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We analyze the entire power spectrum of pulse trains generated by a continuously operating actively mode-
locked laser in the presence of noise. We consider the effect of amplitude, pulse-shape, and timing-jitter fluc-
tuations that are characterized by stationary processes. Effects of correlations between different parameters
of these fluctuations are studied also. The nonstationary timing-jitter fluctuations of passively mode-locked
lasers and their influence on the power spectrum is discussed as well.  1996 Optical Society of America
1. INTRODUCTION
In the past decade a wide variety of continuous-wave
mode-locked lasers have been used as reliable sources
for ultrashort-pulse measurements. They have been
applied in time-resolved spectroscopy, electro-optic sam-
pling, and time-division multiplexing. In these sys-
tems the random changes of the imperfectly mode-locked
pulse-train properties must be taken into consideration.
These random fluctuations are due to fundamental noise
sources, such as spontaneous emission, in addition to
technical noise sources, such as cavity-length fluctua-
tions.

Autocorrelation measurements are insufficient for the
characterization of noise in mode-locked lasers. For
this reason the random fluctuations of femtosecond
pulse trains are investigated by the technique of radio-
frequency spectrum analysis. This technique is based on
recording the power spectrum of the laser intensity with
a fast photodiode and an electronic spectrum analyzer.

A theoretical description for the low frequencies of
the power spectrum under the assumption of station-
ary processes, given by von der Linde,1 is typically
used to measure the timing-jitter and the intensity rms
fluctuations.2 – 7 The measurements are based on the
approximation that the fluctuations manifest themselves
as sideband power around multiples of the fundamental-
repetition frequency. The timing-jitter noise leads to an
increase in sideband power at higher harmonics, which
is proportional to the square of the harmonic number,
and the amplitude noise is reflected by harmonic number
independent sidebands.

In this paper we intend to fully describe the intensity
power spectrum of a train of pulses in the presence of cor-
related components of stationary random noise. First, in
Section 2 the model used to calculate the power spectrum
is described. Then we outline, in Sections 3 and 4, the ef-
fects of amplitude and timing-jitter fluctuations. The dif-
ference between passively and actively mode-locked lasers
on the statistics of timing-jitter fluctuations and its influ-
ence on the power spectrum are described in Section 4.
In Section 5 the effects of independent amplitude and
timing-jitter stationary noise together are calculated and
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the additional contribution of their convolution term is
found. The effect of correlations between these fluctu-
ations in the power spectrum is calculated in Section 6.
Section 7 describes the autocovariance power spectrum.
In Section 8 we study the effect of pulse-shape noise.
Section 9 compares experimental data with theory. Con-
clusions are given in Section 10.

2. MODEL
The detected intensity IDT of a train of 2N 1 1 pulses is
described in the time domain as

IDT std ­
NX

n­2N
fnst 2 Tnd , (1)

where fn is the nth pulse-intensity envelope in the train
that occurs at time Tn. The time duration of the 2N 1 1
pulse train is DT . In Eq. (1) we assume nonoverlapping
electric-field envelopes of neighboring pulses in the train.
This assumption is justified for short pulses compared
with the repetition period.

According to the Wiener–Khintchine theorem, the
power spectrum PI svd is given in terms of the intensity
autocorrelation function GI std:

PI svd ­
Z `

2`

GI stdexpsivtddt , (2)

where

GI std ­ lim
DT!`

1
DT

Z DT /2

2DT /2
IDT stdIDT st 1 tddt . (3)

An alternative description of the power spectrum is
given in terms of IDT svd,8

PI svd ­ lim
DT!`

1
DT

kIDT svdIp
DT svdl , (4)

where

IDT svd ­
Z DT /2

2DT /2
IDT stdexpsivtddt , (5)

Ip
DT svd is the complex conjugate of IDT svd, and k l denotes

an ensemble average. Here we assume IDT std to be an
1996 Optical Society of America
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ergodic function, thus making both time and ensemble
averages equivalent.

Without any loss of generality we can assume that the
individual event fnstd occurs over a short time compared
with the observation period DT , so the integration limits
can be taken as 2` to ` instead of 2DTy2 to DTy2.
Therefore we may write

IDT svd ­
NX

n­2N
FnsvdexpsivTnd , (6)

where

Fnsvd ­
Z `

2`

fnstdexpsivtddt . (7)

In this case the power spectrum of the pulse train is
given by

PI svd ­ lim
N!`

1
2N 1 1

NX
n,m­2N

kFnsvdFp
m svd

3 expfivsTn 2 Tmdgl . (8)

The importance of this result is the separation between
the fluctuation of the timing jitter, which manifests it-
self in the exponent, to those of the pulse shape and its
amplitude. We can easily calculate the power spectrum
by knowing the joint-probability-distribution functions of
the fluctuating variables.

In previous research1,3 the power spectrum was calcu-
lated in the time domain [Eqs. (2) and (3)] with the as-
sumption of small stationary timing-jitter fluctuations.
This approximation is valid only in the low-frequency
power spectrum of actively mode-locked lasers. We find
that the calculations in the frequency domain are simpli-
fied and free from those assumptions; therefore we use
this domain in order to calculate the power spectrum.

In the absence of noise, for a periodic sequence of 2N 1

1 identical pulses, Fnsvd ­ F svd, equally separated in
time sTn ­ nT d, the power spectrum [Eq. (8)] is

PI svd ­ jF svdj2 lim
N!`

HN svTd , (9)

where T is the pulse-repetition period and

HN svTd ­
1

2N 1 1

É
NX

n­2N

expsivnT d

É 2

­
1

2N 1 1

(
sinfs2N 1 1dvTy2g

sinsvTy2d

) 2

. (10)

In the limit of an infinite number of pulses, HN will have
the form

H svTd ­ lim
N!`

HN svTd ­
2p

T

X̀
n­2`

dsv 2 2pnyTd .

(11)

The power spectrum of a perfect, noise-free pulse train
is described by a series of Dirac d functions separated
with constant spacing Dv ­ 2pyT , shaped by the squared
Fourier transform of the pulse-intensity shape jF svdj2.
3. AMPLITUDE FLUCTUATIONS
Amplitude fluctuations in the pulse trains result from
random processes in the laser. Potential sources for am-
plitude noises are spontaneous-emission and gain fluc-
tuations. Typically, the gain fluctuations have a long
relaxation time, and the power of spontaneous emission
is relatively small. The amplitude fluctuations occur at
a rate that is slow relative to the optical pulse enve-
lope. Therefore it is justified to assume that the output
of the laser pulse is described by a set of discrete coherent
pulses. Assuming that all the pulses are equally sepa-
rated in time and equally shaped but differ in amplitude,
Fnsvd ­ AnSsvd, where An ­ sA 1 dAnd, and A is the real
average intensity. The amplitude fluctuations, meaning
the difference of the nth pulse from the average intensity
A, are described by dAn. dAn has zero mean skdAnl ­ 0d
and an arbitrary probability-distribution function. Also
we assume the fluctuations can be modeled as stationary
processes:

kdAndAml ­ kdA0dAjn2mjl (12)

for a continuously operating mode-locked laser. With
Eqs. (8) and (12) the power spectrum is given by

PI svd ­ jSsvdj2fH svTd 1 2PAsvTdg , (13)

where the Fourier series of PAsvTd is found in terms of
the autocorrelations GAskd of the amplitude fluctuation
occurring at different times:

PAsvd ­
GAs0d

2
1

X̀
k­1

GAskdcosskvT d , (14)

GAskd ­ kdA0dAkl. (15)

The effect of amplitude fluctuations is to add a periodic
spectral density around the Dirac d functions’ discrete
lines, i.e., the harmonic-number-independent side-bands.
The power added to the power-spectrum continuum re-
flects the increase of the intensity square that is due to
amplitude noise.

4. TIMING-JITTER FLUCTUATIONS
Different sources of noise contribute to fluctuations in the
pulse-train timing jitter. Some of these sources are gain,
cavity length, refractive index, and spontaneous-emission
fluctuations. In this section we concentrate on how these
fluctuations are reflected in the power spectrum.

In the case in which there are equally shaped pulses
with the same amplitude and random variations of the
time interval between successive pulses in the train, i.e.,
Fnsvd ­ F svd and Tn ­ nT 1 dTn, the power spectrum is

PI svd ­ jF svdj2 lim
N!`

1
2N 1 1

NX
n,m­2N

expfivTsn 2 mdg

3 kexpfivsdTn 2 dTmdgl , (16)

where T represents the average pulse-repetition period
and dTn describes its fluctuations relative to the time nT
of the nth pulse in the train.
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In contrast to the amplitude fluctuations, in which the
power spectrum depends on the amplitude autocorrela-
tion, in this case, the shape of the power spectrum de-
pends on the full statistics of the timing-jitter fluctuations
since it appears in the exponent.

Different types of processes govern the timing-jitter
fluctuations for different mode-locked systems. In ac-
tively mode-locked lasers, owing to the external restoring
force9 of the active modulation, the timing fluctuations
are described by a stationary process.

Assuming stationary processes and a Gaussian
probability-distribution function of these fluctuations,

kexpfivsdTn 2 dTmdgl ­ exph2v2fGT s0d 2 GT sjn 2 mjdgj ,

(17)

where GT skd is the timing-jitter fluctuation autocorrela-
tion function:

GT skd ­ kdT0dTkl . (18)

Therefore Eq. (16) has the form

PI svd ­ jF svdj2
"""

1 1 expf2v2GT s0dg

√√√
2

X̀
k­1

hexpfv2GTskdg

2 1jcosskvT d 1 H svT d 2 1

!#!#!#
. (19)

The assumption of stationary processes of the pulse-train
noise, such as amplitude and timing-jitter fluctuations,
are justified since the laser is driven by a stable external
timing source. Therefore fluctuations are related to the
modulator signal.

The timing-jitter fluctuations result in power-spectrum
sidebands. These sidebands differ as a function of har-
monic number. Their power comes at the expense of the
discrete Dirac d functions, corresponding to the noise-
less laser. The discrete lines are attenuated by a factor
expf2v2GT s0dg that rolls off at high frequencies.

The discrete lines, appearing in the multiplication of
the fundamental-repetition frequency, are a direct result
of the stationary assumption for the timing-jitter fluctu-
ations that stem from the presence of an external restor-
ing force for active modelocking. In this case the average
timing fluctuations ksdTn 2 dTmd2l are finite for any n, m.
This leads to summation of infinite terms over cosskvTd,
yielding the discrete d functions. We prefer to represent
the power spectrum as in Eq. (19), since the argument of
the sum decays to zero for large k, and the timing-jitter
correlation between pulses decreases.

For low frequency fv2GT s0d ,, 1g the power spectrum
is given as

PI svd ­ jF svdj2hf1 2 v2GT s0dgHsvTd 1 2v2PT svdj ,

(20)

where

PT svd ­
GT s0d

2
1

X̀
k­1

GT skdcosskvT d . (21)

Equation (19) was calculated with the assumption of a
Gaussian probability-distribution function of the timing-
jitter fluctuations dTn. The exact form of the probability
is important for the high-frequency power spectrum [see
Eq. (16)]. However, the low-frequency power spectra de-
pend only on the second moment fksdTn 2 dTmd2lg, and the
exact form of the probability is unimportant. Therefore
Eq. (20) is a general result for stationary processes and is
independent of the full probability-distribution function
of dTn. We find the approximation of low frequency to
be valid (0.5% relative error) up to v2GT s0d ø 0.1, i.e., a
harmonic number lower than n , 0.05Ty

p
GT s0d .

In Fig. 1 a plot of PI svdyjF svdj2 is shown for white
noise, i.e., GT skd ­ GT s0dd0,k (where dn,m ­ 1 if n ­ m and
zero otherwise). In this case we chose GT s0dyT2 ­ 1024.
The sum does not contribute to the power spectrum.
The exchanged power grows as the harmonic number in-
creases. This becomes a constant for high frequencies
when the power under the discrete lines becomes constant
and frequency independent.

In order to see the effect of nonvanishing timing-
jitter autocorrelations, we chose GT skd ­ GT s0dexps2akd
as was suggested by Haus et al.9 Figure 2 describes
the power spectrum for this autocorrelation, where
a ­ 1.5 and GT s0dyT2 ­ 1024. We omitted the factor
expf2v2GT s0dgH svT d, which has the effect of attenuat-
ing the discrete lines, as shown in Fig. 1. The effect of
correlations in timing-jitter fluctuations causes a sharp-
ening of the sidebands. The dashed curve represents the
low-frequency approximation, as in Eq. (20), for the maxi-
mum peak value; i.e., 2v2PT s2pyT d. Approximately five
sidebands are in the limit of the low-frequency approxi-
mation.

A calculation involving long-range pulse-to-pulse
timing-jitter correlations, for a ­ 0.5, is shown in
Fig. 3(a). The other parameters are as in Fig. 2.
Figure 3(b) shows the first 20 sidebands of the power
spectrum as a function of the frequency deviation Dv ­
v 2 2pnyT (offset frequency), where n is chosen such
that 0 , Dv , 2pyT . The lower harmonic sidebands do
not intersect since, as the harmonic number n increases,
the sideband’s peak value increases, and its FWHM is
approximately constant [see Eq. (20)].

Although in active modelocking an externally applied
modulation produces the locking between the longitudinal
modes, such external modulation is not needed in passive

Fig. 1. PI svdyjF svdj2 as a function of vTy2p for the station-
ary white-noise timing-jitter case. Here GT skd ­ GT s0dd0,k and
GT s0dyT2 ­ 1024.
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Fig. 2. PI svdyjF svdj2 2 expf2v2GT s0dgH svT d versus vTy2p,
where GT skd ­ GT s0dexps2akd and a ­ 1.5. The dashed
curve represents the peak values of the power spectrum for
low-frequency approximation fv2PT s2pyT dg.

(a)

(b)
Fig. 3. (a) Same as in Fig. 2, but a ­ 0.5; (b) the power-
spectrum sidebands for the first 20 harmonics as a function of
the frequency deviation Dv.

mode locking. Instead, the modulation is produced in-
ternally and self-consistently through the action of the
optical pulse train on the gain and the absorber media.
Therefore in passively mode-locked lasers the timing-
jitter fluctuations do not obey a stationary process.9,10 In
the absence of a restoring external force the timing of each
pulse depends on that of the previous one, and its fluctu-
ation results from the sum of many assumed independent
processes. In this case the timing-jitter noise can be de-
scribed by the random walk or the diffusion theories for
Gaussian processes whenever fluctuations of timing jitter
between successive neighboring pulses are uncorrelated
or when the correlation time is much smaller than the
repetition period. The averaged term in Eq. (16) can be
written as

kexpfivsdTn 2 dTmdgl ­ exp

√
2

v2

2
DT jn 2 mj

!
, (22)

where D ­ ksdTn 2 dTn61d2lyT is the diffusion constant,
which describes the timing-jitter fluctuations between
successive neighboring pulses. Also, Gaussian probabil-
ity distributions were assumed for the random sdTn 2

dTmd timing-jitter fluctuations with zero mean value.
With Eqs. (16) and (22), the summation is performed

analytically yielding the power spectrum

PI svd ­ jF svdj2
sinhsv2DTy2d

coshsv2DTy2d 2 cossvT d
. (23)

In this case the discrete lines, which occur in the sta-
tionary approximation, are not valid anymore. Instead,
for low-frequency sv2DT ,, 1d and small-frequency de-
viation sDv ,, 2pnyTd the power spectrum is given ap-
proximately by Lorentzian functions around multiples of
the fundamental-repetition frequency.

In Fig. 4 the first ten side-bands of the power
spectrum for the nonstationary case are plotted. These
sidebands are given as a function of the frequency devi-
ation Dv ­ v 2 2pnyT for Dy2T ­ 1024. As the har-
monic number n increases, the peak power decreases and
its FWHM increases. Therefore the sidebands intersect.
The intersection point between the nth and the mth
sidebands for low harmonics numbers sv2DT ,, 1d are

Fig. 4. Power spectrum for the nonstationary timing-jitter fluc-
tuations [Eq. (23)]. The first ten sidebands are plotted as a
function of the frequency deviation Dv in a log-log scale. The
value of Dy2T ­ 1024 was assumed.
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given by DvnmTy2p ­ pDnmyT . This characteristic is
totally different from that of the stationary timing-jitter
fluctuations [see Fig. 3(b)].

In the remainder of this paper we assume the station-
ary case for the timing-jitter fluctuations, suitable for the
actively mode-locked lasers. The nonstationary timing
fluctuations, as in the passively mode-locked lasers, are
discussed in Ref. 10.

5. STATISTICALLY INDEPENDENT
AMPLITUDE AND TIMING-JITTER
FLUCTUATIONS
Assuming constant pulse shape in which independent am-
plitude and timing-jitter fluctuations are present, the av-
erage in Eq. (8) can be written as

kFnsvdFp
msvdexpfivsTn 2 Tmdgl ­ jSsvdj2 expfivTsn 2 mdg

3 ksA 1 dAndsA 1 dAmdl

3 kexpfivsdTn 2 dTmdgl .

(24)

The power spectrum is given by

PI svdyjSsvdj2 ­ A2 1 A2 expf2v2GT s0dg

3

√√√
2

X̀
k­1

hexpfv2GT skdg 2 1j

3 cosskvTd 1 H svTd 2 1

!!!
1 GAs0d 1 expf2v2GT s0dg

3

(
2

X̀
k­1

GAskdexpfv2GT skdgcosskvT d

)
.

(25)

In Eq. (25), as before, we assume stationary processes for
the amplitude fluctuations and stationary noise with a
Gaussian probability-distribution function for the timing
jitter, justified in the case of external restoring force.

For low frequency we can evaluate the power spectrum
by expanding expfivsdTn 2 dTmdg in a Taylor series, col-
lecting terms up to v2, and averaging:

PI svd ­ 2jSsvdj2hf1 2 v2GT s0dgfA2HsvTdy2 1 PAsvdg

1 A2v2PT svd 1 v2PAsvd ≠ PT svdj , (26)

where the convolution of the Fourier series between the
amplitude spectrum PAsvd and the timing-jitter spectrum
PT svd is given by

PAsvd ≠ PT svd ­
T
p

Z p/T

2p/T
PAsv 0dPT sv 2 v 0ddv0

­
GAs0dGT s0d

2
1

X̀
k­1

GAskdGT skdcosskvT d .

(27)

We find a term additional to those considered previously.1

This extra term is important whenever the pulse train
is characterized by relatively high amplitude noise com-
pared with its average value. In this case, in contrast to
the calculation of Eq. (25), no assumptions of the specific
statistics of the random variables dAn and dTn are made.
The only approximation is of stationary processes.
6. EFFECT OF DEPENDENT AMPLITUDE
AND TIMING-JITTER FLUCTUATIONS
The case of amplitude and timing-jitter fluctuations ex-
hibiting statistical dependence on each other is given in
terms of the average

ksA 1 dAndsA 1 dAmdexpfivsdTn 2 dTmdgl . (28)

This average is not separable owing to the correlations.
The contribution of the lowest-order noise, owing to cor-
relations, is found by expansion of the exponent of Eq. (28)
into a series. The terms, including up to the second order
in the amplitude and the timing-jitter fluctuations,

ivAksdAn 1 dAmdsdTn 2 dTmdl ­ 0 , (29)

vanish owing to symmetry for stationary processes. This
result is reasonable since the power spectrum of a real
signal is real, positive, and an even function of v.
Therefore we expect the contribution from this statis-
tical dependence to be in a higher order than those of the
amplitude GAskd or timing jitter GT skd. This result is
important, since it shows that the correlations contribute
in a smaller order of magnitude, which for relatively small
fluctuations may be negligible.

The average in Eq. (28) is easily found by assuming sta-
tionary processes with Gaussian probability-distribution
functions for both the amplitude and the timing jitter:

ksA 1 dAndsA 1 dAmdexpfivsdTn 2 dTmdgl ­

hA2 1 GAsjn 2 mjd 1 v2fGAT s0d 2 GAT sjn 2 mjdg2j

3 exph2v2fGT s0d 2 GT sjn 2 mjdgj , (30)

where GAT skd ­ kdA0dTkl describes the amplitude to
timing-jitter correlations. As expected, the dependence
is on G2

AT skd, i.e., higher order in the amplitude and
the timing-jitter correlations. In developing Eq. (30)
the joint characteristic function nature of the Gaussian
probability-distribution function was used.

The power spectrum has the form

PI svdyjSsvdj2 ­ A2 1 A2 expf2v2GT s0dg

3

√√√
2

X̀
k­1

hexpfv2GT skdg 2 1j

3 cosskvT d 1 H svT d 2 1

!!!
1 GAs0d 1 expf2v2GT s0dg

3

√√√
2

X̀
k­1

hGAskd 1 v2fGAT s0d 2 GAT skdg2j

3 expfv2GT skdgcosskvT d

!!!
. (31)

The constant term, GAT s0d, in the sum contributes to
the discrete lines (see Section 7). The component of the
power spectrum that results from this term has the form

v2 expf2v2GT s0dgfGAT s0dg2

√√√
2

X̀
k­1

hexpfv2GT skdg 2 1j

3 cosskvTd 1 H svTd 2 1

!!!
.

(32)
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For non-Gaussian statistics, terms of different order in
dAn, dTn (for example, Av2kdAndTndTmld can contribute
to the power spectrum. Still, this contribution is less
than GAskd or A2v2GT skd for relatively small fluctua-
tions. Therefore amplitude to timing-jitter correlations
contribute to the low-frequency power spectrum in the
same fashion as the convolution between themselves, i.e.,
including v2 terms multiplied by kdA0dAklkdT0dTkl in
the convolution terms and kdA0dTkl2 in the correlation
terms. In both cases these are proportional to a multi-
plication by the squared amplitude fluctuations and the
squared timing-jitter fluctuations.

Assuming that jSsvdj2, expf2v2GT skdg and expfv2GT

skdg do not vary strongly in the range 2psn 2 1y2dyT to
2psn 1 1y2dyT , around the nth harmonic number, the
integration over this range of the power spectrum in
Eq. (31),

1
jSs2pnyT dj2

T
2p

Z 2psn11/2d/T

2psn21/2d/T
PI svddv ­ A2 1 GAs0d ,

(33)

is independent of n. The parts of the discrete lines that
are not due to the correlations [see Eq. (32)] cancel the
contribution of PT svd. The contributions of the convo-
lution and the correlation terms also vanish and do not
contribute to this integral.

In order to measure the rms fluctuations, one can eval-
uate the integral in different regimes. For low frequency
fv2GT s0d ,, 1g and assuming relatively small fluctua-
tions, we can approximate

T
p

Z vH

vL

PI svddv . GAs0d 1

√
2pn

T

!2

fA2GT s0d 2 G2
AT s0dg ,

(34)

where vL ! 2pnyT and vH ­ 2psn 1 1y2dyT . In this
way, by choosing correctly vL, we can eliminate the con-
tribution of the Dirac d function to the integral. Also, it
is assumed that jSsvdj2 does not vary for low frequency
and was chosen as a unit constant. The assumption
G2

AT s0d ,, A2GTs0d ( justified for relatively small ampli-
tude fluctuations) allows one to approximate the rms am-
plitude and timing-jitter fluctuations.

In a similar fashion one can measure the amplitude
and the timing-jitter autocorrelations. Using the same
assumptions as before, we have

bnskd ­
T
p

Z vH

vL

PI svdcosskvT ddv

. GAskd 1 A2

√
2pn

T

!2

GT skd . (35)

The normalized autocorrelations are found in terms of
bnskd as

GT skdyGT s0d ­
bnskd 2 bmskd
bns0d 2 bms0d

, (36)

GAskdyGAs0d ­
m2bnskd 2 n2bmskd
m2bns0d 2 n2bms0d

, (37)

where m fi n. This result can be calculated for different
pairs of m and n of low harmonic numbers.
7. AUTOCOVARIANCE POWER SPECTRUM
The discrete lines appearing in Eq. (31) and
expression (32) for the power spectrum arise from
the fact that, in the stationary noise assumption, a
nonzero amount of power is concentrated at the partic-
ular frequencies 2pnyT . We may avoid the difficulties
arising in connection with these Dirac d functions by
forming a new random variable. We obtain this variable
by subtracting the averaged signal fIDT std 2 kIDT stdlg and
by measuring the autocovariance power spectrum:

P C
I svd ­ lim

DT!`

1
DT

kIDT svdIp
DT svdlC , (38)

where kABlC ; kABl 2 kAlkBl.
Assuming stationary processes and Gaussian proba-

bility-distribution functions for the amplitude and the
timing jitter with a consistent pulse shape, the contribu-
tion of the discrete lines is given by

lim
DT!`

1
DT

kIDT svdlkIp
DTsvdl ­ jSsvdj2hA2 1 fvGAT s0dg2j

3 H svT dexpf2v2GTs0dg .

(39)

Therefore the autocovariance power spectrum P C
I svd has

the same form as PI svd without the Dirac d function
contributions.

8. AMPLITUDE AND PULSE-SHAPE
FLUCTUATIONS
The study of the power spectrum including pulse-shape
fluctuations is limited and less general since it depends on
the explicit shape of the laser pulses. In this section we
give a qualitative description of the power spectrum in the
presence of pulse-shape fluctuations. The simplest case
of Eq. (8) can be achieved through the assumption of sta-
tistically independent pulse-shape parameters describing
each pulse in the train. We also assume pulses equally
separated in time. In the case of pulses possessing shape
and amplitude fluctuations that have no correlations be-
tween different pulses, i.e.,

kFnsvdF p
msvdl ­

(
kjFnsvdj2l n ­ m
jkFnsvdlj2 n fi m

, (40)

where fluctuation parameters are averaged, the power
spectrum has the form

PI svd ­ kjFnsvdj2l 1 jkFnsvdlj2fHsvTd 2 1g . (41)

The term kjFnsvdj2l 2 jkFnsvdlj2 is reflected as side-
bands around the delta functions at the harmonics. The
remaining terms describe the discrete line’s contribution
to the power spectrum.

For simplicity we assume Gaussian-shaped pulses with
duration and amplitude fluctuations. The less likely
case of constant amplitude and Gaussian-shaped pulses
with duration fluctuations is analyzed first. The aim
of this example is to show that duration fluctuations
have effects similar to those of the amplitude on the
low-frequency power spectrum.



Eliyahu et al. Vol. 13, No. 7 /July 1996/J. Opt. Soc. Am. B 1625
The pulse shape is given by

fnstd ­ exp

"
2

t2

2st 1 dtnd2

#
, (42)

where unity amplitude is assumed. Its Fourier trans-
form gives

Fnsvd ­
p

2pst 1 dtndexp

"
2

v2st 1 dtnd2

2

#
. (43)

For low frequency the power spectrum has the form

PI svd . t2

(
1 2 v2ft2 1 3Gts0dg

)
3 H svTd 1 2Ptsvds1 2 3t2v2d , (44)

where Ptsvd ­ Gts0dy2 1
P`

k­1 GtskdcosskvT d and Gtskd ­
kdt0dtkl. The calculation was done by expansion of
Eq. (43) into a Taylor series in frequency. Although the
pulse in the time domain has constant peak amplitude, its
duration fluctuations appear on the low-frequency power
spectrum sidebands in a form similar to Eq. (13), which
describes the result of pulse-amplitude fluctuations. In
higher harmonics it decays as v2, which can eliminate
the contribution of the timing-jitter rms fluctuations.

Equation (44) is in agreement with Fuss,11 who studied
the low-frequency power spectrum of pulses exhibiting the
general form of fnstd ­ sA 1 dAndfnftyst 1 dtndg, where
fns0d ­ 1.

The amplitude and the pulse-duration fluctuations
would be highly correlated when pulse energies remain
constant. Otherwise, one would require systematic en-
ergy transfer into and out of the laser modes to change
the mode-locked optical spectrum width. The amplitude
and the pulse-duration fluctuations can be a result of
chirp fluctuations in the frequency domain. The pulse-
intensity shape is given by

fnstd ­
1

t 1 dtn
exp

"
2

t2

2st 1 dtnd2

#
, (45)

where t is the average pulse duration and dt is the
fluctuation in the pulse duration. Since the pulse energy
is normalized, a change in the pulse duration causes a
change in the pulse amplitude.

In the frequency domain, Fnsvd is given by the Fourier
transform of Eq. (45):

Fnsvd ­
p

2p exp

"
2

v2st 1 dtnd2

2

#
. (46)

The energy of each pulse is given by Fns0d.
Assuming a Gaussian probability-distribution function

with zero mean for dtn and averaging the relevant powers
of Fn gives

jkFnsvdlj2 ­
2p

1 1 v2Gts0d
exp

"
2

t2v2

1 1 v2Gts0d

#
, (47)

kjFnsvdj2l ­
2pp

1 1 2v2Gts0d
exp

"
2

t2v2

1 1 2v2Gts0d

#
, (48)

where Gts0d ­ kdt2
nl.
The region of interest is the low-frequency power spec-
trum. In this region the sidebands are described by
kjFnsv ! 0dj2l 2 jkFnsv ! 0dlj2, which, by Eqs. (47) and
(48), are found to have small contributions. The power
spectrum has the form of

PI svd . 2pv4t2G2
t s0d 1 2ph1 2 v2ft2 1 Gts0dgjHsvTd .

(49)

The low-frequency power spectrum can be easily ana-
lyzed for the correlated pulse-to-pulse dtn fluctuations in
the Gaussian pulse shape. The calculation is made for
small v by expansion of Eq. (46) in a Taylor series in
frequency. The power spectrum is found to have a form
similar to that for the uncorrelated dtn [Eq. (49)]. It in-
troduces terms of v4 in the relative height of the harmonic
sidebands.

We can conclude that shape fluctuations can eliminate
the effect of amplitude fluctuations. This will result in
the low-frequency region having small and hard-to-detect
sidebands. Sidebands of small harmonic number in the
power spectrum are used to measure amplitude rms noise.
The joint amplitude and pulse-duration fluctuations are
not reflected in these first sidebands although pulses dif-
fer from each other.

From these examples we learn that energy fluctua-
tions control the low-frequency power-spectrum side-
bands. These fluctuations result from amplitude and
shape fluctuations. In the absence of energy fluctua-
tions these sidebands are small, and the power spectrum
is characterized by almost perfect discrete lines.

9. EXPERIMENTAL RESULTS
In this section we examine briefly the existing experi-
mental data on timing-jitter and amplitude fluctuations of
actively mode-locked lasers. Many experimental results
have been published so far on timing jitter of lasers that
have been actively modelocked. Generally, it is difficult
to obtain, from the published experiments, all the infor-
mation on the power-spectrum sideband shapes. We ad-
ditionally analyzed the results obtained by Finch et al.4

for the synchronously mode-locked KCI:Ti color-center
laser. In this paper the amplitude and the timing-jitter
rms fluctuations were measured. The apparent power
spectrum [Fig. 6(a) in Ref. 4] clearly shows a shape simi-
lar to the result of Eq. (25) when the effects of pulse
shaping and amplifier response are taken into account.
The values of the power spectrum, at frequencies equal to
vT ­ 2psn 1 1y2d (the low values of the power spectrum),
increase as the frequency increases.

Since the timing-jitter and the amplitude fluctua-
tions were found to be relatively small (see Table 1 in
Ref. 4), the convolution term and the correlation between
timing-jitter and amplitude fluctuations are negligible.
Therefore using Eqs. (35)–(37) in order to calculate the
timing-jitter and the amplitude autocorrelations is jus-
tified. These results are plotted in Fig. 5. Figure 5(a)
describes the normalized timing-jitter autocorrelation
GT skdyGT s0d (solid curve) and the normalized amplitude
autocorrelation GAskdyGAs0d (dotted curve) in which the
integration boundaries on the power-spectrum sidebands
are from 25 Hz to 500 Hz. We performed the calcula-
tions for n ­ 1 and m ­ 10 [see Eqs. (36) and (37)] by using
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Fig. 5. Normalized timing-jitter autocorrelation GT skdyGT s0d
(solid curves) and the normalized amplitude autocorrelation
GAskdyGAs0d (dotted curves) as a function of k ­ tyT , the ratio
between the measured time to the repetition period. The
calculations are based on Eqs. (35)–(37) and on the first and
the tenth sidebands of the restored power spectrum in Figs. 7(a)
and 7(b) of Ref. 4. In (a) the integration boundaries are 25 Hz
to 500 Hz, and in (b) and (c) these boundaries are 50 Hz to
500 Hz and 75 Hz to 50 Hz, respectively.

the results of Figs. 7(a) and 7(b) of Ref. 4. Figures 5(b)
and 5(c) describe the same calculation of the normalized
autocorrelations as in Fig. 5(a) but for different frequency
ranges. In Fig. 5(b) the integration limits were from
50 Hz to 500 Hz, and in Fig. 5(c) the limits were 75 Hz
to 500 Hz. It is clearly shown that the amplitude au-
tocorrelation width (FWHM of the dashed curves) and
shape, and the timing-jitter autocorrelation width and
shape (FWHM of the solid curves), are of the same order,
i.e., kc , 1.2 3 105 to 1.6 3 105. This is equivalent to
an autocorrelation time of the order of tc ­ kcT , i.e., of
approximately 1.4 to 2 ms.

In the limit of our approximation to restore the data
of the sidebands from Ref. 4, a clear negative autocorre-
lation is seen in Fig. 5 for pulses in the train separated
by long time s,2kcd. This indicates that the laser tends
to produce both correlated and anticorrelated amplitude
and timing-jitter fluctuations. A possible explanation for
these results is a damped oscillation of the processes that
are responsible for these fluctuations.

10. CONCLUSION
We have presented an analysis of the entire power spec-
trum of pulse trains in the presence of noise. The cal-
culations were done with the assumption of stationary
pulse-shape, amplitude, and timing-jitter fluctuations.
Effects of correlations were studied as well.
We found that amplitude and timing-jitter convolution
and their correlations appear as higher powers of their
fluctuations in the power-spectrum sidebands. Their
contributions to the power-spectrum integration is negli-
gible whenever the fluctuations are small.

The effect of pulse-shape fluctuations was consid-
ered also. We found that these fluctuations have an
influence on the side-bands similar to that of ampli-
tude fluctuations. It was also found that the tail of the
power-spectrum shape is changed as a result of these
fluctuations. The spectrum envelope becomes broader
and decays more slowly than without these fluctuations.

The nonstationary timing-jitter fluctuations of pas-
sively mode-locked lasers and their influence on the power
spectrum was discussed briefly. The discrete lines and
the v2 characteristic of the low-frequency power spec-
trum for stationary timing-jitter fluctuations in actively
mode-locked lasers are not valid in this case. Instead,
the sideband’s peak values decay and its FWHM increase
as the harmonic number increases.

The predictions are, generally, in agreement with ex-
perimental observations. An additional conclusion on
the correlation times of amplitude and timing-jitter fluc-
tuations could be achieved for the special case of relatively
small amplitude fluctuations.
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