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Abstract

We consider the task of estimating, from observed data, a probabilistic model that is parameterized

by a finite number of parameters. In particular, we are considering the situation where the model

probability density function is unnormalized. That is, the model is only specified up to the partition

function. The partition function normalizes a model so that it integrates to one for any choice of

the parameters. However, it is often impossible to obtain it in closed form. Gibbs distributions,

Markov and multi-layer networks are examples of models where analytical normalization is often

impossible. Maximum likelihood estimation can then not be used without resorting to numerical

approximations which are often computationally expensive. We propose here a new objective func-

tion for the estimation of both normalized and unnormalized models. The basic idea is to perform

nonlinear logistic regression to discriminate between the observed data and some artificially gener-

ated noise. With this approach, the normalizing partition function can be estimated like any other

parameter. We prove that the new estimation method leads to a consistent (convergent) estimator

of the parameters. For large noise sample sizes, the new estimator is furthermore shown to be-

have like the maximum likelihood estimator. In the estimation of unnormalized models, there is a

trade-off between statistical and computational performance. We show that the new method strikes

a competitive trade-off in comparison to other estimation methods for unnormalized models. As an

application to real data, we estimate novel two-layer models of natural image statistics with spline

nonlinearities.

Keywords: unnormalized models, partition function, computation, estimation, natural image

statistics

1. Introduction

This paper is about parametric density estimation, where the general setup is as follows. A sample

X = (x1, . . . ,xTd
) of a random vector x ∈ R

n is observed which follows an unknown probabil-

ity density function (pdf) pd. The data-pdf pd is modeled by a parameterized family of functions

{pm(.;θ)}θ where θ is a vector of parameters. It is commonly assumed that pd belongs to this

family. In other words, pd(.) = pm(.;θ⋆) for some parameter θ⋆. The parametric density estimation

problem is then about finding θ⋆ from the observed sample X . Any estimate θ̂ must yield a properly
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normalized pdf pm(.; θ̂) which satisfies
∫

pm(u; θ̂)du = 1, pm(.; θ̂) ≥ 0. (1)

These are two constraints in the estimation.

If the model pm(.;θ) is such that the constraints hold for all θ, and not only θ̂, we say that the

model is normalized. The maximum likelihood principle can then be used to estimate θ. If the model

is specified such that the positivity constraint but not the normalization constraint is satisfied for all

parameters, we say that the model is unnormalized. By assumption there is, however, at least one

value of the parameters for which an unnormalized model integrates to one, namely θ⋆. In order

to highlight that a model, parameterized by some α, is unnormalized, we denote it by p0
m(.;α).

Unnormalized models are easy to specify by taking, for example, the exponential transform of a

suitable function.

The partition function Z(α),

Z(α) =

∫

p0
m(u;α)du, (2)

can be used to convert an unnormalized model p0
m(.;α) into a normalized one: p0

m(.;α)/Z(α) inte-

grates to one for every value of α. Examples of distributions which are often specified by means of

an unnormalized model and the partition function are Gibbs distributions, Markov networks or mul-

tilayer networks. The function α 7→ Z(α) is, however, defined via an integral. Unless p0
m(.;α) has

some particularly convenient form, the integral cannot be computed analytically so that the function

Z(α) is not available in closed form. For low-dimensional problems, numerical integration can be

used to approximate the function Z(α) to a very high accuracy but for high-dimensional problems

this is computationally expensive. Our paper deals with density estimation in this case, that is, with

density estimation when the computation of the partition function is analytically intractable and

computationally expensive.

Several solutions for the estimation of unnormalized models which cannot be normalized in

closed form have been suggested so far. Geyer (1994) proposed to approximate the calculation of

the partition function by means of importance sampling and then to maximize the approximate log-

likelihood (Monte Carlo maximum likelihood). Approximation of the gradient of the log-likelihood

led to another estimation method (contrastive divergence by Hinton, 2002). Estimation of the pa-

rameter α directly from an unnormalized model p0
m(.;α) has been proposed by Hyvärinen (2005).

This approach, called score matching, avoids the problematic integration to obtain the partition

function altogether. All these methods need to balance the accuracy of the estimate and the time to

compute the estimate.

In this paper,1 we propose a new estimation method for unnormalized models. The idea is to

consider Z, or c = ln1/Z, not any more as a function of α but as an additional parameter of the

model. That is, we extend the unnormalized model p0
m(.;α) to include a normalizing parameter c

and estimate

lnpm(.;θ) = lnp0
m(.;α)+ c,

with parameter vector θ = (α, c). The estimate θ̂ = (α̂, ĉ) is then such that the unnormalized model

p0
m(.;α̂) matches the shape of pd, while ĉ provides the proper scaling so that Equation (1) holds.

1. Preliminary versions were presented at AISTATS (Gutmann and Hyvärinen, 2010) and ICANN (Gutmann and

Hyvärinen, 2009).
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Unlike in the approach based on the partition function, we aim not at normalizing p0
m(.;α) for all

α but only for α̂. This avoids the problematic integration in the definition of the partition function

α 7→ Z(α). Such a separate estimation of shape and scale is, however, not possible for maximum

likelihood estimation (MLE). The reason is that the likelihood can be made arbitrarily large by

setting the normalizing parameter c to larger and larger numbers. The new estimation method

which we propose here is based on the maximization of a well defined objective function. There

are no constraints in the optimization so that powerful optimization techniques can be employed.

The intuition behind the new objective function is to learn to classify between the observed data

and some artificially generated noise. We approach thus the density estimation problem, which is

an unsupervised learning problem, via supervised learning. The new method relies on noise which

the data is contrasted to, so that we will refer to it as “noise-contrastive estimation”.

The paper is organized in four main sections. In Section 2, we present noise-contrastive estima-

tion and prove fundamental statistical properties such as consistency. In Section 3, we validate and

illustrate the derived properties on artificial data. We use artificial data also in Section 4 in order to

compare the new method to the aforementioned estimation methods with respect to their statistical

and computational efficiency. In Section 5, we apply noise-contrastive estimation to real data. We

estimate two-layer models of natural images and also learn the nonlinearities from the data. This

section is fairly independent from the other ones. The reader who wants to focus on natural image

statistics may not need to go first through the previous sections. On the other hand, the reader whose

interest is in estimation theory only can skip this section without missing pieces of the theory al-

though the section provides, using real data, a further illustration of the workings of unnormalized

models and the new estimation method. Section 6 concludes the paper.

2. Noise-Contrastive Estimation

This section presents the theory of noise-contrastive estimation. In Section 2.1, we motivate noise-

contrastive estimation and relate it to supervised learning. The definition of noise-contrastive es-

timation is given in Section 2.2. In Section 2.3, we prove that the estimator is consistent for both

normalized and unnormalized models, and derive its asymptotic distribution. In Section 2.4, we dis-

cuss practical aspects of the estimator and show that, in some limiting case, the estimator performs

as well as MLE.

2.1 Density Estimation by Comparison

Density estimation is much about characterizing properties of the observed data X . A convenient

way to describe properties is to describe them relative to the properties of some reference data Y .

Let us assume that the reference (noise) data Y is an i.i.d. sample (y1, . . .yTn
) of a random variable

y ∈ R
n with pdf pn. A relative description of the data X is then given by the ratio pd/pn of the two

density functions. If the reference distribution pn is known, one can, of course, obtain pd from the

ratio pd/pn. In other words, if one knows the differences between X and Y , and also the properties

of Y , one can deduce from the differences the properties of X .

Comparison between two data sets can be performed via classification: In order to discriminate

between two data sets, the classifier needs to compare their properties. In the following, we show

that training a classifier based on logistic regression provides a relative description of X in the form

of an estimate of the ratio pd/pn.
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Denote by U = (u1, . . . ,uTd+Tn
) the union of the two sets X and Y , and assign to each data

point ut a binary class label Ct: Ct = 1 if ut ∈ X and Ct = 0 if ut ∈ Y . In logistic regression,

the posterior probabilities of the classes given the data are estimated. As the pdf pd of the data

x is unknown, we model the class-conditional probability p(.|C = 1) with pm(.;θ).2 The class-

conditional probability densities are thus

p(u|C = 1;θ) = pm(u;θ), p(u|C = 0) = pn(u).

The prior probabilities are P (C = 1) = Td/(Td +Tn) and P (C = 0) = Tn/(Td +Tn). The posterior

probabilities for the classes are therefore

P (C = 1|u;θ) =
pm(u;θ)

pm(u;θ)+νpn(u)
, P (C = 0|u;θ) =

νpn(u)

pm(u;θ)+νpn(u)
, (3)

where ν is the ratio P (C = 0)/P (C = 1) = Tn/Td. In the following, we denote P (C = 1|u;θ) by

h(u;θ). Introducing the log-ratio G(.;θ) between pm(.;θ) and pn,

G(u;θ) = lnpm(u;θ)− lnpn(u), (4)

h(u;θ) can be written as

h(u;θ) = rν (G(u;θ)) , (5)

where

rν(u) =
1

1+ν exp(−u)
(6)

is the logistic function parameterized by ν.

The class labels Ct are assumed Bernoulli distributed and independent. The conditional log-

likelihood is given by

ℓ(θ) =
Td+Tn
∑

t=1

Ct lnP (Ct = 1|ut;θ)+(1−Ct) lnP (Ct = 0|ut;θ)

=
Td
∑

t=1

ln [h(xt;θ)]+
Tn
∑

t=1

ln [1−h(yt;θ)] . (7)

Optimizing ℓ(θ) with respect to θ leads to an estimate G(.; θ̂) of the log-ratio ln(pd/pn). That is,

an approximate description of X relative to Y can be obtained by optimization of Equation (7). The

sign-flipped objective function, −ℓ(θ), is also known as the cross-entropy error function (Bishop,

1995).

Thus, density estimation, which is an unsupervised learning problem, can be performed by

logistic regression, that is, supervised learning. While this connection has been discussed earlier

by Hastie et al. (2009, Chapter 14.2.4, pp. 495–497), in the next sections, we will prove that even

unnormalized models can be estimated with the same principle.

2. Classically, pm(.;θ) would, in the context of this section, be a normalized pdf. In our paper, however, θ may include

a parameter for the normalization of the model.
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2.2 Definition of the Estimator

Given an unnormalized statistical model p0
m(.;α), we include for normalization an additional pa-

rameter c into the model. That is, we define the model as

lnpm(.;θ) = lnp0
m(.;α)+ c,

where θ = (α, c). The parameter c scales the unnormalized model p0
m(.;α) so that Equation (1) can

be fulfilled. After learning, ĉ provides an estimate for ln1/Z(α̂). If the initial model is normalized

in the first place, no such inclusion of a normalizing parameter c is needed.

In line with the notation so far, we denote by X = (x1, . . . ,xTd
) the observed data set that

consists of Td independent observations of x ∈ R
n. We denote by Y = (y1, . . . ,yTn

) an artificially

generated data set that consists of Tn = νTd independent observations of noise y ∈ R
n with known

distribution pn. The estimator is defined to be the argument θ̂T which maximizes

JT (θ) =
1

Td







Td
∑

t=1

ln [h(xt;θ)]+
Tn
∑

t=1

ln [1−h(yt;θ)]







, (8)

where the nonlinearity h(.;θ) was defined in Equation (5). The objective function JT is, up to the

division by Td, the log-likelihood in Equation (7). It can also be written as

JT (θ) =
1

Td

Td
∑

t=1

ln [h(xt;θ)]+ν
1

Tn

Tn
∑

t=1

ln [1−h(yt;θ)] . (9)

Note that h(.;θ) ∈ (0 1), where zero is obtained in the limit of G(.;θ) → −∞ and one in the limit

of G(.;θ) → ∞. Zero is an upper bound for JT , which is reached if, for all t, h(xt;θ) and h(yt;θ)
tend to one and zero, respectively. Therefore, the optimal parameter θ̂T is such that G(ut; θ̂T ) is as

large as possible for ut ∈ X and as small as possible for ut ∈ Y . Intuitively, this means that logistic

regression has learned to discriminate between the two sets as well as possible.

2.3 Properties of the Estimator

We characterize here the behavior of the estimator θ̂T for large sample sizes Td and fixed ratio ν.

Since ν is kept fixed, Tn = νTd will also increase as Td increases. The weak law of large numbers

shows that as Td increases the objective function JT (θ) converges in probability to J ,

J(θ) = E{ln [h(x;θ)]}+ν E{ln [1−h(y;θ)]} . (10)

Let us denote by J̃ the objective J seen as a function of fm(.) = lnpm(.;θ),

J̃(fm) = E{ln [rν (fm(x)− lnpn(x))]}+ν E{ln [1− rν (fm(y)− lnpn(y))]} . (11)

We start the characterization of the estimator θ̂T by describing the optimization landscape for fm.

The following theorem shows that the data-pdf pd can be found by maximization of J̃ , that is by

learning a nonparametric classifier under the ideal situation of an infinite amount of data.

Theorem 1 (Nonparametric estimation) J̃ attains a maximum at fm = lnpd. There are no other

extrema if the noise density pn is chosen such that it is nonzero whenever pd is nonzero.
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The proof is given in Appendix A.2. A fundamental point in the theorem is that the maximization

is performed without any normalization constraint for fm. This is in stark contrast to MLE, where

exp(fm) must integrate to one. With our objective function, no such constraints are necessary. The

maximizing pdf is found to have unit integral automatically.

The positivity condition for pn in the theorem tells us that the data-pdf pd cannot be inferred at

regions in the data space where there are no contrastive noise samples. For example, the estimation

of a pdf pd which is nonzero only on the positive real line by means of a noise distribution pn that

has its support on the negative real line is impossible. The positivity condition can be easily fulfilled

by taking, for example, a Gaussian as contrastive noise distribution.

In practice, the amount of data is limited and a finite number of parameters θ ∈ R
m specify

pm(.;θ). This has two consequences for any estimation method that is based on optimization: First,

it restricts the space where the data-pdf pd is searched for. Second, it may introduce local maxima

into the optimization landscape. For the characterization of the estimator in this situation, it is

normally assumed that pd follows the model, so that there is a θ⋆ with pd(.) = pm(.;θ⋆). In the

following, we make this assumption.

Our second theorem shows that θ̂T , the value of θ which (globally) maximizes JT , converges

to θ⋆. The correct estimate of pd is thus obtained as the sample size Td increases. For unnormalized

models, the conclusion of the theorem is that maximization of JT leads to the correct estimates for

both the parameter α in the unnormalized pdf p0
m(.;α) and the normalizing parameter c.

Theorem 2 (Consistency) If conditions (a) to (c) are fulfilled then θ̂T converges in probability to

θ⋆, θ̂T
P→ θ⋆.

(a) pn is nonzero whenever pd is nonzero

(b) supθ |JT (θ)−J(θ)| P→ 0

(c) The matrix Iν =
∫

g(u)g(u)T Pν(u)pd(u)du has full rank, where

g(u) = ∇θ lnpm(u;θ)|θ⋆ , Pν(u) =
νpn(u)

pd(u)+νpn(u)
.

The proof is given in Appendix A.3. Condition (a) is inherited from Theorem 1. Conditions (b)

and (c) have their counterparts in MLE (see for example Wasserman, 2004, Theorem 9.13): We

need in (b) uniform convergence in probability of JT to J ; in MLE, uniform convergence of the

log-likelihood to the Kullback-Leibler divergence is required likewise. Condition (c) assures that

for large sample sizes, the objective function JT becomes peaked enough around the true value θ⋆.

This imposes a constraint on the model pm(.;θ) via the vector g. A similar constraint is required in

MLE.

The next theorem describes the distribution of the estimation error (θ̂T − θ⋆) for large sample

sizes. The proof is given in Appendix A.4.

Theorem 3 (Asymptotic normality)
√

Td(θ̂T − θ⋆) is asymptotically normal with mean zero and

covariance matrix Σ,

Σ = I
−1
ν −

(

1+
1

ν

)

I
−1
ν E(Pνg)E(Pνg)T

I
−1
ν ,

where E(Pνg) =
∫

Pν(u)g(u)pd(u)du.
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From the distribution of
√

Td(θ̂T − θ⋆), we can easily evaluate the asymptotic mean squared error

(MSE) of the estimator.

Corollary 4 For large sample sizes Td, the mean squared error E
(

||θ̂T −θ⋆||2
)

equals tr(Σ)/Td.

Proof Using that for any vector v, ||v||2 = tr(vvT ), the corollary follows directly from the defini-

tion of the MSE and Theorem 3.

2.4 Choosing the Noise

Theorem 3 shows that the noise distribution pn and the ratio ν = Tn/Td have an influence on the

accuracy of the estimate θ̂T . A natural question to ask is what, from a statistical standpoint, the best

choice of pn and ν is. Our result on consistency (Theorem 2) also includes a technical constraint

for pn but this one is so mild that many distributions will satisfy it.

Theorem 2 shows that, for a given samples size Td, Pν tends to one as the size Tn of the

contrastive noise sample is made larger and larger. This implies that for large ν, the covariance

matrix Σ does not depend on the choice of the noise distribution pn. We have thus the following

corollary.

Corollary 5 For ν → ∞, Σ is independent of the choice of pn and equals

Σ = I
−1 −I

−1 E(g)E(g)T
I

−1,

where E(g) =
∫

g(u)pd(u)du and I =
∫

g(u)g(u)T pd(u)du.

The asymptotic distribution of the estimation error becomes thus independent from pn. Hence, as

the size of the contrastive-noise sample Y increases, the choice of the contrastive-noise distribution

becomes less and less important. Moreover, for normalized models, we have the result that the

estimation error has the same distribution as the estimation error in MLE.

Corollary 6 For normalized models, noise-contrastive estimation is, in the limit of ν → ∞, asymp-

totically Fisher-efficient for all choices of pn.

Proof For normalized models, no normalizing parameter c is needed. In Corollary 5, the function

g is then the score function as in MLE, and the matrix I is the Fisher information matrix. Since the

expectation E(g) is zero, the covariance matrix Σ is the inverse of the Fisher information matrix.

The corollaries above give one answer to the question on how to choose the noise distribution pn and

the ratio ν: If ν is made large enough, the actual choice of pn is not of great importance. Note that

this answer considers only estimation accuracy and ignores the computational load associated with

the processing of noise. In Section 4, we will analyze the trade-off between estimation accuracy and

computation time.

For any given ν, one could try to find the noise distribution which minimizes the MSE E ||θ̂T −
θ⋆||2. However, this minimization turns out to be quite difficult. Intuitively, one could think that a

good candidate for the noise distribution pn is a distribution which is close to the data distribution

pd. If pn is too different from pd, the classification problem might be too easy and would not require

the system to learn much about the structure of the data. This intuition is partly justified by the

following theoretical result:
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Corollary 7 If pn = pd then Σ =
(

1+ 1

ν

)(

I−1 −I−1 E(g)E(g)T I−1
)

.

Proof The corollary follows from Theorem 3 and the fact that Pν equals ν/(1+ν) for pn = pd.

For normalized models, we see that for ν = 1, Σ is two times the inverse of the Fisher information

matrix, and that for ν = 10, the ratio is already down to 1.1. For a noise distribution that is close to

the data distribution, we have thus even for moderate values of ν some guarantee that the MSE is

reasonably close to the theoretical optimum.

To get estimates with a small estimation error, the foregoing discussion suggests the following

1. Choose noise for which an analytical expression for lnpn is available.

2. Choose noise that can be sampled easily.

3. Choose noise that is in some aspect, for example with respect to its covariance structure,

similar to the data.

4. Make the noise sample size as large as computationally possible.

Some examples for suitable noise distributions are Gaussian distributions, Gaussian mixture dis-

tributions, or ICA distributions. Uniform distributions are also suitable as long as their support

includes the support of the data distribution so that condition (a) in Theorem 2 holds.

3. Simulations to Validate and Illustrate the Theory

In this section,3 we validate and illustrate the theoretical properties of noise-contrastive estimation.

In Section 3.1, we focus on the consistency of the estimator. In Section 3.2, we validate our theoret-

ical results on the distribution of the estimation error, and investigate its dependency on the ratio ν
between noise and data sample size. In Section 3.3, we study how the performance of the estimator

scales with the dimension of the data.

3.1 Consistency

For the illustration of consistency, we estimate here the parameters of a zero mean multivariate

Gaussian. Its log-pdf is

lnpd(x) = −1

2
xT Λ⋆x + c⋆, c⋆ =

(

−1

2
ln |detΛ⋆|− n

2
ln(2π)

)

, (12)

where c⋆ does not depend on x and normalizes pd to integrate to one. The precision matrix Λ⋆ is the

inverse of the covariance matrix. It is thus a symmetric matrix. The dimension of x is here n = 5.

As we are mostly interested in the estimation of unnormalized models, we consider here the

hypothetical situation where we want to estimate the model

lnp0
m(x;α) = −1

2
xT Λx

without knowing how to normalize it in closed form. This unnormalized model is a pairwise Markov

network with quadratic node and edge potentials (see for example Koller and Friedman, 2009, Chap-

ter 7). The parameter vector α ∈R
15 contains the coefficients of the lower-triangular part of Λ as the

3. Matlab code for this and the other sections can be downloaded from the homepage of the first author.
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matrix is symmetric. For noise-contrastive estimation, we add an additional normalizing parameter

c to the model. The model that we estimate is thus

lnpm(x;θ) = lnp0
m(x;α)+ c.

The model has 16 parameters given by θ = (α, c). They are estimated by maximization of the

objective function JT (θ) in Equation (8). We used a standard normal distribution for pn. The

optimization was performed with the nonlinear conjugate gradient algorithm of Rasmussen (2006).

3.1.1 RESULTS

The presented results are an average over 500 estimation problems where the true precision matrix

Λ⋆ was drawn at random with the condition number being controlled to be smaller than ten. The

sampling of Λ⋆ was performed by randomly sampling its eigenvalues and eigenvectors: We drew

the eigenvalues from an uniform distribution on the interval [0.1 0.9]. The orthonormal matrix

E with the eigenvectors was created by orthogonally projecting a matrix M with elements drawn

independently from a standard Gaussian onto the set of orthonormal matrices: E = (MMT )−1/2M.

Figure 1(a) and (b) show the mean squared error (MSE) for α, which contains the elements of

the precision matrix Λ, and the normalizing parameter c, respectively. The MSE as a function of

the data sample size Td decays linearly on a log-log scale. This illustrates our result of consistency

of the estimator, stated as Theorem 2, as convergence in quadratic mean implies convergence in

probability. The plots also show that taking more noise samples Tn than data samples Td leads

to more and more accurate estimates. The performance for noise-contrastive estimation with ν =
Tn/Td equal to one is shown in blue with circles as markers. For that value of ν, there is a clear

difference compared to MLE (black triangles in Figure 1(a)). However, the accuracy of the estimate

improves strongly for ν = 5 (green squares) or ν = 10 (red diamonds) where the performance is

rather close to the performance of MLE.

Another way to visualize the results is by showing the Kullback-Leibler divergences between

the 500 true and estimated distributions. Figure 2 shows boxplots of the divergences for ν = 1
(blue) and ν = 10 (red). The results for MLE are shown in black. In line with the visualization

in Figure 1, the estimated distribution becomes closer to the true distribution as the sample size

increases. Moreover, the divergences become clearly smaller as ν is increased from one to ten.

For unnormalized models, there is a subtlety in the computation of the divergence. With a

validation set of size Tv, a sample version DKL of the Kullback-Leibler divergence is given by the

difference

DKL =
1

Tv

Tv
∑

t=1

lnpd(xt)−
(

1

Tv

Tv
∑

t=1

lnp0
m(xt;α̂)+ ln1/Z(α̂)

)

.

The first term is the rescaled log-likelihood (average, sign-inverted log-loss) for the true distribution.

The term in parentheses is the rescaled log-likelihood L of the estimated model. In the estimation

of unnormalized models, we do not assume to know the mapping α → Z(α) so that L cannot be

computed. With noise-contrastive estimation, we can obtain an estimate L̂,

L̂ =
1

Tv

Tv
∑

t=1

lnp0
m(xt;α̂)+ ĉ, (13)

by using ĉ in lieu of ln1/Z(α̂), see Section 2.2. Figure 2(a) shows that the estimated DKL is

sometimes negative which means that L̂ is sometimes larger than the rescaled log-likelihood of
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Figure 1: Validation of the theory of noise-contrastive estimation: Estimation errors for a 5 dimen-

sional Gaussian distribution. Figures (a) and (b) show the mean squared error for the

precision matrix Λ and the normalizing parameter c, respectively. The performance of

noise-contrastive estimation (NCE) approaches the performance of maximum likelihood

estimation (MLE, black triangles) as the ratio ν = Tn/Td increases: the case of ν = 1 is

shown with blue circles, ν = 5 with green squares, and ν = 10 with red diamonds. The

thicker curves are the median of the performance for 500 random precision matrices with

condition number smaller than ten. The finer curves show the 0.9 and 0.1 quantiles of the

logarithm of the squared estimation error.

the true distribution. This happens because ĉ can be an over or underestimate of ln1/Z(α̂). This

result follows from Figure 2(b) where we have computed DKL with the analytical expression for

ln1/Z(α̂), which is available for the Gaussian model considered here, see Equation (12).

3.2 Distribution of the Estimation Error

We validate and illustrate further properties of our estimator using the ICA model (see for example

Hyvärinen et al., 2001b)

x = As. (14)

In this subsection, n = 4, that is x ∈ R
4, and A = (a1, . . . ,a4) is a 4×4 mixing matrix. The sources

in the vector s ∈ R
4 are identically distributed and independent from each other so that the data

log-pdf lnpd is

lnpd(x) =
n
∑

i=1

f(b⋆
i x)+ c⋆. (15)

The i-th row of the matrix B⋆ = A−1 is denoted by b⋆
i . We consider here Laplacian sources of unit

variance and zero mean. The nonlinearity f and the constant c⋆, which normalizes pd to integrate

to one, are in this case given by

f(u) = −
√

2|u|, c⋆ = ln |detB⋆|− n

2
ln2. (16)
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Figure 2: Validation of the theory of noise-contrastive estimation: Distributions of the Kullback-

Leibler divergences between the true and estimated 5 dimensional Gaussians. For each

sample size, from left to right, the results for maximum likelihood estimation (MLE) are

shown in black, the results for noise-contrastive estimation (NCE) with ν = 10 in red, and

the results for ν = 1 in blue. The size Tv of the validation set was 100000. For MLE, the

results shown in Figures (a) and (b) are the same. For NCE, the divergences in Figure (a)

were computed using the estimate ĉ of ln1/Z(α̂). In Figure (b), the analytical expression

for ln1/Z(α̂) was used.

As in Section 3.1, we apply noise-contrastive estimation to the hypothetical situation where we

want to estimate the unnormalized model

lnp0
m(x;α) =

n
∑

i=1

f(bix) (17)

without knowing how to normalize it in closed form. The parameter vector α ∈ R
16 contains the

elements of the row vectors bi. For noise-contrastive estimation, we add an additional normalizing

parameter c and estimate the model

lnpm(x;θ) = lnp0
m(x;α)+ c,

with θ = (α, c). As for the Gaussian case, we estimate θ by maximizing JT (θ) in Equation (8)
with the nonlinear conjugate gradient algorithm of Rasmussen (2006). For the noise distribution pn,

we used a Gaussian distribution with covariance matrix given by the sample covariance of the data.

3.2.1 RESULTS

In Figures 3 and 4, we illustrate Theorem 2 on consistency and Theorem 3 on the asymptotic dis-

tribution of the estimator, as well as its corollaries. The results are averages over 500 random

estimation problems. The mixing matrices A were drawn at random by drawing their elements in-

dependently from a standard Gaussian and only accepting matrices which had a condition number

smaller than ten.
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Figure 3(a) and (b) show the mean squared error (MSE) for α, corresponding to the mixing ma-

trix, and the normalizing parameter c, respectively. As illustrated for the Gaussian case in Figure 1,

this figure visualizes the consistency of noise-contrastive estimation. Furthermore, we see again

that making ν = Tn/Td larger leads to a reduction of the error. The reduction gets, however, smaller

as ν increases. On average, changing ν from one (red curve with asterisks as markers) to ten (light

blue squares) reduces the MSE for the mixing matrix by 53%; relative to ν = 10, ν = 100 (magenta

diamonds) leads to a reduction of 18%. For c, the relative decrease in the MSE is 60% and 17%,

respectively.

In Figure 4(a), we test the theoretical prediction of Corollary 4 that, for large samples sizes Td,

the MSE decays like trΣ/Td. The covariance matrix Σ can be numerically evaluated according to

its definition in Theorem 3.4 This allows for a prediction of the MSE that can be compared to the

MSE obtained in the simulations. The figure shows that the MSE from the simulations (labelled

“sim” in the figure) matches the prediction (“pred”) for large Td. Furthermore, we see again that

for large ν, the performance of noise-contrastive estimation is close to the performance of MLE.

In other words, the trace of Σ is close to the trace of the Fisher information matrix. Note that for

clarity, we only show the curves for ν ∈ {0.1,1,100}. The curve for ν = 10 was, as in Figure 3(a)

and (b), very close to the curve for ν = 100.

In Figure 4(b), we investigate how the value of trΣ (the asymptotic variance) depends on the

ratio ν. Note that the covariance matrix Σ includes terms related to the parameter c. The Fisher

information matrix includes, in contrast to Σ, only terms related to the mixing matrix. For better

comparison with MLE, we show thus in the figure the trace of Σ both with the contribution of the

normalizing parameter c (blue squares) and without (red circles). For the latter case, the reduced

trace of Σ, which we will denote by trΣB , approaches the trace of the Fisher information matrix.

Corollary 6 stated that noise-contrastive estimation is asymptotically Fisher-efficient for large values

of ν if the normalizing constant is not estimated. Here, we see that this result also approximately

holds for our unnormalized model where the normalizing constant needs to be estimated.

Figure 4(c) gives further details to which extent the estimation becomes more difficult if the

model is unnormalized. We computed numerically the asymptotic variance trΣ̃ if the model is

correctly normalized, and compared it to the asymptotic variance trΣB for the unnormalized model.

The figure shows the distribution of the ratio trΣB/trΣ̃ for different values of ν. Interestingly, the

ratio is almost equal to one for all tested values of ν. Hence, additional estimation of the normalizing

constant does not really seem to have had a negative effect on the accuracy of the estimates for the

mixing matrix.

In Corollary 7, we have considered the hypothetical case where the noise distribution pn is the

same as the data distribution pd. In Figure 4(d), we plot for that situation the asymptotic variance as

a function of ν (green curve). For reference, we plot again the curve for Gaussian contrastive noise

(red circles, same as in Figure 4(b)). In both cases, we only show the asymptotic variance trΣB

for the parameters that correspond to the mixing matrix. The asymptotic variance for pn = pd is,

for a given value of ν, always smaller than the asymptotic variance for the case where the noise is

Gaussian. However, by choosing ν large enough for the case of Gaussian noise, it is possible to

get estimates which are as accurate as those obtained in the hypothetical situation where pn = pd.

Moreover, for larger ν, the performance is the same for both cases: both converge to the performance

of MLE.

4. See Appendix B.1 for the calculations in the special case of orthogonal mixing matrices.
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Figure 3: Validation of the theory of noise-contrastive estimation: Estimation errors for an ICA

model with four sources. Figures (a) and (b) show the mean squared error for the mix-

ing matrix B and the normalizing parameter c, respectively. The performance of noise-

contrastive estimation (NCE) approaches the performance of maximum likelihood esti-

mation (MLE, black triangles) as the ratio ν = Tn/Td increases: the case of ν = 0.01
is shown with blue circles, ν = 0.1 with green crosses, ν = 1 with red asterisks, ν = 10
with light blue squares, and ν = 100 with magenta diamonds. The thicker curves are

the median of the performance for 500 random precision matrices with condition number

smaller than ten. The finer curves show the 0.9 and 0.1 quantiles of the logarithm of the

squared estimation error. To increase readability of the plots, the quantiles for ν = 0.1
and ν = 10 are not shown.

3.3 Scaling Properties

We use the ICA model from the previous subsection to study the behavior of noise-contrastive

estimation as the dimension n of the data increases. As before, we estimate the parameters by

maximizing JT (θ) in Equation (8) with the nonlinear conjugate gradient algorithm of Rasmussen

(2006). Again, we use a Gaussian with the same covariance structure as the data as noise distribution

pn.

The randomly chosen n × n mixing matrices A are restricted to be orthogonal. Orthogonality

is only used to set up the estimation problem; in the estimation, the orthogonality property is not

used. A reason for this restriction is that drawing mixing matrices at random as in the previous

subsection leads more and more often to badly conditioned matrices as the dimension increases.

Another reason is that the estimation error for orthogonal mixing matrices depends only on the

dimension n and not on the particular mixing matrix chosen, see Appendix B.1 for a proof. Hence,

this restriction allows us to isolate the effect of dimension n on the estimation accuracy.
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Figure 4: Validation of the theory of noise-contrastive estimation: Estimation error for large sample

sizes. Figure (a) shows that Corollary 4 correctly predicts the MSE for large samples sizes

Td. Figure (b) shows the asymptotic variance trΣ as a function of ν. Figure (c) shows

a boxplot of the ratio between the asymptotic variance when the model is unnormalized

and the asymptotic variance when the model is normalized. Figure (d) compares noise-

contrastive estimation with Gaussian noise to the hypothetical case where pn equals the

data distribution pd. As in Figure 3, the curves in all figures but in Figure (c) are the

median of the results for 500 random mixing matrices. The boxplot in Figure (c) shows

the distribution for all the 500 matrices.

3.3.1 RESULTS

Figure 5(a) shows the asymptotic variance trΣB related to the mixing matrix as a function of the

dimension n. Noise-contrastive estimation (NCE) with ν = Tn/Td =1 is shown in red with asterisks

as markers, maximum likelihood estimation (MLE) in black using triangles as markers. The markers

show the theoretical prediction based on Corollary 4; the boxplots the simulation results for ten
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Figure 5: Investigating how noise-contrastive estimation (NCE) scales with the dimension of the

data. Figure (a) shows the logarithm of the asymptotic variance for NCE (ν = Tn/Td = 1,

in red) and MLE (in black). The boxplots show simulation results; the asterisks and

triangles theoretical predictions for NCE and MLE, respectively. The same figure shows

the ratio of the two asymptotic variances (blue circles, right scale). Figure (b) plots the

ratio of the mean squared errors of the two estimators as a function of ν per dimension n.

The value of ν needs to be increased as the dimensions increases; a linear increase leads

to acceptable results.

random mixing matrices with Td = 80000. The simulation results match the predictions well, which

validates the theory of noise-contrastive estimation in large dimensions.

Since the number of parameters increases with larger n, it is natural that trΣB increases with

n. However, for noise-contrastive estimation, the increase is larger than for MLE. This is more

clearly visible by considering the blue curve in Figure 5(a) (circles as markers, scale on the right

axis). The curve shows the ratio between the asymptotic variance for noise-contrastive estimation

and for MLE. By definition of the asymptotic variance, this ratio is equal to the ratio of the two

estimation errors obtained with the two different methods. The ratio does not depend on the number

of parameters and the sample size Td. It is hence a suitable performance indicator to investigate

how noise-contrastive estimation scales with the dimension n of the data. The plot shows that for

fixed ν, the performance deteriorates as the dimension increases. In order to counteract this decline

in performance, the parameter ν needs to be increased as the dimension increases.

Figure 5(b) shows the ratio of the squared errors as a function of ν/n where we varied n from ten

to eighty dimensions as in Figure 5(a). Importantly, both theoretical results, where we numerically

calculated the asymptotic variances, and simulation results show that for a reasonable performance

in comparison to MLE, ν does not need to be increased exponentially as the dimension n increases;

a linear increase with, for instance, ν ∈ [n/2 n] suffices to lead to estimation errors of about 2-4

times of those that are obtained by estimating normalized models with MLE.
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4. Investigating the Trade-Off between Statistical and Computational Performance

We have seen that for large ratios ν of noise sample size Tn to data sample size Td, the estimation

error for noise-contrastive estimation behaves like the error in MLE. For large ν, however, the com-

putational load becomes also heavier because more noise samples need to be processed. There is

thus a trade-off between statistical and computational performance. Such a trade-off exists also in

other estimation methods for unnormalized models. In this section, we investigate the trade-off in

noise-contrastive estimation, and compare it to the trade-off in Monte Carlo maximum likelihood

estimation (Geyer, 1994), contrastive divergence (Hinton, 2002) and persistent contrastive diver-

gence5 (Younes, 1989; Tieleman, 2008), as well as score matching (Hyvärinen, 2005).

In Section 4.1, we comment on the data which we use in the comparison. In Section 4.2, we

review the different estimation methods with focus on the trade-off between statistical and computa-

tional performance. In Section 4.3, we point out the limitations of our comparison before presenting

the simulation results in Section 4.4.

4.1 Data Used in the Comparison

For the comparison, we use artificial data which follows the ICA model in Equation (14) with the

data log-pdf lnpd being given by Equation (15). We set the dimension n to ten and use Td = 8000
observations to estimate the parameters. In a first comparison, we assume Laplacian sources in the

ICA model. The log-pdf lnpd is then specified with Equation (16). Note that this log-pdf has a

sharp peak around zero where it is not continuously differentiable. In a second comparison, we

use sources that follow the smoother logistic density. The nonlinearity f and the log normalizing

constant c∗ in Equation (15) are in that case

f(u) = −2lncosh

(

π

2
√

3
u

)

, c∗ = ln |detB⋆|+n ln

(

π

4
√

3

)

,

respectively. We are thus making the comparison for a relatively nonsmooth and smooth den-

sity. Both comparisons are based on 100 randomly chosen mixing matrices with condition number

smaller than 10.

4.2 Estimation Methods Used in the Comparison

We introduce here briefly the different methods and comment on our implementation and choices

of parameters.

4.2.1 NOISE-CONTRASTIVE ESTIMATION

To estimate the parameters, we maximize JT in Equation (8). We use here a Gaussian noise density

pn with a covariance matrix equal to the sample covariance of the data. As before, JT is maximized

using the nonlinear conjugate gradient method of Rasmussen (2006). To map out the trade-off

between statistical and computational performance, we measured the estimation error and the time

needed to optimize JT for ν ∈ {1,2,5,10,20,50,100,200,400,1000}.

5. Persistent contrastive divergence is also known under the name stochastic MLE.
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4.2.2 MONTE CARLO MAXIMUM LIKELIHOOD ESTIMATION

For normalized models, an estimate for the parameters α can be obtained by choosing them such

that the probability of the observed data is maximized. This is done by maximization of

JMLE(α) =
1

Td

Td
∑

t=1

lnp0
m(xt;α)− lnZ(α). (18)

If no analytical expression for the partition function Z(α) is available, importance sampling can be

used to numerically approximate Z(α) via its definition in Equation (2), that is

Z(α) ≈ 1

Tn

Tn
∑

t=1

p0
m(nt;α)

pIS(nt)
.

The nt are independent observations of “noise” with distribution pIS. Note that more sophisticated

ways exist to numerically calculate the value of Z at a given α (see for example Robert and Casella,

2004, in particular Chapter 3 and Chapter 4). The simple approach above leads to the objective

function JIS(α) known as Monte Carlo maximum likelihood (Geyer, 1994),

JIS(α) =
1

Td

Td
∑

t=1

lnp0
m(xt;α)− ln

(

1

Tn

Tn
∑

t=1

p0
m(nt;α)

pIS(nt)

)

.

We maximized JIS(α) with the nonlinear conjugate gradient algorithm of Rasmussen (2006).

Like in noise-contrastive estimation, there is a trade-off between statistical performance and

running time: The larger Tn gets the better the approximation of the log-likelihood. Hence, the

estimates become more accurate but the optimization of JIS takes also more time. To map out the

trade-off curve, we used the same values of Tn = νTd as in noise-contrastive estimation, and also

the same noise distribution, that is pIS = pn.

4.2.3 CONTRASTIVE DIVERGENCE

If JMLE is maximized with a steepest ascent algorithm, the update rule for α is

αk+1 = αk +µk∇αJMLE(α)|αk
, (19)

where µk is the step-size. For the calculation of ∇αJMLE, the gradient of the log partition function

lnZ(α) is needed, see Equation (18). Above, importance sampling was used to evaluate lnZ(α)
and its gradient ∇α lnZ(α). The gradient of the log partition function can, however, also be ex-

pressed as

∇α lnZ(α) =
∇αZ(α)

Z(α)
=

∫

p0
m(n;α)

Z(α)
∇α lnp0

m(n;α)dn. (20)

If we had data nt at hand which follows the normalized model density p0
m(.;α)/Z(α), the last

equation could be evaluated by taking the sample average. The parameter vector α could then

be learned based on Equation (19). In general, sampling from the model density is, however, only

possible by means of Markov chain Monte Carlo methods. In contrastive divergence (Hinton, 2002),

to compute αk+1, Markov chains are started at the data points xt and stopped after a few Monte

Carlo steps before they actually reach the stationary distribution p0
m(.;αk)/Z(αk). The data points
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nt that are created in that way follow thus only approximately p0
m(.;αk)/Z(αk). For every update

of α the Markov chains are restarted from the xt. Note that this update rule for α is not directly

optimizing a known objective function.

In our implementation, we used Hamiltonian Monte Carlo (see for example Neal, 2010) with a

rejection ratio of 10% for the sampling (like in Teh et al., 2004; Ranzato and Hinton, 2010). There

are then four tuning parameters for contrastive divergence: The number of Monte Carlo steps, the

number of “leapfrog” steps in Hamiltonian Monte Carlo, the choice of the step sizes µk, as well as

the number of data points xt and noise points nt used in each update step of α. The choice of the

tuning parameters will affect the estimation error and the computation time. For our comparison

here, we used contrastive divergence with one and three Monte Carlo steps (denoted by CD1 and

CD3 in the figures below), together with either three or twenty leapfrog steps. Ranzato and Hinton

(2010) used CD1 with twenty leapfrog steps (below denoted by CD1 20), while Teh et al. (2004)

used CD1 30 to estimate unnormalized models from natural image data. For the µk, we considered

constant step sizes, as well as linearly and exponentially decaying step sizes.6 For each update step,

we chose an equal number of data and noise points. We considered the case of using all data in each

update step, and the case of using minibatches of only 100 randomly chosen data points.

We selected the step size µk and the number of data points used in each update by means of

preliminary simulations on five data sets. We limited ourselves to contrastive divergence with one

Monte Carlo and three leapfrog steps (CD1 3). For both Laplacian and logistic sources, using mini-

batches with an exponential decaying step size gave the best results. The results are reported below

in Section 4.4. The use of minibatches led to faster estimation results without affecting their accu-

racy. Exponentially decaying step sizes are advocated by the theory of stochastic approximation; in

some cases, however, linear decay was found to be more appropriate (Tieleman, 2008, Section 4.5).

For Laplacian sources, the initial step size µ0 was 0.005; for logistic sources, it was µ0 = 0.01.

Note that in this selection of the tuning parameters, we used the true parameters to compute the

estimation error. Clearly, this cannot be done in real applications since the true parameter values are

not known. The choice of the tuning parameters must then solely be based on experience, as well

as trial and error.

4.2.4 PERSISTENT CONTRASTIVE DIVERGENCE

As contrastive divergence, persistent contrastive divergence (Younes, 1989; Tieleman, 2008) uses

the update rule in Equation (19) together with an approximative evaluation of the integral in Equa-

tion (20) to learn the parameters α. The integral is also computed based on Markov chain Monte

Carlo sampling. Unlike contrastive divergence, however, the Markov chains are not restarted at

the data points xt. For the computation of αk+1, the Markov chains are initialized with the

samples nt that were obtained in the previous iteration by running Markov chains converging to

p0
m(.;αk−1)/Z(αk−1). As in contrastive divergence, the Markov chains are only run for a short

time and stopped before having actually converged.

Since persistent contrastive divergence differs from contrastive divergence only by the initial-

ization of the Markov chains, it has the same tuning parameters. As in contrastive divergence, we

used preliminary simulations to select suitable parameters: again, exponentially decaying step sizes

µk together with minibatches of size 100 gave the best performance. The preliminary simulations

yielded also the same initial step sizes µ0 as in contrastive divergence. It turned out, however,

6. Linear decay: µk = µ0(1 − k/maxIteration), exponential decay: µk = µ0C/(C + k) with C = 5000.
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that the number of leapfrog steps in persistent contrastive divergence needs to be larger than in

contrastive divergence: using, for example, only three leapfrog steps as in contrastive divergence

resulted in a poor performance in terms of estimation accuracy. For the results reported below in

Section 4.4, we used 20 and 40 leapfrog steps, together with one and three Monte Carlo steps.

4.2.5 SCORE MATCHING

In score matching (Hyvärinen, 2005), the parameter vector α is estimated by minimization of the

cost function JSM,

JSM(α) =
1

Td

Td
∑

t=1

n
∑

i=1

1

2
Ψ2

i (xt;α)+Ψ′
i(xt;α).

The term Ψi(x;α) is the derivative of the unnormalized model with respect to x(i), the i-th element

of the vector x,

Ψi(x;α) =
∂ lnp0

m(x;α)

∂x(i)
.

The term Ψ′
i(x;α) denotes the derivative of Ψi(x;α) with respect to x(i). The presence of this

derivative may make the objective function and its gradient algebraically rather complicated if a

sophisticated model is estimated. For the ICA model with Laplacian sources, Ψi(x;α) equals

Ψi(x;α) =
n
∑

j=1

−
√

2sign(bjx)Bji (21)

which is not smooth enough to be used in score matching. Using the smooth approximation

sign(u) ≈ tanh(10u) is a way to obtain a smooth enough Ψi(x;α) and Ψ′
i(x;α). The optimiza-

tion of JSM is done by the nonlinear conjugate gradient algorithm of Rasmussen (2006). Note that,

unlike the estimation methods considered above, score matching does not have a tuning parameter

which controls the trade-off between statistical and computational performance. Moreover, score

matching does not rely on sampling.

4.3 Limitations of the Comparison

For all considered methods but contrastive and persistent contrastive divergence, the algorithm

which is used to optimize the given objectives can be rather freely chosen. This choice will influence

the trade-off between statistical and computational performance. Here, we use the optimization al-

gorithm by Rasmussen (2006). Our results below show thus the trade-off of the different estimation

methods in combination with this particular optimization algorithm. With this optimization algo-

rithm, we used for each update all data. The algorithm is not suitable for stochastic optimization

with minibatches (see for example Schraudolph and Graepel, 2002). Optimization based on mini-

batches may well lead not only for (persistent) contrastive divergence to gains in speed but also for

the other estimation methods, including noise-contrastive estimation.

It is well known that a Gaussian as noise (proposal) distribution is not the optimal choice for

importance sampling if the data has heavy tails (see for example Wasserman, 2004, Chapter 24).

Gaussian noise is not the optimal choice for noise-contrastive estimation either. The presented

results should thus not be considered as a general comparison of the two estimation methods per

se. Importantly, however, the chosen setup allows one to assess how noise-contrastive estimation

behaves when the data has heavier tails than the noise, which is often the case in practice.
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Finally, the reader may want to keep in mind that for other kinds of data, in particular also in

very high dimensions, differences may occur.

4.4 Results

We first compare noise-contrastive estimation with the methods for which we use the same opti-

mization algorithm, that is Monte Carlo maximum likelihood estimation and score matching. Then,

we compare it with contrastive and persistent contrastive divergence.

4.4.1 COMPARISON WITH MONTE CARLO MLE AND SCORE MATCHING

Figure 6 shows the comparison of noise-contrastive estimation (NCE, red squares), Monte Carlo

maximum likelihood (IS, blue circles) and score matching (SM, black triangles). The left panels

show the simulation results in form of “result points” where the x-coordinate represents the time

till the algorithm converged and the y-coordinate the estimation error at convergence. Convergence

in the employed nonlinear conjugate gradient algorithm by Rasmussen (2006) means that the line

search procedure failed twice in a row to meet the strong Wolfe-Powell conditions (see for example

Sun and Yuan, 2006, Chapter 2.5.2). For score matching, 100 result points corresponding to 100

different random mixing matrices are shown in each figure. For noise-contrastive estimation and

Monte Carlo maximum likelihood, we used ten different values of ν so that for these methods,

each figure shows 1000 result points. The panels on the right present the simulation result in a

more schematic way. For noise-contrastive estimation and Monte Carlo maximum likelihood, the

different ellipses represent the outcomes for different values of ν. Each ellipse contains 90% of

the result points. We can see that increasing ν reduces the estimation error but it also increases the

running time. For score matching, there is no such trade-off.

Figure 6(a) shows that for Laplacian sources, noise-contrastive estimation outperforms the other

methods in terms of the trade-off between statistical and computational performance. The large

estimation error of score matching is likely to be due to the smooth approximation of the sign

function in Equation (21). The figure also shows that noise-contrastive estimation handles noise that

has lighter tails than the data more gracefully than Monte Carlo maximum likelihood estimation.

The reason is that the nonlinearity h(u;θ) in the objective function in Equation (8) is bounded even

if data and noise distribution do not match well (see also Pihlaja et al., 2010).

For logistic sources, shown in Figure 6(b), noise-contrastive estimation and Monte Carlo max-

imum likelihood perform equally. Score matching reaches its level of accuracy about 20 times

faster than the other methods. Noise-contrastive estimation and Monte Carlo maximum likelihood

can, however, have a higher estimation accuracy than score matching if ν is large enough. Score

matching can thus be considered to have a built-in trade-off between estimation performance and

computation time: Computations are fast but the speed comes at the cost of not being able to reach

an estimation accuracy as high as, for instance, noise-contrastive estimation.

4.4.2 COMPARISON WITH CONTRASTIVE AND PERSISTENT CONTRASTIVE DIVERGENCE

Since contrastive and persistent contrastive divergence do not have an objective function and given

the randomness that is introduced by the minibatches, it is difficult to choose a reliable stopping

criterion. Hence, we did not impose any stopping criterion but the maximal number of iterations.

The two algorithms had always converged before this maximal number of iterations was reached in

the sense that the estimation error did not visibly decrease any more.
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We base our comparison on the estimation error as a function of the running time of the algo-

rithm. This makes the comparison independent from the stopping criterion that is used in noise-

contrastive estimation. For noise-contrastive estimation, the parameter ν controls the trade-off be-

tween computational and statistical performance; for contrastive and persistent contrastive diver-

gence, it is the number of leapfrog steps and the number of Markov steps taken in each update. We

compiled a trade-off curve for each of the one hundred estimation problems by taking at any time

point the minimum estimation error over the various estimation errors that are obtained for different

values of the trade-off parameters.7 Figure 7 shows an example for noise-contrastive estimation

and contrastive divergence. The distribution of the trade-off curves is shown in Figure 8. For large

running times, the distribution of the estimation error is for all estimation methods similar to the

one for maximum likelihood estimation. For shorter running times, noise-contrastive estimation is

seen to have for Laplacian sources a better trade-off than the other methods. For logistic sources,

however, the situation is reversed.

4.4.3 SUMMARY

The foregoing simulation results and discussion suggest that all estimation methods trade, in one

form or the other, estimation accuracy against computation speed. In terms of this trade-off, noise-

contrastive estimation is particularly well suited for the estimation of data distributions with heavy

tails. In case of thin tails, noise-contrastive estimation performs similarly to Monte Carlo maximum

likelihood, and contrastive or persistent contrastive divergence has a better trade-off. If the data

distribution is particularly smooth and the model algebraically not too complicated, score matching

may, depending on the required estimation accuracy, be the best option.

5. Simulations with Natural Images

In this section, we estimate with our new estimation method models of natural images. In the

theory of noise-contrastive estimation, we have assumed that all variables can be observed. Noise-

contrastive estimation can thus not be used for models with latent variables which cannot be inte-

grated out analytically. Such models occur for example in the work by Olshausen and Field (1996),

Hyvärinen et al. (2001a), Karklin and Lewicki (2005), Lücke and Sahani (2008) and Osindero and

Hinton (2008). We are here considering models which avoid latent variables. Recent models which

are related to the models that we are considering here can be found in the work by Osindero et al.

(2006), Köster and Hyvärinen (2010) and Ranzato and Hinton (2010). For a comprehensive intro-

duction to natural image statistics, see for example the textbook by Hyvärinen et al. (2009).

The presented models will consist of two processing layers, like in a multilayer neural network.

The output of the network for a given input image gives the value of the model-pdf at that image.

Because of the two processing layers, we call the models “two-layer models”.

We start with giving some preliminaries in Section 5.1. In Section 5.2, we present the settings

of noise-contrastive estimation. In Section 5.3, we properly define the two-layer model and estimate

a version with more than 50000 parameters. In Section 5.4, we present an extension of the model

where the learned output nonlinearity of the network belongs to the flexible family of splines. The

different models are compared in Section 5.5.

7. A comparison of CD and PCD for different settings can be found in Appendix C.1.
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(b) Sources following a logistic density

Figure 6: Trade-off between statistical and computational performance for noise-contrastive es-

timation (NCE, red squares), Monte Carlo maximum likelihood (IS, blue circles) and

score matching (SM, black triangles). Each point represents the result of one simula-

tion. Performing local linear kernel smoothing regression on the result points yields

the thick curves. For noise-contrastive estimation and Monte Carlo maximum like-

lihood, the ten ellipses represent the outcomes for the ten different values of ν ∈
{1,2,5,10,20,50,100,200,400,1000}. The ellipses were obtained by fitting a Gaussian

to the distribution of the result points, each one contains 90% of the results points for

a given ν. The asterisks mark their center. For an ICA model with Laplacian sources,

NCE has the best trade-off between statistical and computational performance. For lo-

gistic sources, NCE and IS perform equally well. For medium estimation accuracy, score

matching outperforms the other two estimation methods.

5.1 Data, Preprocessing and Modeling Goal

Our basic data are a random sample of 25px × 25px image patches that we extracted from a subset

of van Hateren’s image database (van Hateren and van der Schaaf, 1998). The images in the subset

showed wildlife scenes only. The sample size Td is 160000.
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Figure 7: Example of a trade-off curve for noise-contrastive estimation and contrastive divergence.

(a) The different curves in blue show the estimation error which is obtained for the various

values of ν. The thicker curve in black shows the trade-off curve. It is is obtained by

taking at any time point the minimum estimation error. (b) The trade-off curve, shown in

black, is similarly obtained by taking the minimum over the estimation errors which are

obtained with different settings of contrastive divergence.

As preprocessing, we removed from each image patch its average value (local mean, DC com-

ponent), whitened the data and reduced the dimension from d = 25 · 25 = 625 to n = 160. This

retains 93% of the variance of the image patches. After dimension reduction, we additionally cen-

tered each data point and rescaled it to unit variance. In order to avoid division by small numbers,

we avoided taking small variance patches. This gave our data X = (x1, . . . ,xTd
). Because of the

centering and rescaling, each data point xt satisfies

n
∑

k=1

xt(k) = 0,
1

n−1

n
∑

k=1

xt(k)2 = 1. (22)

This means that each data point lies on the surface of a n−1 dimensional sphere S.

This kind of preprocessing is a form of luminance and contrast gain control which aim at can-

celing out the effects of the lighting conditions (see for example Hyvärinen et al., 2009, Chapter 9,

where also the statistical effects of such a preprocessing are analyzed). Centering and rescaling to

unit variance has also been used in image quality assessment in order to access the structural com-

ponent of an image, which is related to the reflectance of the depicted objects (Wang et al., 2004, in

particular Section III.B). By modeling the data X , we are thus modeling the structure in the image

patches.

Given a data point xt, we can reconstruct the original (vectorized) image patch via

it = V−xt, V− = ED1/2, (23)

where E is the d × n matrix formed by the leading n eigenvectors of the covariance matrix of the

image patches. The diagonal n × n matrix D contains the corresponding eigenvalues. The matrix
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0 0.5 1 1.5 2 2.5 3 3.5 4
−2.7

−2.6

−2.5

−2.4

−2.3

−2.2

−2.1

−2

−1.9

−1.8

−1.7

Time [log10 s]

lo
g
1
0
 s

q
E

rr
o
r 

 

 

CD

PCD

NCE

MLE

NCE

CD

PCD

(a) Laplacian sources

1 1.5 2 2.5 3 3.5 4

−1.7

−1.6

−1.5

−1.4

−1.3

−1.2

−1.1

Time [log10 s]

lo
g
1
0
 s

q
E

rr
o
r 

 

 

CD

PCD

NCE

MLE

NCE
PCD

CD

(b) Logistic sources

Figure 8: Distribution of the trade-off curves for contrastive divergence (CD, green), persistent con-

trastive divergence (PCD, cyan), and noise-contrastive estimation (NCE, red). The distri-

bution of the estimation error for maximum likelihood estimation is shown in black. The

thick curves show the median, the finer curves the 0.9 and 0.1 quantiles.

V− defined above is the pseudoinverse of the whitening matrix V = D−1/2ET . Since the column

vectors of V− form a basis for a n dimensional subspace of Rd, x is the coordinate vector of i with

respect to that basis. The dimension reduction implies that the reconstruction cannot be perfect; the

reconstruction can also only performed up to the scale and average value of the patch because of

the the luminance and contrast gain control. Figure 9(a) shows examples of natural image patches

after extraction from the data base; Figure 9(b) shows the corresponding reconstructions i. Since

all image patches in Figure 9 were rescaled to use the full colormap, the effects of luminance and

contrast gain control are not visible. The effect of the dimension reduction is low-pass filtering.

5.2 Settings for Noise-Contrastive Estimation

Matlab code for the simulations is available from the authors’ homepage so that our description here

will not be exhaustive. All the models considered in the next subsections are estimated with noise-

contrastive estimation. We learn the parameters by optimization of the objective JT in Equation (8).

The two-layer models are estimated by first estimating one-layer models. The learned parameters

are used as initial values for the first layer in the estimation of the complete two-layer model. The

second layer is initialized to small random values.

For the contrastive noise distribution pn, we take a uniform distribution on the surface of the

n − 1 dimensional sphere S on which x is defined.8 Examples of image patches with coordinates

following pn are shown in Figure 9(c). Samples from pn can easily be created by sampling from

a standard normal distribution, followed by centering and rescaling such that Equation (22) holds.

Since pn is a constant, the log-ratio G(.;θ) in Equation (4) is up to an additive constant equal to

8. lnpn = − ln(2) −
n−1

2
ln(π) − (n − 2) ln(r) + lnΓ

(

n−1

2

)

with r =
√

n − 1.
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(a) Image patches (b) Reconstructions (c) Noise

Figure 9: (a) Natural image patches of size 25px×25px. (b) Reconstructed image patches after pre-

processing. These are examples of the image patches denoted by i in Equation (23) with

coordinate vectors x ∈R
160. (c) Noise images which are obtained via Equation (23) if the

coordinates are uniformly distributed on the sphere S. Comparison with Figure (b) shows

that the coordinate vectors x for natural images are clearly not uniformly distributed on

the sphere. In the next subsections, we model their distribution.

lnpm(.;θ),

G(.;θ) = lnpm(.;θ)+ constant.

As pointed out in Section 2.2, θ evolves in the maximization of JT such that G(u; θ̂T ) is as large as

possible for u ∈ X (natural images) but as small as possible for u ∈ Y (noise). For uniform noise,

the same must thus also hold for lnpm(u; θ̂T ). This observation will be a useful guiding tool for

the interpretation of the models below.

The factor ν = Tn/Td was set to 10. We found that an iterative optimization procedure where

we separate the data into subsets and optimize JT for increasingly larger values of ν reduced com-

putation time. The optimization for each ν is done with the nonlinear conjugate gradient method

of Rasmussen (2006). The size of the subsets is rather large, for example 80000 in the simulation

of the next subsection.9 A more detailed discussion of this optimization procedure can be found in

Appendix C.2.

5.3 Two-Layer Model with Thresholding Nonlinearities

The first model that we consider is

lnpm(x;θ) =
n
∑

k=1

f(yk;ak, bk)+ c, yk =
n
∑

i=1

Qki(w
T
i x)2, (24)

where f is a smooth, compressive thresholding function that is parameterized by ak and bk. See

Figure 10 for details regarding the parameterization and the formula for f . The parameters θ of

9. As pointed out in Section 4.3, the used nonlinear conjugate gradient algorithm is not suitable for stochastic optimiza-

tion with small minibatches.
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the model are the second-layer weights Qki ≥ 0, the first-layer weights wi ∈ R
n, the normalizing

parameter c ∈ R, as well as ak > 0 and bk ∈ R for the nonlinearity f . The definition of yk shows

that multiplying Qki by a factor γ2
i and wi at the same time by the factor 1/γi does not change

the value of yk. There is thus some ambiguity in the parameterization which could be resolved

by imposing a norm constraint either on the wi or on the columns of the matrix Q formed by the

weights Qki. It turned out that for the estimation of the model such constraints were not necessary.

For the visualization and interpretation of the results, we chose γi such that all the wi had norm one.

The motivation for the thresholding property of f is that, in line with Section 5.2, lnpm(.;θ) can

easily be made large for natural images and small for noise. The yk must just be above the thresh-

olds for natural image input and below for noise. This occurs when the vectors wi detect features

(regularities) in the input which are specific to natural images, and when, in turn, the second-layer

weights Qki detect characteristic regularities in the squared first-layer feature outputs wT
i x. The

squaring implements the assumption that the regularities in x and (−x) are the same so that the

pdf of x should be an even function of the wT
i x. Another property of the nonlinearity is its com-

pressive log-like behavior for inputs above the threshold. The motivation for this is to “counteract”

the squaring in the computation of yk. The compression of large values of yk leads to numerical

robustness in the computation of lnpm.

A model like the one in Equation (24) has been studied before by Osindero et al. (2006) and

Köster and Hyvärinen (2010). There are, however, a number of differences. The main difference

is that in our case x lies on a sphere while in the cited work, x was defined in the whole space

R
n. This difference allows us to use nonlinearities that do not decay asymptotically to −∞ which

is necessary if x is defined in R
n. A smaller difference is that we do not need to impose norm

constraints to facilitate the learning of the parameters.

5.3.1 RESULTS

For the visualization of the first-layer feature detectors wi, note that the inner product wT
i x equals

(wT
i V)i = w̃T

i i. The wi ∈ R
n are coordinate vectors with respect to the basis given by the columns

of V−, see Section 5.1, while the w̃i ∈ R
d are the coordinate vectors with respect to the pixel basis.

The latter vectors can thus be visualized as images. This is done in Figure 11(a). Another way to

visualize the first-layer feature detectors wi is to show the images which yield the largest feature

output while satisfying the constraints in Equation (22). These optimal stimuli are proportional

to V−(wi − 〈wi〉), where 〈wi〉 ∈ R is the average value of the elements in the vector wi, see

Appendix B.2 for a proof. The optimal stimuli are shown in Figure 11(b). Both visualizations show

that the first layer computes “Gabor-like” features, which is in line with previous research on natural

image statistics.

Figure 12 shows a random selection of the learned second-layer weights Qik. Figure 12(a)

shows that the weights are extremely sparse. The optimization started with the weights being

randomly assigned to small values, with the optimization most of them shrank to zero; few se-

lected ones, however, increased in magnitude. Note that this result was obtained without any norm

constraints on Q. From Figure 12(b), we see that the learned second-layer weights Qik are such

that they combine first-layer features of similar orientation, which are centered at nearby locations

(“complex cells”). The same figure shows also a condensed representation of the feature detectors

using icons. This form of visualization is used in Figure 13 to visualize all the second-layer feature

detectors.
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Figure 10: Two-layer model with thresholding nonlinearities. The family of nonlinearities used

in the modeling is f(y;a,b) = fth(ln(ay + 1) + b), y ≥ 0. The parameterized func-

tion is composed of a compressive nonlinearity ln(ay + 1), shown in Figure (a), and a

smooth rectification function fth(u + b) shown in Figure (b). Figure (c) shows exam-

ples of f(y;a,b) for different values of a and b. Parameter b sets the threshold, and

parameter a controls the steepness of the function. Since the scale of the weights in

Equation (24) is not restrained, the parameters ak do not need to be learned explicitly.

After learning, they can be identified by dividing yk in Equation (24) by ak so that

its expectation is one for natural images. The formula for the thresholding function is

fth(u) = 0.25ln(cosh(2u))+0.5u+0.17. The curves shown in blue are for b = −3 and

a ∈ {1,50,100,200, . . . ,500}. For the dashed curves in red, b = −5. The small squares

in Figure (c) indicate where f changes from convex to concave.

Figure 14(a) shows the learned nonlinearities f(.;ak, bk). Note that we incorporated the learned

normalizing parameter c as an offset c/n for each nonlinearity. The learned thresholding is similar

for feature outputs of mid- and high-frequency feature detectors (black, solid curves). For the feature

detectors tuned to low frequencies, the thresholds tend to be smaller (green, dashed curves). The

nonlinearities in black are convex for arguments y smaller than two (see red rectangle in the figure).

That is, they show a squashing behavior for y < 2. Looking at the distribution of the second-layer

outputs yk in Figure 14(b), we see that it is more likely that noise rather than natural images was the

input when the second-layer feature outputs yk are approximately between 0.5 and 2. In this regime,

the squashing nonlinearities map thus more often the noise input to small values than natural images

so that lnpm(u; θ̂T ) tends to be larger when input u is a natural image than when it is noise (see

Section 5.2). One could, however, think that the thresholding nonlinearities are suboptimal because

they ignore the fact that natural images lead, compared to the noise, rather often to yk which are close

to zero, see Figure 14(b). An optimal nonlinearity should, unlike the thresholding nonlinearities,

assign a large value to both large and small yk while mapping intermediate values of yk to small

numbers. The next subsection shows that such kinds of mappings emerge naturally when splines

are used to learn the nonlinearities from the data.

5.4 Two-Layer Model with Spline Nonlinearities

In the previous subsection, the family of nonlinearities f in Equation (24) was rather limited. Here,

we look for f in the larger family of cubic splines where we consider the location of the knots to

333



GUTMANN AND HYVÄRINEN

(a) Feature detectors (b) Optimal stimuli

Figure 11: Two-layer model with thresholding nonlinearities: Visualization of the learned first-

layer feature detectors wi. (a) The feature detectors in the pixel basis. (b) The corre-

sponding optimal stimuli. The feature detectors in the first layer are “Gabor-like” (lo-

calized, oriented, bandpass). Comparison of the two figures shows that feature detectors

which appear noisy in the pixel basis are tuned to low-frequency input.
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Figure 12: Two-layer model with thresholding nonlinearities: Random selection of second layer

units. (a) Second-layer weights Qki for five different k (five different rows of the matrix

Q) are shown. The weights are extremely sparse so that in the sum
∑n

i=1 Qki(w
T
i x)2

only few selected squared first-layer outputs are added together. (b) Every row shows

one second-layer feature detector. The first-layer feature detectors wi are shown as

image patches like in Figure 11, and the black bar under each patch indicates the strength

Qki by which a certain wi is pooled by the k-th second-layer feature detector. The

numerical values Qki for the first five rows are shown in Figure (a). The right-most

column shows a condensed visualization. The icons were created by representing each

first-layer feature by a bar of the same orientation and similar length as the feature, and

then superimposing them with weights given by Qki.
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Figure 13: Two-layer model with thresholding nonlinearities: Visualization of the first- and second-

layer feature detectors with icons. In the second layer, first-layer features of similar

orientations are pooled together. See Figure 12 for details of how the icons were created.

The feature detectors marked with a green frame are tuned to low frequencies.
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Figure 14: Two-layer model with thresholding nonlinearities: Learned nonlinearities and interpre-

tation. Natural images tend to have larger second-layer outputs yk than noise input since

the two processing layers, visualized in Figures 11 to 13, detect structure inherent to

natural images. Thresholding the yk provides a way to assign to natural images large

values in the model-pdf and to noise small values. In Figure (a), the nonlinearities act-

ing on pooled low-frequency feature detectors are shown in green (dashed lines), those

for medium and high frequency feature detectors in black (solid lines). The bold curves

in Figure (b) show the median, the other curves the 5% and 95% quantiles. The solid

curves in blue relate to natural images, the dashed curves in red to noise. As explained

in Figure 10, the yk have expectation one for natural images.
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be fixed (regression splines represented with B-spline basis functions, see for example Hastie et al.,

2009, Chapter 5).

The model that we consider here is

lnpm(x;θ) =
n
∑

k=1

f(yk;a1,a2, . . .)+ c, yk =
n
∑

i=1

Qki(w
T
i x)2. (25)

The difference between this and the model of the previous subsection is that the output nonlinearity

f is a cubic spline. Part of the parameters θ are thus as previously the wi ∈ R
n, Qki ≥ 0, and c ∈ R.

Additional parameters are the ai ∈ R which are the coefficients of the B-spline basis functions of

the cubic spline f . As before, we denote the matrix formed by the Qki by Q.

For the modeling of the nonlinearity f , we must define its domain, which is the range of its

arguments yk. A way to control the range of yk is to constrain the norm of the columns of Q and

also to constrain the vectors wk such that

max
i

E
{

(wT
i x)2

}

= 1, (26)

where the expectation is taken over the natural images.

We estimated the model in Equation (25) by first estimating a spline-based one-layer model

which is presented in Appendix C.3. In brief, in this model, we did not square the first-layer feature

outputs wT
i x and the matrix Q was the identity. The arguments of the spline nonlinearity f were

thus the feature outputs wT
i x without additional processing. The learned nonlinearity is shown in

Figure 16(a). In the following, we denote it by f1. In Appendix C.3, we point out that the shape of

f1 is closely related to the sparsity of the feature outputs when natural images are the input. Because

f1 is an even function, and because of the squaring in the definition of yk, we initialized f for the

estimation of the two-layer model as f(u) = f1(
√

u). This function is shown in Figure 16(b) (blue,

dashes). The learned wi of the one-layer model were used as initial points for the estimation of the

two-layer model. The Qki were randomly initialized to small values. It turned out that imposing

Equation (26) was enough for the learning to work and no norm constraint for the columns of Q

was necessary. The results were very similar whether there were norm constraints or not. In the

following, we report the results without any norm constraints.

5.4.1 RESULTS

Figure 15 visualizes the learned parameters wi and Qki in the same way as in Figures 12 and 13

for the two-layer model with thresholding nonlinearities. The learned feature extraction stage is

qualitatively very similar, up to two differences. The first difference is that many second-layer

weights Qki shrank to zero: 66 out of 160 rows of the matrix Q had so small values that we could

omit them while accounting for 99.9% of the sum
∑

ki Qki. The second difference is that the pooling

in the second layer is sometimes less sparse. In that case, the second layer still combines first-layer

feature detectors of the same orientation but they are not all centered at the same location.

The learned nonlinearity f is shown in Figure 16(b) (black, solid). The nonlinearity from the

one-layer model, shown in blue as a dashed curve, is altered so that small and large inputs are

assigned to larger numbers while intermediate inputs are mapped to smaller numbers. Compared

to the thresholding nonlinearities from the previous subsection, the learned nonlinearity has also

for small inputs large outputs. Since the second-layer feature outputs yk are sparser (that is, more

often very small or large) for natural images than for the noise, the shape of the learned nonlinearity
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Icons

(a) Pooling in the second layer (b) Representation with icons

Figure 15: Two-layer model with spline nonlinearities. (a) Random selection of the learned second-

layer units. (b) Representation of all the learned second-layer feature detectors as iconic

images.
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Figure 16: Two-layer model with spline nonlinearities. (a) Learned nonlinearity (black, solid) and

its random initialization (blue, dashes) for the one-layer model. The learned nonlinearity

is used as starting point in the learning of the two-layer model. (b) Learned nonlinearity

(black, solid) and its initialization (blue, dashes) for the two-layer model. The dashed

vertical lines indicate the 99% quantile for all the feature outputs for natural images.

Due to the lack of training examples, the nonlinearities should not be considered valid

beyond these lines.

implies that the estimated model assigns more often a higher probability density to natural images

than to the noise.
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5.5 Model Comparison

We have estimated models for natural images, both with thresholding nonlinearities and with splines.

We make here a simple model comparison.

A quantitative comparison is done by calculating for ten validation sets the value of the objective

function JT of noise-contrastive estimation (see Equation (8) for the definition). The sample size

of each validation set was Tv = 100000, and ν was set to 10, as in the estimation of the models. For

the same validation data, we also computed the performance measure L̂ = 1/Tv
∑

t lnpm(xt; θ̂T ),

which is an estimate for the rescaled log-likelihood, see Equation (13) in Section 3.1. As pointed

out there, L̂ is only an estimate of the rescaled log-likelihood because ĉ, which is an element of

the parameter vector θ̂T , is used instead of the correct normalizing constant. Both JT and the

log-likelihood have the property that models which fit the data better have a higher score.

Comparing the structure of data points which are considered likely by the different models is

a way to make a qualitative model comparison. Another approach would be to sample from the

models, which we do in Appendix C.5. In order to get the likely points, we drew random samples

that followed the noise distribution pn (uniform on the sphere), and used them as initial points in

the optimization of the various log-densities lnpm(x; θ̂T ) with respect to x under the constraint of

Equation (22). We used the same initial points for all models and visualized the likely points x̂ via

Equation (23) as images î = V−x̂.

The ICA model with Laplacian sources is a simple model for natural images. It has previously

also been used to model natural images after they have been projected on a sphere (Hyvärinen et al.,

2009, Chapter 9). The unnormalized model has been defined in Section 3.2 in Equation (17) and

consists of one processing layer with the fixed nonlinearity f(u) = −
√

2|u|. We include it in our

comparison and refer to it as one-layer model with “Laplacian nonlinearity”.

5.5.1 RESULTS

Table 1 shows that the spline-based two-layer model of Section 5.4 gives, on average, the largest

value of the objective function JT , and also LT . To investigate the merits of the spline output-

nonlinearity, we fixed the feature extraction stage of the thresholding model in Section 5.3 and

learned only the nonlinearity f using splines (for details, see Appendix C.4). The resulting model,

labeled “refinement” in the table, performs nearly as good as the best model. The one-layer models

with thresholding or Laplacian nonlinearities have the smallest objectives JT and LT . The two

models achieve the objectives in different, complimentary ways. For the thresholding model, the

absolute value of the feature outputs wT
i x must be large to yield a large objective while for the

model with the Laplacian nonlinearity f(wT
i x) = −

√
2|wT

i x|, the feature outputs must have small

absolute values. The two models consider thus different aspects of the, for natural images, typically

sparse feature outputs wT
i x. The one-layer model with spline nonlinearity combines both aspects,

see Figure 16(a), and yields also a higher score in the comparison. The same reason explains why

spline-based two-layer models have higher scores than the two-layer model with the thresholding

nonlinearity.

Figure 17 shows the likely data points from the various models pm. The models with large

objectives in Table 1 lead to image patches with particularly clear structure. The emergence of

structure can be explained in terms of sparse coding since image patches which lead to sparse

activations of the feature detectors are typically highly structured. Sparseness of the feature outputs
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One-layer model Two-layer model

Thresholding Laplacian Spline Thresholding Refinement Spline

JT , av -1.871 -1.518 -1.062 -0.8739 -0.6248 -0.6139

JT , std 0.0022 0.0035 0.0030 0.0029 0.0030 0.0037

LT , av -223.280 -222.714 -219,786 -220.739 -213.303 -212.598

LT , std 0.0029 0.0077 0.0137 0.0088 0.0282 0.0273

Table 1: Quantitative model comparison. The objective JT of noise-contrastive estimation, see

Equation (8), and the estimate L̂ of the (rescaled) log-likelihood, see Equation (13), are

used to measure the performance. Larger values indicate better performance. The table

gives the average (av) and the standard deviation (std) for ten validation sets. All models

are defined on a sphere and learned with noise-contrastive estimation. The features for

the one-layer models with thresholding and Laplacian nonlinearity are not shown in the

paper. The “one-layer, thresholding” model is identical to the “two-layer, thresholding”

model when the second layer is fixed to the identity matrix. With Laplacian nonlinearity

we mean the function f(u) = −
√

2|u|. The “two-layer, thresholding” model has been

presented in Section 5.3, and the “two-layer, spline” model in Section 5.4. The “one-layer,

spline” and “two-layer, refinement” models are presented in the Appendix C.3 and C.4,

respectively.

is facilitated by the nonlinearities in the models, and through the competition between the features

by means of the sphere-constraint on the coordinates x, as specified in Equation (22).

6. Conclusions

In this paper, we have considered the problem of estimating unnormalized statistical models for

which the normalizing partition function cannot be computed in closed form. Such models cannot be

estimated by maximization of the likelihood without resorting to numerical approximations which

are often computationally expensive. The main contribution of the paper is a new estimation method

for unnormalized models. A further contribution is made in the modeling of natural image statistics.

We have proven that our new estimation method, noise-contrastive estimation, provides a con-

sistent estimator for both normalized and unnormalized statistical models. The assumptions that

must be fulfilled to have consistency are not stronger than the assumptions that are needed in max-

imum likelihood estimation. We have further derived the asymptotic distribution of the estimation

error which shows that, in the limit of arbitrarily many contrastive noise samples, the estimator per-

forms like the maximum likelihood estimator. The new method has a very intuitive interpretation in

terms of supervised learning: The estimation is performed by discriminating between the observed

data and some artificially generated noise by means of logistic regression.

All theoretical results were illustrated and validated on artificial data where ground truth is

known. We have also used artificial data to assess the balance between statistical and computational

performance. In particular, we have compared the new estimation method to a number of other es-

timation methods for unnormalized models: Simulations suggest that noise-contrastive estimation

strikes a highly competitive trade-off. We have used the mean squared error of the estimated param-
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(a) One-layer, thresholding (b) One-layer, Laplacian (c) One-layer, spline

(d) Two-layer, thresholding (e) Two-layer, refinement (f) Two-layer, spline

Figure 17: Likely points under the learned models for natural images. See caption of Table 1 for

information on the models.

eters as statistical performance measure. It should be noted that this is only one possible criterion

among many (see Hyvärinen, 2008, for a recently proposed alternative measure of performance).

Noise-contrastive estimation as presented here extends the previous definition given by Gut-

mann and Hyvärinen (2010) since it allows for more noise samples than data points. We have also

previously considered such a generalization (Pihlaja et al., 2010). Unlike in that preliminary ver-

sion, our method here is asymptotically Fisher-efficient for all admissible noise densities when the

number of noise samples becomes arbitrarily large. Pihlaja et al. (2010) has established links of

noise-contrastive estimation to importance sampling which remain valid for this paper.

We applied noise-contrastive estimation to the modeling of natural images. Besides validating

the method on a large two-layer model, we have, as a new contribution to the understanding of nat-

ural image statistics, presented spline-based extensions: In previous models, the output nonlinearity

in the pdf was hand-picked. Here, we have parameterized it as a spline and learned it from the data.

The statistical models were all unnormalized and had several ten-thousands of parameters which

demonstrates that our new method can handle demanding estimation problems.
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Appendix A. Proofs of the Theorems

We give here detailed proofs for Theorem 1, 2 and 3 on nonparametric estimation, consistency and

the asymptotic distribution of the estimator, respectively.

A.1 Preliminaries

In the proofs, we often use the following properties of the function rν(u),

rν(u) =
1

1+ν exp(−u)
,

which was introduced in Equation (6):

1− rν(u) = r 1

ν

(−u)

∂rν(u)

∂u
= r 1

ν

(−u)rν(u)

∂

∂u
lnrν(u) = r 1

ν

(−u)

∂2

∂u2
lnrν(u) = −r 1

ν

(−u)rν(u)

∂

∂u
ln[1− rν(u)] = −rν(u)

∂2

∂u2
ln[1− rν(u)] = −r 1

ν

(−u)rν(u)

The functions h(u;θ) = rν (G(u;θ)) and 1−h(u;θ) = r 1

ν

(−G(u;θ)) are equal to

h(u;θ) =
pm(u;θ)

pm(u;θ)+νpn(u)
, 1−h(u;θ) =

νpn(u)

pm(u;θ)+νpn(u)
, (27)

see Equation (3). It follows that

νpn(u)rν (G(u;θ)) =
νpn(u)pm(u;θ)

pm(u;θ)+νpn(u)
, , (28)

pd(u)r 1

ν

(−G(u;θ)) =
νpn(u)pd(u)

pm(u;θ)+νpn(u)
, (29)

which are key properties for the proofs below.
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The first and second order derivatives are used in the following Taylor expansions

lnrν(u+ ǫu1 + ǫ2u2) = lnrν(u)+ ǫr 1

ν

(−u)u1 +

ǫ2

[

r 1

ν

(−u)u2 − 1

2
r 1

ν

(−u)rν(u)u2
1

]

+

O(ǫ3), (30)

ln
[

1− rν(u+ ǫu1 + ǫ2u2)
]

= ln[1− rν(u)]− ǫrν(u)u1 +

ǫ2

[

−rν(u)u2 − 1

2
r 1

ν

(−u)rν(u)u2
1

]

+

O(ǫ3). (31)

A.2 Proof of Theorem 1 (Nonparametric Estimation)

For clarity of the proof, we state an important stepping stone as a lemma.

A.2.1 LEMMA

The Taylor expansions in Equation (30) and Equation (31) are used to prove the following lemma.

Lemma 8 For ǫ > 0 and φ(x) a perturbation of the log-pdf fm(x) = lnpm(x),

J̃(fm + ǫφ) = J̃(fm)+ ǫ

∫

[pd(u)r 1

ν

(−fm(u)+ lnpn(u))−

νpn(u)rν(fm(u)− lnpn(u))]φ(u)du −
ǫ2

2

∫

r 1

ν

(−fm(u)+ lnpn(u))rν(fm(u)− lnpn(u))

(pd(u)+νpn(u))φ(u)2du +O(ǫ3).

Proof The proof is obtained by evaluating the objective function J̃ in Equation (11) at fm + ǫφ,

and making then use of the Taylor expansions in Equation (30) and Equation (31) with u =
fm(x)− lnpn(x), u1 = φ(x) and u2 = 0.

A.2.2 PROOF OF THE THEOREM

Proof A necessary condition for optimality is that in the expansion of J̃(fm +ǫφ), the term of order

ǫ is zero for any perturbation φ. This happens if and only if

pd(u)r 1

ν

(−fm(u)+ lnpn(u)) = νpn(u)rν(fm(u)− lnpn(u)).

With Equation (28) and Equation (29), this implies that J̃ has an extremum at pm if and only if

νpn(u)pd(u)

pm(u)+νpn(u)
=

νpn(u)pm(u)

pm(u)+νpn(u)
.

That is, as ν > 0, pm(u) = pd(u) at all points u where pn(u) 6= 0. At points where pn(u) = 0, the

equation is trivially fulfilled. Hence, pm = pd, or fm = lnpd, leads to an extremum of J̃ .
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Inserting fm = lnpd into J̃ in Lemma 8 leads to

J̃(lnpd + ǫφ) = J̃(lnpd)− ǫ2

2

{
∫

νpn(u)pd(u)

pd(u)+νpn(u)
φ(u)2du

}

+O(ǫ3).

Since the term of order ǫ2 is negative for all choices of φ, the extremum is a maximum. The assump-

tion that pn(u) 6= 0 whenever pd(u) 6= 0 shows that fm = lnpd is the only extremum and completes

the proof.

A.3 Proof of Theorem 2 (Consistency)

For clarity of the proof, we state important stepping stones as lemmata.

A.3.1 LEMMATA

The Taylor expansions in Equation (30) and Equation (31) are used to prove the following lemma

which is like Lemma 8 for J̃ but for the objective function J in Equation (10).

Lemma 9 For ǫ > 0 and ϕ ∈ R
m,

J(θ + ǫϕ) = J(θ)+ ǫ

∫

u1 [pd(u)(1−h(u;θ))−νpn(u)h(u;θ)]du +

ǫ2

{
∫

−1

2
u2

1(1−h(u;θ))h(u;θ)(pd(u)+νpn(u))du+

∫

u2 (pd(u)(1−h(u;θ))−νpn(u)h(u;θ))du

}

+O(ǫ3),

where

u1 = ϕT g(u;θ),

u2 =
1

2
ϕT HG(u;θ)ϕ.

The term g(u;θ) is ∇G(u;θ), and HG denotes the Hessian matrix of G(u;θ) where the derivatives

are taken with respect to θ.

Proof With the definition of J in Equation (10), we have

J(θ + ǫϕ) =

∫

ln [rν (G(u;θ + ǫϕ))]pd(u)du +

ν

∫

ln [1− rν (G(u;θ + ǫϕ))]pn(u)du.

Developing G(u;θ + ǫϕ) till terms of order ǫ2 yields

G(u;θ + ǫϕ) = G(u;θ)+ ǫϕT g(u;θ)+ ǫ2 1

2
ϕT HG(u;θ)ϕ+O(ǫ3).

Defining u1 and u2 as in the lemma, we obtain

lnrν (G(u;θ + ǫν)) = lnrν

(

G(u;θ)+ ǫu1 + ǫ2u2 +O(ǫ3)
)

.
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Using now the Taylor expansions in Equation (30) and Equation (31) for u = G(u;θ), and the

identities h(u;θ) = rν (G(u;θ)) as well as 1−h(u;θ) = r 1

ν

(−G(u;θ)) proves the lemma.

Lemma 10 If pn(u) 6= 0 whenever pd(u) 6= 0 and if

Iν =

∫

g(u)g(u)T Pν(u)pd(u)du

is full rank, where

Pν(u) =
νpn(u)

pd(u)+νpn(u)
,

g(u) = ∇θ lnpm(u;θ)|θ=θ⋆ ,

then

J(θ⋆) > J(θ⋆ +ϕ) ∀ϕ 6= 0.

Proof A necessary condition for optimality is that in the expansion of J(θ + ǫϕ) in Lemma 9, the

term of order ǫ is zero for any ϕ. This happens if

pd(u)(1−h(u;θ)) = νpn(u)h(u;θ),

that is, if
νpn(u)pd(u)

pm(u;θ)+νpn(u)
=

νpn(u)pm(u;θ)

pm(u;θ)+νpn(u)
,

where we have used Equation (28) and Equation (29) as in the proof for Lemma 8. The assumption

that ν > 0 and pd(.) = pm(.;θ⋆) implies together with the above equation that the term of order ǫ is

zero if θ = θ⋆.

The objective function J(θ⋆ + ǫϕ) becomes thus

J(θ⋆ + ǫϕ) = J(θ⋆)− ǫ2

2

∫

u2
1(1−h(u;θ⋆))h(u;θ⋆)

(pd(u)+νpn(u))du +O(ǫ3).

The terms h(u;θ⋆) and 1−h(u;θ⋆) are with Equation (27)

h(u;θ⋆) =
pd(u)

pd(u)+νpn(u)
, 1−h(u;θ⋆) =

νpn(u)

pd(u)+νpn(u)
.

The expression for J(θ⋆ + ǫϕ) becomes then

J(θ⋆ + ǫϕ) = J(θ⋆)− ǫ2

2
ϕT

[
∫

g(u)g(u)T Pν(u)pd(u)du

]

ϕ+O(ǫ3)

by inserting the definition of u1 evaluated at θ⋆, and making use of the definitions for Pν(u) and

g(u) in the statement of the lemma. The term of order ǫ2 defines the nature of the extremum at

θ⋆. If Iν is positive definite, J(θ⋆) is a maximum. As Iν is a positive semi-definite matrix, it is

positive definite if it is full rank.

Depending on the parameterization, there might be other values θ̌ which make the term of order

ǫ zero. Note that, by definition, J(θ) = J̃(lnpm(.;θ)) for any θ so that J(θ̌) = J̃(lnpm(.; θ̌)) and

J(θ⋆) = J̃(lnpm(.;θ⋆)) = J̃(lnpd). Now, by Theorem 1, J(θ̌) < J(θ⋆) for a suitable noise density

pn so that J attains a global maximum at θ⋆.
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A.3.2 PROOF OF THE THEOREM

The proof of consistency goes along the same lines as the proof of consistency for MLE (see for

example Wasserman, 2004, Chapter 9).

Proof To prove consistency, we have to show that given ǫ > 0, P (||θ̂T − θ⋆|| > ǫ) tends to zero as

Td → ∞. In what follows, it is sometimes useful to make the underlying probability space explicit

and write P (||θ̂T −θ⋆|| > ǫ) as P ({ω : ||θ̂T (ω)−θ⋆|| > ǫ}).

Since, by Lemma 10, J(θ⋆) is a global maximum, ||θ −θ⋆|| > ǫ implies that there is a δ(ǫ) such

that J(θ) < J(θ⋆)− δ(ǫ). Hence,

{ω : ||θ̂T (ω)−θ⋆|| > ǫ} ⊂ {ω : J(θ̂T (ω)) < J(θ⋆)− δ(ǫ)}

and thus

P (||θ̂T −θ⋆|| > ǫ) < P (J(θ̂T ) < J(θ⋆)− δ(ǫ)). (32)

Next, we investigate what happens to P (J(θ̂T ) < J(θ⋆)− δ(ǫ)) when Td goes to infinity. We have

J(θ⋆)−J(θ̂T ) = J(θ⋆)−JT (θ⋆)+JT (θ⋆)−J(θ̂T )

≤ J(θ⋆)−JT (θ⋆)+JT (θ̂T )−J(θ̂T )

as θ̂T has been defined as the argument which maximizes JT . Using the triangle inequality we

obtain further

|J(θ⋆)−J(θ̂T )| ≤ |J(θ⋆)−JT (θ⋆)|+ |JT (θ̂T )−J(θ̂T )|,

and

|J(θ⋆)−J(θ̂T )| ≤ 2sup
θ

|J(θ)−JT (θ)|,

from which follows that

P (|J(θ⋆)−J(θ̂T )| > δ(ǫ)) ≤ P (2sup
θ

|J(θ)−JT (θ)| > δ(ǫ)).

Using the assumption that JT (θ) converges in probability uniformly over θ to J(θ), we obtain

that for sufficiently large Td

P (|J(θ⋆)−J(θ̂T )| > δ(ǫ)) < ǫ2

for any ǫ2 > 0. As J(θ⋆) > J(θ) for any θ, we have thus the result that

P (J(θ̂T ) < J(θ⋆)− δ(ǫ)) < ǫ2

for any ǫ2 > 0. The probability P (J(θ̂T ) < J(θ⋆) − δ(ǫ)) can thus be made arbitrarily small by

choosing Td large enough. Combining this result with Equation (32), we conclude that P (||θ̂T −
θ⋆|| > ǫ) tends to zero as Td → ∞.

A.4 Proof of Theorem 3 (Asymptotic Normality)

For clarity of the proof, we state important stepping stones as lemmata.
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A.4.1 LEMMATA

In the following lemma, we use the definitions of the score function g(x;θ) and g(x) = g(x;θ⋆),

as well as the definition of the Hessian HG, which were given in Lemma 9 and Lemma 10.

Lemma 11

0 = ∇θJT (θ⋆)+HJ(θ⋆)(θ̂T −θ⋆)+O(||θ̂T −θ⋆||2)

where

∇θJT (θ⋆) =
1

Td

Td
∑

t=1

(1−h(xt;θ
⋆))g(xt)−ν

1

Tn

Tn
∑

t=1

h(yt;θ
⋆)g(yt),

HJ(θ⋆) =
1

Td

Td
∑

t=1

{

−(1−h(xt;θ
⋆))h(xt;θ

⋆)g(xt)g(xt)
T +

(1−h(xt;θ
⋆))HG(xt;θ

⋆)}−

ν
1

Tn

Tn
∑

t=1

{

(1−h(yt;θ
⋆))h(yt;θ

⋆)g(yt)g(yt)
T +

h(yt;θ
⋆)HG(yt;θ

⋆)} .

Proof Using the chain rule, it follows from the relations in Section A.1 that

∇θ lnh(xt;θ) = (1−h(xt;θ))g(xt;θ)

∇θ ln [1−h(yt;θ)] = −h(yt;θ)g(yt;θ).

The derivative ∇θJT (θ) of JT (θ), defined in Equation (9) as

JT (θ) =
1

Td

Td
∑

t=1

lnh(xt;θ)+ν
1

Tn

Tn
∑

t=1

ln [1−h(yt;θ)] ,

is

∇θJT (θ) =
1

Td

Td
∑

t=1

(1−h(xt;θ))g(x;θ)−ν
1

Tn

Tn
∑

t=1

h(yt;θ)g(yt;θ).

As θ̂T is the value of θ which maximizes JT (θ), we must have ∇θJT (θ̂T ) = 0. Doing a Taylor

series around θ̂T , we have

0 = ∇θJT (θ⋆)+HJ(θ⋆)(θ̂T −θ⋆)+O((||θ̂T −θ⋆||2).

Half of the lemma is proved when ∇θJT is evaluated at θ⋆. To prove the other half, we need to

calculate the Hessian HJ at θ⋆. The k-th row of the Hessian HJ(θ) is ∇θFk(θ)T where Fk is the

k-th element of the vector ∇θJT . Denoting by gk the k-th element of the score function g, we have

∇θFk(θ) =
1

Td

Td
∑

t=1

{−∇θh(xt;θ)gk(xt;θ)+(1−h(xt;θ))∇θgk(xt;θ)}

−ν
1

Tn

Tn
∑

t=1

{∇θh(yt;θ)gk(yt;θ)+h(yt;θ)∇θgk(xt;θ)} .
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Using the chain rule, it follows from the relations in Section A.1 that

∇θh(u;θ) = (1−h(u;θ))h(u;θ)g(u;θ).

Hence,

∇θFk(θ) =
1

Td

Td
∑

t=1

{−(1−h(xt;θ))h(xt;θ)g(xt;θ)gk(xt;θ)+

(1−h(xt;θ))∇θgk(xt;θ)}−

ν
1

Tn

Tn
∑

t=1

{(1−h(yt;θ))h(yt;θ)g(yt;θ)gk(yt;θ)+

h(yt;θ)∇θgk(yt;θ)} ,

which proves the lemma.

For the next lemma, recall the definition of Iν given in Lemma 10 or Theorem 2.

Lemma 12 HJ(θ⋆) converges in probability to −Iν as the sample size Td tends to infinity.

Proof As Tn = νTd, Tn also tends to infinity when Td tends to infinity. As the sample sizes become

arbitrarily large, the sample averages become integration over the corresponding densities so that

lim
Td→∞

HJ(θ⋆)
P→

∫

−(1−h(x;θ⋆))h(x;θ⋆)g(x)g(x)T pd(x)dx +
∫

(1−h(x;θ⋆))HG(x;θ⋆)pd(x)dx −
∫

(1−h(y;θ⋆))h(y;θ⋆)g(y)g(y)T νpn(y)dy−
∫

h(y;θ⋆)HG(y;θ⋆)νpn(y)dy.

Reordering of the terms and changing the names of the integration variables to u gives

lim
Td→∞

HJ(θ⋆)
P→ −

∫

(1−h(u;θ⋆))h(u;θ⋆)g(u)g(u)T (pd(u)+νpn(u))du +
∫

((1−h(u;θ⋆))pd(u)−h(u;θ⋆)νpn(u))HG(u;θ⋆)du.

With Equation (28) and Equation (29), we have

(1−h(u;θ⋆))pd(u) = h(u;θ⋆)νpn(u), (33)

(1−h(u;θ⋆))h(u;θ⋆)(pd(u)+νpn(u)) =
νpn(u)pd(u)

pd(u)+νpn(u)
.

Hence,

lim
Td→∞

HJ(θ⋆)
P→ −

∫

νpn(u)pd(u)

pd(u)+νpn(u)
g(u)g(u)T du,

which is −Iν .
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Lemma 13 The expectation E∇θJT (θ⋆) is zero.

Proof We calculate

E∇θJT (θ⋆) =
1

Td

Td
∑

t=1

Eg(xt)(1−h(xt;θ
⋆))−

ν
1

Tn

Tn
∑

t=1

Eg(yt)h(yt;θ
⋆)

= Eg(x)(1−h(x;θ⋆))−ν Eg(y)h(y;θ⋆)

=

∫

g(u)(1−h(u;θ⋆))pd(u)du −

ν

∫

g(u)h(u;θ⋆)pn(u)du,

where the second equality follows from the i.i.d. assumption of the sample X and Y , respectively.

Reordering leads to

E∇θJT (θ⋆) =

∫

g(u)((1−h(u;θ⋆))pd(u)−h(u;θ⋆)νpn(u))du,

which is, with Equation (33), zero.

Lemma 14 The variance Var∇θJT (θ⋆) is

1

Td

(

Iν −
(

1+
1

ν

)

E(Pνg)E(Pνg)T
)

,

where Iν , Pν and g were defined in Lemma 10, and the expectation is taken over the data-pdf pd.

Proof As the expectation E∇θJT (θ⋆) is zero, the variance is given by E∇θJT (θ⋆)∇θJT (θ⋆)T .

Multiplying out gives

Var∇θJT (θ⋆) =
1

T 2
d

E





Td
∑

t=1

(1−h(xt;θ
⋆))g(xt)

Td
∑

t=1

(1−h(xt;θ
⋆))g(xt)

T



−

1

T 2
d

E





Td
∑

t=1

(1−h(xt;θ
⋆))g(xt)

Tn
∑

t=1

h(yt;θ
⋆)g(yt)

T



−

1

T 2
d

E





Tn
∑

t=1

h(yt;θ
⋆)g(yt)

Td
∑

t=1

(1−h(xt;θ
⋆))g(xt)

T



+

1

T 2
d

E

[

Tn
∑

t=1

h(yt;θ
⋆)g(yt)

Tn
∑

t=1

h(yt;θ
⋆)g(yt)

T

]

.
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Since the samples are all independent from each other, we have

Var∇θJT (θ⋆) =
1

T 2
d

Td
∑

t=1

E
[

(1−h(xt;θ
⋆))2g(xt)g(xt)

T
]

+

1

T 2
d

Td
∑

t,τ=1

t6=τ

E[(1−h(xt;θ
⋆))g(xt)]E

[

(1−h(xτ ;θ⋆))g(xτ )T
]

−

1

T 2
d

Td
∑

t=1

Tn
∑

τ=1

E[(1−h(xt;θ
⋆))g(xt)]E

[

h(yτ ;θ⋆)g(yτ )T
]

−

1

T 2
d

Tn
∑

t=1

Td
∑

τ=1

E[h(yt;θ
⋆)g(yt)]E

[

(1−h(xτ ;θ⋆))g(xτ )T
]

+

1

T 2
d

Tn
∑

t,τ=1

t6=τ

E[h(yt;θ
⋆)g(yt)]E

[

h(yτ ;θ⋆)g(yτ )T
]

+

1

T 2
d

Tn
∑

t=1

E
[

h(yt;θ
⋆)2g(yt)g(yt)

T
]

.

As we assume that all xt, and also yt, are identically distributed, the above expression simplifies to

Var∇θJT (θ⋆) =
1

Td

∫

(1−h(u;θ⋆))2g(u)g(u)T pd(u)du +

T 2
d −Td

T 2
d

mxmT
x − TdTn

T 2
d

mxmT
y −

TdTn

T 2
d

mymT
x +

T 2
n −Tn

T 2
d

mymT
y +

Tn

T 2
d

∫

h(u;θ⋆)2g(u)g(u)T pn(u)du, (34)

where

mx =

∫

(1−h(u;θ⋆))g(u)pd(u)du,

my =

∫

h(u;θ⋆)g(u)pn(u)du.

Denoting by A the sum of the first and last line of Equation (34), we have

A =
1

Td

∫

g(u)g(u)T
[

(1−h(u;θ⋆))2pd(u)+h(u;θ⋆)2νpn(u)
]

du

since Tn = νTd. Now, Equation (27) and pm(u;θ⋆) = pd(u) imply that

(1−h(u;θ⋆))2pd(u)+h(u;θ⋆)2νpn(u) =
νpn(u)pd(u)

pd(u)+νpn(u)

= Pνpd(u),
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so that

A =
1

Td

∫

g(u)g(u)T Pνpd(u)du

=
1

Td
Iν .

Denote by B the second line of Equation (34). Rearranging the terms, we have

B = mx

∫

[(1−h(u;θ⋆))pd(u)−h(u;θ⋆)νpn(u)]g(u)T du −
1

Td
mxmT

x . (35)

Again, Equation (27) and pm(u;θ⋆) = pd(u) imply that

(1−h(u;θ⋆))pd(u) = h(u;θ⋆)νpn(u)

=
νpn(u)pd(u)

pd(u)+νpn(u)

= Pνpd(u),

so that the first line in Equation (35) is zero and

mx =

∫

Pνg(u)pd(u)du.

The term B is thus

B = − 1

Td

∫

Pνg(u)pd(u)du

∫

Pνg(u)T pd(u)du.

Denote by C the third line of Equation (34). Rearranging the terms, we have with Tn = νTd

C = − ν

Td
mymT

y +νmy(νmT
y −mT

x ).

The term νmy is with Equation (27) and pm(u;θ⋆) = pd(u)

νmy =

∫

Pνg(u)pd(u)du,

so that νmy = mx, and hence

C = − 1

νTd
(νmy)(νmT

y )

=
1

ν
B.

All in all, the variance Var∇θJT (θ⋆) is thus

Var∇θJT (θ⋆) = A+B +C

=
1

Td

(

Iν −
(

1+
1

ν

)

E(Pνg)E
(

PνgT
)

)

,

where

E(Pνg) =

∫

Pνg(u)pd(u)du.
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A.4.2 PROOF OF THE THEOREM

We are now ready to give the proof of Theorem 3.

Proof Up to terms of order O(||θ̂T −θ⋆||2), we have with Lemma 11

√

Td(θ̂T −θ⋆) = −H−1

J

√

Td∇θJT (θ⋆).

By Lemma 12, HJ
P→ −Iν for large sample sizes Td. Using Lemma 13 and Lemma 14, we see that

√

Td∇θJT (θ⋆)

converges in distribution to a normal distribution of mean zero and covariance matrix

Iν −
(

1+
1

ν

)

E(Pνg)E(Pνg)T ,

which implies that
√

Td(θ̂T − θ⋆) converges in distribution to a normal distribution of mean zero

and covariance matrix Σ,

Σ = I
−1
ν −

(

1+
1

ν

)

I
−1
ν E(Pνg)E(Pνg)T

I
−1
ν .

Appendix B. Calculations

The following sections contain calculations needed in Section 3.3 and Section 5.3.

B.1 Theory, Section 3.3: Asymptotic Variance for Orthogonal ICA Model

We calculate here the asymptotic covariance matrix of the estimation error for an orthogonal ICA

model when a Gaussian distribution is used as noise distribution in noise-contrastive estimation.

This result is used to make the predictions about the estimation error in Section 3.3. The calculations

show that the asymptotic variance does not depend on the mixing matrix but only on the dimension

of the data. Similar calculations can be used to show that this also holds for maximum likelihood

estimation.

A random variable x following an ICA model with orthogonal mixing matrix A = (a1 . . .an)
has the distribution

pd(x) =
1

Z

n
∏

i=1

f(aT
i x),

where Z is the partition function. By orthogonality of A,

pd(Ax) =
1

Z

n
∏

i=1

f(xi),

which equals ps(x) where ps is the distribution of the sources s of the ICA model. Also by or-

thogonality of A, the noise distribution pn with the same covariance as x is the standard normal

distribution. In particular, pn(Ax) = pn(x).

351



GUTMANN AND HYVÄRINEN

For the calculation of the asymptotic variance, we need to compute the matrix Iν which occurs

in Theorem 2, Iν =
∫

g(u)g(u)T Pν(u)pd(u)du . With the above data and noise distribution,

Pν(u) has the property that

Pν(Au) =
νpn(Au)

pd(Au)+νpn(Au)

=
νpn(u)

ps(u)+νpn(u)
.

Hence Pν(Au) does not depend on A. Below, we will denote Pν(Au) by P̃ν(u). For the ICA

model, the vector g(u) has the form

g(u) = (g1(u), . . . ,gn(u),gc(u))T

where gi(u) = ∇ai
lnpm(u) = f ′(aT

i u)u and gc(u) = ∂c lnpm(u) = 1. By orthogonality of A, we

have

gi(Au) = Af ′(ui)u.

We denote the vector f ′(ui)u by g̃i(u) so that gi(Au) = Ag̃i(u). Hence,

g(Au) = A(g̃1(u), . . . , g̃n(u),1)T

where A is a block-diagonal matrix with n matrices A on the diagonal and a single 1 in the (n+1)-

th slot. As a shorthand, we will denote g(Au) by Ag̃(u).

With these preliminaries, using the change of variables u = Av,

Iν =

∫

pd(u)g(u)g(u)T Pν(u)du

=

∫

ps(v)Ag̃(v)g̃(v)T
A

T P̃ν(v)dv

= AĨνA
T ,

where the matrix

Ĩν =

∫

ps(v)g̃(v)g̃(v)T P̃ν(v)dv

does not depend on the mixing matrix A but only on the distribution of the sources s, the noise

distribution pn, and ν. Moreover, by orthogonality of A, the inverse of Iν is given by

I
−1
ν = AĨ

−1

ν A
T .

The same reasoning shows that

∫

pd(u)Pν(u)g(u)du = A

∫

ps(v)g̃(v)P̃ν(v)dv,

which we will denote below by Am̃. Again, m̃ does not depend on A. Hence, the asymptotic

covariance matrix Σ,

Σ = I
−1
ν −

(

1+
1

ν

)

I
−1
ν E(Pνg)E(Pνg)T

I
−1
ν ,
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in Theorem 3 is for the ICA model with orthogonal mixing matrix A given by

ΣortICA = A

[

Ĩ
−1

ν −
(

1+
1

ν

)

Ĩ
−1

ν m̃m̃T
Ĩ

−1

ν

]

A
T .

The block matrix A is orthogonal since A is orthogonal. The asymptotic variance, that is the trace

of ΣortICA, does hence not depend on A.

B.2 Natural Images, Section 5.3: Optimal Stimuli

We show here that the optimal stimulus, namely the image which yields the largest feature output for

feature w while satisfying the sphere constraints in Equation (22), is proportional to V−(w−〈w〉).

The term 〈w〉 denotes the average value of the elements in the vector w.

Each coordinate vector x defines an image i = V−x, see Equation (23). The optimal image is

thus i∗ = V−x∗ where x∗ is the solution to the optimization problem

max
x

wT x

subject to
∑n

k=1 x(k) = 0 and 1/(n−1)
∑n

k=1 x(k)2 = 1, which are the constraints in Equation (22).

The Lagrangian associated with this constrained optimization problem is

L(x,λ,ω) = wT x −λ

(

1

n−1

n
∑

k=1

x(k)2 −1

)

−ω
n
∑

k=1

x(k)

The maximizing x∗ is x∗ = (n−1)/(2λ)(w−ω). Taking ω such that the constraint
∑n

k=1 x∗(k) = 0
is fulfilled gives

x∗ =
n−1

2λ
(w −〈w〉).

Hence, the optimal image i∗ is proportional to V−(w −〈w〉).

Note that if we had a norm constraint on i instead of the constraints in Equation (22), the

Lagrangian would be

L̃(x,λ) = wT x −λ

(

n
∑

k=1

x(k)2dk −1

)

where we have used that iT i = xT V−T
V−x = xT Dx. The n × n matrix D is diagonal with the

eigenvalue dk of the covariance matrix of the natural image patches as k-th element. The opti-

mal x would thus be x̃∗ = 1/(2λ)D−1w so that the optimal image ĩ∗ would be proportional to

V−D−1w = ED−1/2w = VT w, for which we have used the notation w̃ in Section 5.3. Since the

eigenvalues dk fall off with the spatial frequency f (like 1/f2, see for example Hyvärinen et al.,

2009, Chapter 5.6) the norm constraint on i punishes low frequencies more heavily than the con-

straints in Equation (22). As a consequence, the w̃, which are shown in Figure 11(a), are tuned to

high frequencies while the optimal stimuli i∗, shown in Figure 11(b), contain more low frequency

components.

Appendix C. Further Simulation Results

The following sections contain additional simulation results related to Section 4 and Section 5.
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Figure 18: Trade-off between statistical and computational performance for contrastive divergence

(CD).While the algorithms were running, measurements of the estimation error at a

given time were made. The time variable indicates thus the time since the algorithm

was started. Note the difference to Figure 6 where the time indicates the time-till-

convergence. The plots show the median performance over the 100 estimation problems.

CDx y refers to contrastive divergence with x Monte Carlo steps, each using y leapfrog

steps.

C.1 Trade-Off, Section 4: Comparison of the Different Settings of Contrastive and Persistent

Contrastive Divergence

We compare here the different settings of contrastive and persistent contrastive divergence. Since

the two estimations methods do not have an objective function, and given the randomness that is

introduced by the minibatches, choosing a reliable stopping criterion is difficult. Hence, we did not

impose any stopping criterion but the maximal number of iterations. The algorithms had always

converged before this maximal number of iterations was reached, in the sense that the estimation

error did not visibly decrease any more. In real applications, where the true parameters are not

known, assessing convergence based on the estimation error is, however, clearly not possible.

C.1.1 RESULTS

Figure 18 shows that for contrastive divergence, using 20 leapfrog steps gives better results than

using only three leapfrog steps. A trade-off between computation time and accuracy is visible:

running the Markov chains for three Markov steps (CD3 20, in dark green) yields more accurate

estimates than running them for one Markov step (CD1 20, in cyan) but the computations take also

longer.

Figure 19 shows that for the tested schemes of persistent contrastive divergence, using one

Markov step together with 40 leapfrog steps (PCD1 40, in cyan) is the preferred choice for Laplacian

sources; for logistic sources, it is PCD1 20 (shown in light green).
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Figure 19: Trade-off between statistical and computational performance for persistent contrastive

divergence (PCD). The results are plotted in the same way as for contrastive divergence

in Figure 18.

C.2 Natural Images, Section 5: Reducing Computation Time in the Optimization

The objective function JT in Equation (8) is defined through an sample average. In an iterative

optimization scheme, not all the data may be used to compute the average. The reason for using a

smaller subset of the data can lie in memory considerations or in the desire to speed up the compu-

tations. We analyze here what statistical cost (reduction of estimation accuracy) such a optimization

scheme implies. Furthermore, we show that optimizing JT for increasingly larger values of ν re-

duces computation time without affecting estimation accuracy. The presented results were obtained

by using the the nonlinear conjugate gradient algorithm of Rasmussen (2006) for the optimization.

As working example, we consider the unnormalized Gaussian distribution of Section 3.1 for

n = 40. Estimating the precision matrix and the normalizing parameter means estimating 821 pa-

rameters. We use Td = 50000, and ν = 10. We assume further that, for whatever reason, it is

not feasible to work with all the data points at the same time but only with T̃d = 25000 samples

(although for the present example, it is of course possible to use all the data).

C.2.1 RESULTS

The lower black curve in Figure 20(a) shows the performance for the hypothetical situation where

we could use all the data. The mean squared error (MSE) reaches the level which Corollary 4

predicts (dashed horizontal line). This is the smallest error which can be obtained with noise-

contrastive estimation for ν = 10 and Td = 50000. The upper black curve in the same figure shows

the MSE when only a fixed subset with T̃d = 25000 data points is used in the optimization. This

clearly leads to less precise estimates. The performance can, however, be improved by randomly

choosing a new subset of size T̃d after two updates of the parameters (red curve). The improved

performance comes, however, at the cost of slowing down convergence. If the resampling of the
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Figure 20: Analysis of the optimization strategy in Section 5. See Section C.2 for details.

subset is switched at a lower rate, for example, after 10 updates, the speed of convergence stays the

same but the accuracy does not improve (blue curve).

Figure 20(b) shows the proposed optimization strategy, which we also use in Section 5 for the

simulations with natural image data: We iteratively optimize JT for increasingly larger values of ν.

Whenever we increase ν to ν + 1, we also take a new subset. When ν reaches its maximal value,

which is here ν = 10, we switch the subset after two parameter updates. For the other values of

ν, we switch the subsets at a lower rate of 50 iterations. The results for this optimization strategy

are shown in green (curve labelled “iterative optim”). It speeds up convergence while achieving the

same precision as in the optimization with resampled subsets of size T̃d alone (red curve in Figures

(a) and (b)). By resampling new subsets, all the data are actually used in the optimization. However,

the estimation accuracy is clearly worse than when all the data are used at once (as in the lower black

curve). Hence, there is room for improvement in the way the optimization is performed.

C.3 Natural Images, Section 5.4: Details for the Spline-Based One-Layer Model

The one-layer model that we consider here is

lnpm(x;θ) =
n
∑

k=1

f(wT
k x;a1,a2, . . .)+ c,

where the nonlinearity f is a cubic spline. While the two-layer models in Section 5.3 and Section 5.4

were hardcoded to assign the same value to x and −x, here, no symmetry assumption is made. The

parameters are the feature weights wk ∈ R
n, c ∈ R for the normalization of the pdf, as well as

the ai ∈ R for the parameterization of the nonlinearity f . For the modeling of the nonlinearity, its

domain needs to be defined. Its domain is related to the range of its arguments wT
k x. To avoid

ambiguities in the model specification, we constrain the vectors as in Equation (26). Defining f as

a cubic spline on the whole real line is impossible since the number of parameters ai would become

intractable. With the constraint in Equation (26), it is enough to define f only on the interval

[−10 10] as a cubic spline. For that, we use a knot sequence with an equal spacing of 0.1. Outside
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the interval, we define f to stay constant. With these specifications, we can write f in terms of

B-spline basis functions with 203 coefficients a1, . . . ,a203.

C.3.1 RESULTS

The learned features are “Gabor-like” (results not shown). We observed, however, a smaller number

of feature detectors that are tuned to low frequencies. Figure 16(a) in Section 5.4 shows the learned

nonlinearity f (black solid curve) and the random initialization (blue dashed curve). The dashed

vertical lines indicate the interval where 99% of the feature outputs occur for natural image input.

The learned nonlinearity should thus only be considered valid on that interval. The nonlinearity has

two striking properties: First, it is an even function. Note that no such constraint was imposed, so

the symmetry of the nonlinearity is due to the symmetry in the natural images. This result validates

the symmetry assumption inherent in the two-layer models. It also updates a previous result of ours

where we have searched for f in a more restrictive space of functions and no symmetric nonlinearity

emerged (Gutmann and Hyvärinen, 2009). Second, f is not monotonic. The shape of f is closely

related to the sparsity of the feature outputs wT
k x. Since the absolute values of the feature outputs

are often very large or very small in natural images, f tends to map natural images to larger numbers

than the noise input. This means that the model assigns more often a higher probability density to

natural images than to the noise.

C.4 Natural Images, Section 5.5: Refinement of the Thresholding Model

We are taking here a simple approach to the estimation of a two-layer model with spline nonlinearity

f : We leave the feature extraction layers that were obtained for the thresholding model in Section 5.3

fixed, and learn only the cubic spline f . The model is thus

lnpm(x;θ) =
n
∑

k=1

f(yk;a1,a2, . . .)+ c, yk =
n
∑

i=1

Qki(w
T
i x)2,

where the vector θ contains the parameters ai for f and the normalizing parameter c. The knots of

the spline are set to have an equal spacing of 0.1 on the interval [0 20]. Outside that interval, we

define f to stay constant. With that specification, we can write f in terms of 203 B-spline basis

functions. The parameter vector θ ∈ R
204 contains then the 203 coefficients for the basis functions

and the parameter c.

C.4.1 RESULTS

Figure 21(a) shows the learned nonlinearity (black solid curve) and its random initialization (blue

dashed curve). The dashed vertical line around y = 4 indicates the border of validity of the nonlin-

earity since 99% of the yk fall, for natural image input, to the left of the dashed line. The salient

property of the emerging nonlinearity is the “dip” after zero which makes f non-monotonic, as the

nonlinearity which emerged in Section 5.4. Figure 21(b) shows the effective nonlinearities fk when

the different scales of the second layer outputs yk and the normalizing parameter c are taken into

account, as we have done in Figure 14(a). We calculated the scale σk by taking the average value

of yk over the natural images. The different scales σk then define different nonlinearities. Incorpo-

rating the normalizing parameter c into the nonlinearity, we obtain the set of effective nonlinearities

fk(y),

fk(y) = f(σky)+ c/n, k = 1, . . .n. (36)
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Figure 21: Refinement of the thresholding model of Section 5.3. Only the nonlinearity was learned,

the features were kept fixed. The features are shown in Figures 11 to 13. (a) Learned

spline (black solid curve) and the initialization (blue dashed curve). The dashed vertical

line indicates the border of validity of the learned nonlinearity since 99% of the yk fall,

for natural image input, to the left of it. (b) The different scales of the yk give rise to a

set of effective nonlinearities fk, as defined in Equation (36). Nonlinearities acting on

low-frequency feature detectors are shown in green (dashed lines), the others in black

(solid lines), as in Figure 14(a).

For the nonlinearities fk, the dip occurs between zero and two. Inspection of Figure 14(b) shows

that the optimal nonlinearities fk take, unlike the thresholding nonlinearities, the distribution of the

second-layer outputs yk fully into account. The region where the dip occurs is just the region where

noise input is more likely than natural image input. This means that the model is assigning more

often a higher probability density to natural images than to the noise.

C.5 Natural Images, Section 5.5: Samples from the Different Models

In Figure 17, we compared images which are considered likely by the different models. In Figure 22,

we show samples that we drew from the models using Markov chains (Hamiltonian Monte Carlo).

Since the models are defined on a sphere, we constrained the Hamilitonian dynamics by projecting

the states after each leapfrog step back onto the sphere. The number of leapfrog steps was set to 100,

and the rejection rate to 0.35 (Neal, 2010, Section 4.4, p.30). The top row shows the most likely

samples while the bottom row show the least likely ones. The least likely samples appear similar

for all models. For the more probable ones, however, the two-layer models lead to more structured

samples than the one-layer models.
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LaplacianThresholding Spline

(a) One-layer models

Refinement SplineThresholding

(b) Two-layer models

Figure 22: Sampling from the learned models of natural images. Figure (a) shows samples from the

one-layer models, Figure (b) shows samples from the two-layer models. The samples

are sorted so that the top ones are the most likely ones while those at the bottom are the

least probable ones. See caption of Table 1 in Section 5.5 for information on the models

used. Samples of the training data and the noise are shown in Figure 9 in Section 5.1.
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