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Abstract
Noise, as well as area, delay, and power, is one of the most impor-

tant concerns in the design of deep sub-micron ICs. Currently exist-
ing algorithms can not handle simultaneous switching conditions of
signals for noise minimization. In this paper, we model not only phys-
ical coupling capacitance, but also simultaneous switching behavior
for noise optimization. Based on Lagrangian relaxation, we present
an algorithm that can optimally solve the simultaneous noise, area,
delay, and power optimization problem by sizing circuit components.
Our algorithm, with linear memory requirementoverall and linear
runtimeper iteration, is very effective and efficient. For example, for
a circuit of 6144 wires and 3512 gates, our algorithm solves the si-
multaneous optimization problem using only 2.1 MB memory and 47
minute runtime to achieve the precision of within 1% error on a SUN
UltraSPARC-I workstation.

1 Introduction
With decreasing feature sizes, higher clock rates, and increasing

interconnect densities, noise is getting a greater concern of compara-
ble importance to power, area, and timing in integrated circuits [13].
While power, area, and timing have been extensively discussed in the
recentliterature, e.g., [2, 3, 4, 11], relatively less work has beendone
on noise.

Noise profoundly affects the performance of a circuit, especially
in the deep sub-micron regime. Noise is an unwanted variation mak-
ing the behavior of a manufactured circuit deviate from the expected
response [12]. The deleterious influences of noise include malfunc-
tioning and timing change, caused by switching behavior. Crosstalk
is a type of noises introduced by an unwanted coupling between a
node and its neighboring wire or between two neighboring wires. For
example, two adjacent wires form a coupling capacitor and a mutual
inductor. The inductive effects [10] must be considered as circuit fre-
quencies increase above 500 MHz. The effects are beyond the scope
of this paper.

In this paper, we focus on the capacitive effects of crosstalk. We
refer to the capacitance created by the physical geometry as thephys-
ical coupling capacitance. The physical coupling capacitance is di-
rectly proportional to the overlap length of adjacent wires and is in-
versely proportional to the distance between them. There exist other
models to view the physical coupling capacitance from different per-
spectives, e.g., [6, 15]. Coupling capacitance is dominated not only

�The work of Hui-Ru Jiang and Jing-Yang Jou was partially supported by the Na-
tional Science Council of Taiwan ROC under Grant No. NSC88-2215-E-009-070. Email:
huiru@cis.nctu.edu.tw, jyjou@bestmap.ee.nctu.edu.tw

yThe work of Yao-Wen Chang was partially supported by National Science Council
of Taiwan ROC under Grant No’s NSC88-2622-E-009-004and NSC88-2218-E-009-056.
Email: ywchang@cis.nctu.edu.tw

by physical geometry, but also by switching conditions [9]. However,
currently existing literature handles onlyphysical coupling capaci-
tance. The influence of switching conditions can be explained by the
Miller and the anti-Miller effects [1]. Assume that thephysical cou-
pling capacitance between two neighboring wires isCc. The Miller
effect occurs when the adjacent wires switch in opposite directions;
the equivalent coupling is2Cc. On the contrary, the anti-Miller effect
happens when the adjacent wires switching in the same direction; the
equivalent coupling is0. In the appearance of the anti-Miller effect,
the transition of wires can be shortened so that the logic values be-
come stable earlier. If two wires have very large physical coupling
capacitance but possess the same switching behavior, the inter-wire
crosstalk can be very small. Hence, it is often too pessimistic if we
consider only the Miller effect. However, the anti-Miller effect is
hard to be considered because of its uncertainty. Though some previ-
ous work has mentioned this problem, yet there is no literature solv-
ing this problem so far.

In this paper, we model not only physical coupling capacitance
but also simultaneous switching behavior for crosstalk optimization.
We first consider a more accurate model, compared with most of the
literature, of crosstalk between wirei and wirej:

crosstalk(i; j) = switching similarity(i; j)

� coupling capacitance(i; j): (1)
For this model, we propose a two-stage strategy to minimize the
crosstalk in a circuit. In the first stage, using geometry wire ordering,
we place the wires with similar switching behavior in closer prox-
imity; this switching similarityproblem is an NP-hard problem [15].
Therefore, we resort to heuristics to deal with it. In the second stage,
we minimize the inter-wire physical coupling capacitance by sizing
wires. We formulate the constraints for physical coupling capaci-
tance in a posynomial (positive polynomial) form, which can be op-
timally solved by Lagrangian relaxation.

The second stage not only deals with the crosstalk problem, but
also optimizes area, power and delay by sizing gates and wires. Gate
and wire sizing has been extensively studied in the literature for op-
timizing area, power, and/or delay (e.g., [2, 3, 4], etc). In the pre-
vious work, Lagrangian relaxation has been proven to be an effec-
tive approach for simultaneous performance optimization [2, 3]; this
fact encourages us to adopt the Lagrangian relaxation method for our
problem. In this paper, based on Lagrangian relaxation, we present an
algorithm that can optimally solve the simultaneous crosstalk, area,
power, and delay optimization problem by sizing circuit components.
Our algorithm, with linear memory requirementoverall and linear
runtimeper iteration, is very effective and efficient. For example,
for a circuit of 6144 wires and 3512 gates, our algorithm solves the
simultaneous optimization problem using only 2.1 MB memory and
47 minute runtime to achieve the precision of within 1% error on a
SUN UltraSPARC-I workstation.

2 Problem Description
In this section, we introduce the representation of a circuit and

some notation used throughout the paper, present circuit and delay
models, and formulate a performance optimization problem.
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2.1 Circuit Representation and Modeling
For a digital circuit, we can partition it into two groups—

combinational and sequential parts. We can improve the performance
by optimizing the combinational part. Hence, we focus on the com-
binational circuits. The way we interpret a circuit is similar to that
used in [3].
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Figure 1: A circuit with three input drivers, seven wires, three gates, and
one output load, in which the gate and wire sizes can be varied.

Given a combinational circuit withs primary inputs,t primary
outputs andn gates or wires. The sizes of gates and wires can be
changed according to our objectives. For theith primary input,1 �
i � s, we have one corresponding input resistor,RD

i , as its input
driver. Similarly, for thejth primary output,1 � j � t, we have
one corresponding output capacitor,CL

j , as its output load. Figure 1
depicts an example.
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Figure 2: (a) Two artificial nodes, 0 and 14, are added into the circuit
depicted in Figure 1. (b) The corresponding circuit graph.

A component is a circuit element: a gate, a wire, or an input
driver. A node is located at the output of a component, either con-
necting two components or linking one primary output to one output
load. Thus, a circuit hasn + s nodes. Figure 2illustrates the circuit
graph of the circuit given in Figure 1. A circuit graphH = (V; E) is
a directed acyclic graph withn + s + 2 nodes. The setV of nodes
consists of two additional artificial nodes as well asn+ s nodes cor-
responding to then + s components. One added node is viewed as
thesource,~s, connecting to every input driver, the other as thesink, ~t,
consisting of all output loads. LetS = f~sg andT = f~tg. Therefore,
the node setV = G[W [R[S[T contains the setG of gates, the
setW of wires, the setR of input drivers, the setS of source, and the
setT of sink. The index of a node is labeled such that if nodei is the
input of nodej, theni < j. This indexing can be labeled by topolog-
ical sorting. Hence, the index of~s is 0, and that of~t is n+ s+1. For
1 � i � n+ s, indexi refers to a component. On the other hand, the
setE of edges represents the connections between nodes. An edge
(i; j), an ordered pair, connects nodei to nodej, 1 � i < j � n+s,
if data flow from nodei to nodej. Additional edges are added to
connect~s to s input drivers and connectt primary outputs to~t. The
connectivity relationship between parents and children are defined

by input() andoutput(), whereinput(i) = fjj(j; i) 2 Eg, and
output(i) = fjj(i; j) 2 Eg.

Figure 3 illustrates the gate and wire models used in this paper.
We choose the� model [12] to approximate wire behavior. For a
gatei with sizexi, the resistanceri is r̂i=xi, and the capacitanceci
is ĉixi, wherer̂i and ĉi are the resistance and capacitance of gatei
with unit size, respectively. For a wirej with sizexj, the resistance
rj is r̂j=xj, and the capacitancecj is ĉjxj + fj, wherer̂j and ĉj
are the respective resistance and capacitance of wirej with unit size,
andfj is the fringing capacitance of wirej. In addition, for an input
driver i; 1 � i � s, ri is equal to the input resistorRD

i .
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Figure 3:A gate or a wire is modeled as a combination of RC elements. A
gate is the loading of its upstream, but is the driver of its downstream. A wire
is represented by the� model.

With the circuit model, a combinationalcircuit can be transformed
to a network with resistors and capacitors. Figure 4 illustrates the re-
sulting circuit modeling for the circuit shown in Figure 1. In the
transformed circuit, for1 � i � n + s, upstream(i) is the set
with all the nodes excepti on the paths from nodei to all reachable
drivers; similarly,downstream(i) is the set with all the nodes on the
paths from nodei to all reachable loads. For instance, in Figure 4,
upstream(10) = f6g anddownstream(2) = f2; 5; 7g. We adopt
the Elmore delay model [7] to compute the delays of gates and wires.
The delayDi of nodei is riCi, whereCi is the downstream capac-
itance ofi including self-loading. In Section 4,Ci also contains the
physical coupling capacitance, considering the impact of crosstalk on
delay. For the time being,Ri is referred to the upstream resistance of
nodei, whereasRi means the weighted upstream resistance of node
i in Section 4.

In the circuit graphH of a circuit, each nodei is tagged with some
attributes, including sizexi, node typeG, W , S or T , unit-width
resistancêri, unit-width capacitancêci and fringing capacitancefi
(fi = 0 if i 2 G). Thus, we shall optimize a circuit through manip-
ulating the corresponding circuit graph but ignoring the transformed
RC network.
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Figure 4:Before analysis, a circuit is transformed to an RC network. The
delayDi lumped inri is computed byriCi, e.g.,D2 = RD2 C2, whereC2
represents the capacitance for all the capacitors in the shaded area.

2.2 Problem Description
For practical requirement, area is the greatest concern in circuit

design. This paper targets to minimize area subject to noise, timing,
and power constraints. LetA, X, D andP denote the total area,
the total crosstalk, the delay on the critical path, and the total power
of the circuit, respectively, andXB, DB andPB denote the upper
bounds of the total crosstalk, the delay on the critical path, and the
total power of the circuit, respectively. A generic formulation of this
problem is given as follows.



M :Minimize A

Subject to � � �B;8 � 2 fX;D;Pg:

In Section 4, we will give more detailed problem definitions and
present our algorithms for the problem.

3 Crosstalk Modeling
In this section, we will focus on the crosstalk problem. We will

deal in turn with the two crucial factors which affect the crosstalk—
physical coupling capacitance and switching behavior.

3.1 Physical Coupling Capacitance
We compute the crosstalk between two wiresi andj using the

model mentioned in Equation (1). Figure 5 depicts a simple case
where two parallel wiresi andj, belonging to different routing trees,
have coupling capacitance.

ijf
^
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wire xii with size (width)

wire j xjwith size (width)

Figure 5:The physical coupling capacitance between two wires.

According to Figure 5, the physical coupling capacitancecij be-
tween two neighboring wiresi andj can be calculated as follows:

cij =
f̂ijlij

dij �
xi+xj

2

=

�
f̂ijlij

dij

� 
1

1�
xi+xj

2dij

!
; (2)

wherexi andxj are the sizes of wiresi and j (xi; xj > 0), f̂ij
is the unit-length fringing capacitance between wiresi andj, lij is
the overlap length of wiresi andj, anddij is the middle-to-middle
distance between wiresi andj. Equation (2) reflects the impact of
wire sizing on crosstalk. Ifxi increases,cij consequently increases.
This change would also cause variation on delay. In Equation (2), the
first term,f̂ijlij=dij , is a constant computed by technology files, and
the second term,(1� (xi + xj)=2dij)

�1, is what we are concerned.
Let x = (xi + xj)=2dij , the second term becomes(1 � x)�1, 0 <
x < 1. For the term(1� x)�1, we have the following properties.

Theorem 1 Letf(x) = 1
1�x

; jxj< 1:

(1) f(x) =
P

1

n=0
xn;

(2) If f̂(x) =
Pk�1

n=0
xn, thenerror ratio � = f(x)�f̂(x)

f(x)
= xk.

Theorem 1 says that(1�x)�1 can be approximated by
Pk�1

n=0
xn,

the firstk terms in the summation. The error ratio is small; for ex-
ample, for the casex = 0:25, the error ratio is less than 6.3%,
1.6%, 0.4%, and 0.1% whenk is 2, 3, 4, and 5 respectively. For
the purpose of easier presentation, we choosek = 2, and thus
f(x) �

P1

n=0
xn = 1 + x. Extensions to a largerk are simple.

Therefore, Equation (2) can be approximated as follows:

cij �
f̂ijlij

dij
(1 +

xi + xj

2dij
) = ~cij(1 +

xi + xj

2dij
); (3)

where~cij = f̂ijlij=dij is a constant. Note that Equation (3) is in
a posynomial form [8], an important property to guarantee the opti-
mality of our algorithm presented in Section 4.

3.2 Switching Behavior
For two adjacent wires with couplingCc, one is interfered when

the other switches. In the worst case, the two wires simultaneously
switch in different directions. As a result, the transitions on these
wires are longer than expected. This phenomenon, called the Miller
effect [1], is like the effect caused by large loading. On the contrary,
the anti-Miller effect benefits the transitions. While two neighboring
wires toggle in the same direction, they can help each other. Conse-
quently, the transition time is reduced. This phenomenon is like the
effect caused by small loading.

Taking advantage of the switching conditions for crosstalk mini-
mization, we shall analyze the switching behavior of signals. The test
patterns are available from the logic simulation stage. When analyz-
ing the switching behavior, we first assume each gate or wire is of the
minimum size or of other sizes extracted from profiles. Therefore,
the similarity of switching behavior between two wiresi andj can
be defined as follows:

similarity(i; j) =

R TD
0

f(i; t)f(j; t)dt

TD
;

whereTD is the simulation duration,f(i; t) is the normalized wave-
form of wire i at time t. f(i; t) = 1 if node i is high; other-
wise, f(i; t) = �1 if node i is low. For any two wiresi and j,
�1 � similarity(i; j) � 1. The closer to -1 forsimilarity, the
less similar their behavior; the closer to 1 forsimilarity, the more
similar their behavior.

The wire ordering with the
minimum effective loading
is <7,5,4,8> or <5,7,4,8>
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Figure 6:The waveforms of wires and the similarity between wires.

Two wires with most similar switching behavior are assigned to
closer tracks to minimize the effective loading. The problem for
minimizing the effective loading is equivalent to a graph-theoretic
one. We build a complete graphKn for n wires. In Kn, each
nodei corresponds to a wirei, and every edge(i; j) is associated
with a weight(i; j) equal to1 � similarity(i; j). An ordering
is a sequence composed of all nodes,< w1; w2; :::;wn >. Ac-
cordingly, the total effective loading between neighboring wires isPn�1

i=1
weight(wi; wi+1). Hence, theSwitching Similarityproblem

SS is defined in the following.

SS : Given n wires and their switching behavior:

F ind an ordering for the wires;

such that the total effective loading between

neighboring wires is minimized:

The MCWO problem [15], which is NP-complete, can be reduced
to theSS problem. Therefore, theSS problem is NP-hard, and we
resort to heuristics. Specifically, we need an approximation algorithm
with a performance guarantee. However, we have the negative result
shown below.

Theorem 2 If P 6= NP and� � 1, there is no polynomial-time
approximation algorithm with ratio bound� for theSS problem.



Algorithm: WOSS (Wire Ordering for theSS Problem)
Input: the complete graphKn for n wires
Output: A wire orderingO
A1. O  < w1; w2 >, where(w1; w2) = minimum-weighted edge.
A2. for k = 3 to n do

Choose a minimum-weighted edge(wk�1; j),
j 62 fw1; w2; :::;wk�1g;

O  < w1; w2; :::;wk�1; wk >, wherewk = j.

Figure 7:Wire ordering for theSS Problem.

We propose an efficient heuristic namedWOSSfor theSS prob-
lem as shown in Figure 7. Basically, theWOSSalgorithm does the
Depth First Searchfor the complete graphKn in O(n2) time.

Solving the Switching Similarity problem, we can obtain a ge-
ometry ordering for all wires with the minimum effective loading.
Therefore, we can know the adjacency relationship between wires.
The neighborhoodN(i) of wire i is defined as the set of adjacent
wires; thedominating indexof N(i), denoted byI(i), of wire i is
defined as the set of adjacent wires with the indexes greater thani.
For instance, in Figure 6, if we choose< 5; 7; 4; 8 > as the resulting
track assignment,N(5) = f7g, N(7) = f5; 4g, N(4) = f7; 8g and
N(8) = f4g; I(5) = f7g, I(7) = ;, I(4) = 8 andI(8) = ;.

4 Optimal Area Minimization Under Cross-
talk, Delay, and Power Constraints

In this section, we give the problem formulation and an algo-
rithm for simultaneous area, crosstalk, delay, and power optimiza-
tion. Since area is typically the most important concern in VLSI
design, we choose area as the objective function of the optimization
problem.
4.1 Problem Formulation

For each componenti, s+1� i � n+ s, the corresponding area
is proportional to its sizexi. Given the unit-sized area�i, the area of
componenti is�ixi; the total area of a circuit is thus

Pn+s

i=s+1
�ixi.

The areas of input drivers are ignored, i.e.,xi = 0, 1 � i � s. This
is also true for output loads. If the crosstalk, power, and delay bounds
of a circuit areXB, PB andAB , respectively, we haveP

i2W

P
j2I(i)

cij � XB;

V 2f
Pn+s

i=s+1
ci � PB;P

i2�
Di � AB; 8 � 2�;

where� is one path of the path set�. Note that, though not pre-
sented here, the above crosstalk constraint can easily be extended to
the case with a distributed crosstalk bound on each net. The opti-
mization problem we want to solve can be formulated as follows.
P : Minimize

Pn+s

i=s+1
�ixi

Subject to
P

i2�
Di � AB;8 � 2�;P

i2W

P
j2I(i)

cij � XB;

V 2f
Pn+s

i=s+1
ci � PB;

Li � xi � Ui;8 s+ 1 � i � n+ s:

From Section 3.1, the crosstalk between two adjacent wiresi and
j is their inter-wire physical coupling capacitance,~cij(1 + (xi +
xj)=2dij). Hence, the crosstalk constraint can be simplified by sub-
tracting both sides by

P
i2W

P
j2I(i)

~cij; the constraint becomesP
i2W

P
j2I(i)

~cij(xi+xj)=2dij � XB�
P

i2W

P
j2I(i)

~cij. If

we defineX0 asXB �
P

i2W

P
j2I(i)

~cij andĉij as~cij=2dij , the

modified crosstalk constraint is
P

i2W

P
j2I(i)

ĉij(xi+xj) � X0.

Assume the supply voltageV and frequencyf are fixed. The power
constraint can be simplified by dividing both sides byV 2f . LetP0
bePB=(V 2f). The power constraint becomes

Pn+s

i=s+1
ci � P0.

Because, in deep sub-micron technology, the interconnect densities
of a circuit can be very high, the circuit graph could be very dense.
Hence, the path set� can be far greater than, or even grows exponen-
tially with, the circuit size. It is prohibitively expensive to traverse all
paths to check the constraints. To conquer this problem, we associate
ai to each nodei, which represents the arrival time of that node [3].
Letm = n+ s+ 1 andA0 = AB in the following discussion. We
have

aj � A0 j 2 input(m) = � primary outputs � =

aj +Di � ai i = s+ 1; :::; n+ s and 8j 2 input(i)
Di � ai i = 1; :::; s = � primary inputs � =

Consequently, the problem P can be modified as follows.
PP : Minimize

P
n+s

i=s+1
�ixi

Subject to aj � A0 j 2 input(m);
aj +Di � ai i = s+ 1; :::;n+ s

and 8j 2 input(i);
Di � ai i = 1; :::; s;Pn+s

i=s+1
ci � P0;P

i2W

P
j2I(i)

ĉij(xi + xj) � X0;

Li � xi � Ui; 8s+ 1 � i � n+ s:

The objective function and constraints of the problemPP are all
in the posynomial form. Through variable transformation, a convex
programming problem is obtained. Hence, problemPP has a unique
global optimum.
4.2 Lagrangian Relaxation

To solve the problemPP, we apply Lagrangian relaxation by
introducing one Lagrange multiplier to each constraint:� to the
power constraint,
 to the crosstalk constraint,�ji to each delay con-
straint.�ji can be viewed as a timing weight on edge(j; i). Letx =
(xs+1; :::; xn+s) anda = (a1; :::; an+s). The Lagrangian function,
therefore, is

L�;�;
 (x; a) =

n+sX
s+1

�ixi +
X

j2input(m)

�jm(aj �A0)

+

n+sX
i=s+1

X
j2input(i)

�ji(aj +Di � ai)

+

sX
i=1

�0i(Di � ai) + �

 
n+sX
i=s+1

ci � P0

!

+ 


0
@X

i2W

X
j2I(i)

ĉij(xi + xj)�X0

1
A :

The corresponding Lagrangian relaxation subproblem is
LRS1 : Minimize L�;�;
 (x;a)

Subject to Li � xi � Ui; 8s+ 1 � i � n+ s:

To solve the Lagrangian relaxation subproblem, we derive the opti-
mality conditions by the Kuhn-Tucker conditions [16].
Theorem 3 The optimality conditions on Lagrange multipliers are
given byX

k2output(i)

�ik =
X

j2input(i)

�ji; for 1 � i � n+ s: (4)

Theorem 3 says that the sum of in-degree multipliers equals that of
out-degree multipliers for everynode except the source. This theorem
is analogous to theKirchhoff’s Current Law[5]: The algebraic sum
of the currents flowing into a node equals that of the currents leaving
from the node for all times.



Theorem 4 For any� satisfying Equation (4) in Theorem 3, solving
LRS1 is equivalent to solving
LRS2 : Minimize L�;�;
 (x)

Subject to Li � xi � Ui; 8s+ 1 � i � n+ s;

where� = (�1; :::�m), �i =
P

j2input(i)
�ji for 1 � i �m, and

L�;�;
 (x) =

n+sX
i=s+1

�ixi + �

 
n+sX
i=s+1

ci � P0

!

+ 


0
@X

i2W

X
j2I(i)

ĉij(xi + xj)�X0

1
A+

n+sX
i=1

�iDi:

We derive the optimal sizing solution and present a greedy,
optimal algorithm to solve the Lagrangian relaxation subproblem
LRS2 .
Theorem 5 Let~x = (~xs+1; :::; ~xn+s) be a solution, then the optimal
resizing of componenti is given byx�i = min(Ui;max(Li; opti)),
where

opti =

vuut �ir̂i

�
C 0i +

P
j2N(i)

ĉijxj

�
�i + (� +Ri)ĉi + 


P
j2N(i)

ĉij
:

In summary, we have the following theorem.
Theorem 6 (x�;a�) is an optimal sizing solution if and only if there
exists a vector��= (��01; :::; �

�

m�1 m), �
�, and
� such that

(1)
P

k2output(i)
��ik =

P
j2input(i)

��ji; 81 � i � n+ s;

(2) ��jm(aj �A0) = 0; 8j 2 input(m);
��ji(aj +Di � ai) = 0; 8s+ 1 � i � n+ s; j 2 input(i);
��0i(Di � aj) = 0; 81 � i � s;

��(
Pn+s

s+1
ci � P0) = 0;


�(
P

i2W

P
j2I(i)

ĉij(x�i + x�j )�X0) = 0;

(3) a�j � A0; 8j 2 input(m);
a�j +Di � a�i ; 8s+ 1 � i � n+ s;
Di � a�j ; 81 � i � s;Pn+s

s+1
ci � P0;P

i2W

P
j2I(i)

� X0;

(4) ��ji8 � 0; 1 � i �m; j 2 input(i); �� � 0; 
� � 0;

(5) x�i = min(Ui;max(Li; opti)); s+ 1 � i � n+ s; where

opti =

vuut �ir̂i

�
C0

i
+
P

j2N(i)
ĉijxj

�
�i+(�+Ri)ĉi+


P
j2N(i)

ĉij
:

In the above theorem, (1) is the optimality condition, (2) reflects
the complementary slackness conditions, (3) represents constraints,
(4) restricts non-negative multipliers, and (5) is the optimal sizing.

We propose a greedy algorithmLRS in Figure 8 to optimally
solve the Lagrangian relaxation subproblemLRS2 (and equiva-
lently to solveLRS1 ). As mentioned earlier, the Lagrangian re-
laxation problem has a unique global optimum. This property guar-
antees that a greedy algorithm can find the optimal solution.

The following gives the Lagrangian dual problem.

LDP : Maximize D(�; �;
)
Subject to � in the optimal condition;where

D(�; �;
) = min L�;�;
 (x;a):

If � is the optimal solution of theLDP problem, then� also
optimizes thePP problem. We present AlgorithmOGWS listed in
Figure 9 to solveLDP.

Theorem 7 AlgorithmOGWS converges to the global optimal.

Subroutine: LRS (Lagrangian Relaxation Subroutine)
Input: the circuit graphH and Lagrange multipliers�; �;

Output: x=(xs+1; :::; xn+s) which minimizesL�;�;
 (x)
S1. xi  Li, 8 s+ 1 � i � n+ s.
S2. ComputeC 0i , 8 s+ 1 � i � n+ s

by traversingH in the reverse topological order.
S3. ComputeRi, 8 s+ 1 � i � n+ s

by traversingH in the topological order.
S4. for i = s+ 1 to n+ s do

xi  min(Ui;max(Li; opti)), where

opti =

vuut �ir̂i

�
C0

i
+
P

j2N(i)
ĉijxj

�
�i+(�+Ri )ĉi+


P
j2N(i)

ĉij
.

S5. RepeatS2-S4until no improvement.

Figure 8:Lagrangian Relaxation Subroutine.

5 Experimental Results
We implemented our algorithm in the C language on a SUN

UltraSPARC-I workstation and tested on the ISCAS85 benchmark
circuits. The circuit sizes ranged from 640 to 9656. The sup-
ply voltage was set to 3.3 V, and the working frequency was set to
200 MHz. The unit-sized resistance and capacitance of a gate were
10 
 � �m and0:16 fF=�m, and those of a wire were0:07 
 � �m
and0:024 fF=�m, respectively. The respective lower and upper
bounds for a gate or wire size are0:1 �m and10 �m. Table 1 shows
the experimental results, where #G denotes the number of gates, #W
denotes the number of wires, tot denotes the total number of gates
and wires, Init denotes the initial values before sizing, Fin denotes
the final values after sizing, ite denotes the number of iterations,
time denotes the runtime, mem denotes the memory requirement, and
Impr(%) denotes the average improvement in %. The improvement
for each term is calculated byInit�Fin

Init
� 100%.

The results show that our algorithm, on the average, improved the
respective area, noise, power, and delay by 87.90%, 89.67%, 86.82%
and 5.3% after wire and gate sizing. Further, our algorithm is effec-
tive and efficient. For example, for the largest circuit, c7552, with
3512 gates and 6144 wires, our algorithm needed only 47 min and
2.1 MB storage to achieve the precision of within 1% error.

Note that the results show that sizing benefits delay not much.
When a component is enlarged, it will increase ont only the loading of
the components on the upstream path of the sized component and the
driving capability for the components on the downstream path but the
physical coupling capacitance also. Consequently, up-sizing causes
that the delay for the upstream part increases, while the delay for the
downstream part decreases. Similarly, down-sizing reduces the delay
for the upstream part and harms that for the downstream part. As
a result, the delay over the whole circuit would not be significantly
improved.

In Figures 10(a) and (b), the storage requirement and runtime per
iteration (denoted by the vertical axis) are plotted as functions of the
total number of gates and wires in a circuit (represented by the hori-
zontal axis), respectively. Figures 10(a) and (b) show that the runtime
per iteration and the storage requirements of our algorithm approach
linear in the total number of gates and wires. As revealed by Fig-
ure 10, some points deviate from the linear line; a probable reason
is that these circuits are not regular and their structures are different
from each other.



Ckt Ckt Size Noise (pF) Delay (ps) Power (mW) Area (um2) ite time mem
Name #G #W tot Init Fin Init Fin Init Fin Init Fin (sec) (KB)

c1355 546 1064 1610 20.53 2.14 1005.57 1098.90 228.34 28.45 48299 5203 9 56 1096
c1908 880 1498 2378 24.55 2.45 1444.57 1338.62 357.09 41.45 71338 7369 13 155 1184
c2670 1193 2076 3269 33.46 3.35 1480.65 1499.87 486.38 58.45 98067 10319 7 444 1320
c3540 1669 2939 4608 50.24 5.03 1713.47 1685.51 682.19 79.53 138242 14292 8 553 1472
c432 214 426 640 7.89 .95 1442.28 958.20 89.95 18.35 19200 2984 7 21 976
c499 514 928 1442 16.37 1.72 875.81 799.31 211.25 27.88 43259 4834 10 97 1072
c5315 2307 4386 6693 82.06 8.23 1649.38 1548.37 959.28 113.92 200803 20768 7 1321 1752
c6288 2416 4800 7216 95.36 9.53 4888.33 4494.26 1015.03 129.94 216495 23341 14 2705 1808
c7552 3512 6144 9656 103.30 10.33 1615.32 1619.37 1433.49 168.91 289707 30120 7 2823 2120
c880 383 729 1112 13.12 1.35 931.49 794.43 159.30 22.14 33359 3827 12 94 1032

Impr(%) - 89.67% 5.3% 86.82% 87.90% -

Table 1:Experimental results in noise, delay, power and area.

Algorithm: OGWS (Optimal Gate and Wire Sizing)
Input: the circuit graphH
Output: �, �, 
 which maximizemin L�;�;
 (x)
A1. k  1;

� arbitrary vector in the optimality condition;
�  an arbitrary positive number;

  an arbitrary positive number.

A2. � = (�1; :::;�n+s+1), where�i =
P

j2input(i)
�ji.

A3. Call LRS and computea1; :::an+s.
A4. Adjust multipliers�ji ’s, �, 
:

for i = 1 to n + s+ 1 do
forall j 2 input(i) do

�ji  

(
�ji + �k(aj � A0) if i 2 T
�ji + �k(aj +Di � ai) if i 2 G [W
�ji + �k(Di � ai) if i 2 R

�  � + �k(
Pn+s

i=s+1
ci � P0)


  
 + �k(
P

i2W

P
j2I(i)

ĉij(xi + xj)�X0)

where the step size�k satisfieslimk!1 �k = 0

and
Pk

j=1
�j !1.

A5. Project� onto the nearest point in the optimality condition.
A6. k  k+ 1.
A7. If (

Pn+s

i=s+1
�ixi � L�;�;
 (x)) � error bound,goto A2.

Figure 9:Optimal Gate and Wire Sizing Algorithm.

6 Concluding Remarks
We have modeled the crosstalk optimization problem by consider-

ing both of the switching conditions and the physical coupling capac-
itance. We have proposed a two-stage method for crosstalk minimiza-
tion: the first stage handles geometry wire ordering by exploiting
the switching conditions to reduce the effective loading; the second
stage, further, simultaneously optimizes physical coupling capaci-
tance, power, and delay. Based on the Lagrangian relaxation method,
our OWGS algorithm can economically optimize all the above ob-
jectives. The experimental results show that our algorithm is very
effective for performance optimization, especially for noise, power,
and area minimization.
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