequency details with inexpensive procedural noise
synthesis. This paper presents a perceptually-inspired method for es-
timating the parameters of the noise and calibration of the technique
based on data collected in perceptual experiments. The method con-
sists of a series of simple image processing steps applied directly to
the output of the foveated rendering. Thanks to these properties, our
enhancement method is suitable for direct integration into foveated
rendering systems.
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A DETECTION AND RESOLUTION FREQUENCY
THRESHOLD MEASUREMENTS

Table 3. The measurements from Thibos et al. [1996], that we linearly inter-
polate to obtain)� (4x) and)! (4x) for different values of 4x.

Eccentricity (deg) 0 5 10 15 20 25 30
)! 60 27 10.5 8 5.5 4.8 4
)� 60 40 26 24 23 21 20.5
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