
 The Open Acoustics Journal, 2008, 1, 1-14 1 

 

 1874-8376/08 2008 Bentham Science Publishers Ltd. 

Noise Diagnostics of Scooter Faults by Using MPEG-7 Audio Features and 
Intelligent Classification Techniques 

Mingsian R. Bai
*
, Meng-Chun Chen and Jian-Da Wu 

Department of Mechanical Engineering, National Chiao-Tung University, 1001 Ta-Hsueh Road, Hsin-Chu 300, Taiwan 

Abstract: A scooter fault diagnostic system that makes use of feature extraction and intelligent classification algorithms 

is presented in this paper. Sound features based on MPEG (Moving Picture Experts Group)-7 coding standard and several 

other features in the time and frequency domains are extracted from noise data and preprocessed prior to classification. 

Classification algorithms including the Nearest Neighbor Rule (NNR), the Artificial Neural Networks (ANN), the Fuzzy 

Neural Networks (FNN), and the Hidden Markov Models (HMM) are employed to identify and classify scooter noise. A 

training phase is required to establish a feature space template, followed by a test phase in which the audio features of the 

test data are calculated and matched to the feature space template. The proposed techniques were applied to classify noise 

data due to various kinds of scooter fault, such as belt damage, pulley damage, etc. The results reveal that the performance 

of methods is satisfactory, while varying slightly in performance with the algorithm and the type of noise used in the tests. 

1. INTRODUCTION 

 Taiwan is one of the major scooter manufacturers in the 

world. Fault diagnosis is an important element in the manu-

facturing and maintenance process of scooters. In the past, 

the diagnosis of scooter fault generally relied on well-trained 

technicians. However, this experience-oriented approach is 

not only inefficient but also prone to human errors and in-

consistencies. It is highly desirable to identify and classify 

scooter faults in a systematic, automatic and reliable fashion, 

using machines instead of humans. To this end, this paper 

proposes a noise diagnostic system on the basis of sound 

features and intelligent classification techniques for scooter 

faults. 

 Fault diagnostics for machines can be largely divided 

into two categories: the model-based methods and the signal-

based methods. For example, Bai et al. [1] developed an on-

line fault detection and isolation technique for the diagnosis 

of rotating machinery. The system consists of a signal-based 

feature generation module and a model-based fault inference 

module. Bai et al. [2] also proposed an order tracking system 

for the diagnosis of rotating machinery. The recursive least 

squares (RLS) algorithm and the Kalman filter are exploited 

to extract the order amplitudes of vibration signals as fea-

tures, followed by fault classification using the fuzzy state 

inference module. On the other hand, Jia et al. [3] reported a 

noise diagnosis technique based on wavelet and fuzzy C-

clusters for connecting rod bearing fault. The system is ca-

pable of classifying four kinds of bearing fault. Wavelet 

packet proved to be robust to background noise while ex-

tracting fault characteristics. Wang et al. [4] suggested a 

method to diagnose misfire of internal combustion engines 

based on singular value decomposition (SVD) and artificial 

neural networks (ANN). 
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 Extraction of features is an important step prior to a clas-

sification system. Since we are mainly dealing with noises 

due to various types of scooter faults, sound features are de-

rived from the measured noises. In this research, the sound 

features are based on the MPEG (Moving Picture Experts 

Group)-7 standard [5]. Although MPEG-7 was originally 

intended for audio signals, we found it useful to use 11 of the 

MPEG-7 descriptors for describing noise content. Slightly 

different in purpose, Crysandt [6] used MPEG-7 descriptors 

to classify music of multimedia contents. Peeters [7] con-

ducted a comprehensive survey on audio features for sound 

description in the Content-based Unified Interfaces and De-

scriptors for Audio/music Databases available Online (CUI-

DADO) project. Some of the noise descriptors in this re-

search are also derived from his work. Nineteen auditory 

features including Audio Spectrum Centroid, Linear Predic-

tive Coding (LPC) adopted in this work are summarized in 

APPENDIX. 

 Given the abundant set of sound features, one needs to 

choose only features that are most effective to the problem at 

hand. There are ways for one to select features according to 

the nature of problem. Xavier et al. [8-10] suggested several 

pre-selection techniques including Discriminant Analysis 

(DA) [8], Mutual Information (MI), and Gradual Descriptor 

Elimination (GDE) [9-10]. Zongker et al. [11] evaluated the 

quality of feature subsets and compared their computational 

requirements. The Sequential Forward Selection (SFS) algo-

rithm was found to be quite effective for selecting features. 

 There are also plenty of choices for classification tech-

niques. In the present work, the Nearest Neighbor Rule 

(NNR) [12], the Artificial Neural Network (ANN) [13, 14], 

the Fuzzy Neural Network (FNN) [15-17], and the Hidden 

Markov Model (HMM) [18-20] were employed to classify 

the noises due to scooter faults. These methods have been 

extensively used in a variety of problems such as music clas-

sification [14], continuous Mandarin word recognition [19], 

and so forth. These methods achieve high detection rates by 

forming highly nonlinear decision boundaries in the feature 
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space. Each of these algorithms will be reviewed in the fol-

lowing sections in more detail. The overall architecture of 

the proposed diagnostic system is depicted in Fig. (2). Ex-

periments were conducted for noise data measured on scoot-

ers to validate the proposed intelligent diagnostic system. 

Fault types such as belt damage and pulley damage were 

examined. 

2. FEATURE EXTRACTION 

 Sound features generally fall into three categories: spec-

tral features, temporal features and statistical features. Nine-

teen features are used in this study (see APPENDIX). The 

majority of the sound features are taken from MPEG-7 [5] 

which is an ISO/IEC standard for describing the multimedia 

content. Seventeen descriptors in MPEG-7 can be catego-

rized into six groups: Timbral Temporal, Timbral Spectral, 

Basic Spectral, Basic, Signal Parameters, and Spectral Basis, 

as shown in Fig. (1). Only the first three groups are used in 

this research. Among the Timbral Temporal descriptors, the 

Log Attack Time (LAT) characterizes the attack of a sound, 

or the time it takes for the signal to rise from silence to the 

maximum amplitude. It signifies the difference between a 

sharply changed sound and a smoothly changed sound. 

  
LAT = log

10
(T

1
T

0
),             (1) 

where 
  
T

0
 is the time when the signal starts and 

  
T

1
 is the time 

when it reaches its maximum. 

 The Temporal Centroid (TC) characterizes the signal 

envelope, signifying where in time the energy of a signal 

concentrates. It is defined as follows: 

  

TC =

n

SR
SE(n)

n=1

length(SE)

SE(n)
n=1

length(SE)
,             (2) 

where SE(n) is the signal envelope at time instant n, calcu-

lated using the Hilbert Transform [23] and  SR  is the sam-

pling rate. 

 The Basic Spectral descriptors are obtained from the 

time-frequency analysis of the audio signal. The Audio 

Spectrum Envelope (ASE) describes the short-term power 

spectrum of an audio signal as a time-series of spectra on a 

logarithmic frequency scale in 1/4 octave resolution. It may 

be used to display a spectrogram, and is defined as follows: 

  
ASE(k) =

A(k)
2

lw NFFT
k =

1

16
,
1

8
,
1

4
,
1

2
,1,2,4,8  kHz         (3) 

where NFFT is the FFT size, lw is the window length, 
  
A(k)  

is the magnitude of a component in the frequency range, 62.5 

Hz and 8 kHz. 

 The Audio Spectrum Centroid (ASC) calculates the cen-

ter of gravity of the log-frequency power spectrum. It indi-

 

Fig. (1). The MPEG-7 audio framework. The audio framework consists of seventeen low level descriptors of temporal and spectral audio 
features that can be divided into six groups. 
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cates whether the spectral content of the signal dominates in 

high or low frequencies. 

  

ASC =

log
2
(

f (k)

1000
)P(k)

k

P(k)
k

,            (4) 

where 
  
P(k)  is the power spectrum magnitude associated 

with the frequency 
  
f (k)  in Hz. 

 The Audio Spectrum Spread (ASS) is the second moment 

of the log-frequency power spectrum, indicating the spread 

of the power spectrum with respect to the spectral centroid. 

  

ASS=

((log
2
(

f (k)

1000
) ASC)2 P(k))

k

P(k)
k

          (5) 

 The Audio Spectrum Flatness (ASF) signifies the flatness 

of the signal spectrum. 

  

ASF =

P(k)
k=kl (b)

kh(b)

kh(b) kl (b)+1

1

kh(b) kl(b) +1
P(k)

k=kl (b)

kh(b)
,          (6) 

where 
  
kl(b)  and 

  
kh(b)  are the lower and higher edges of 

the band b, respectively. An ASF value much greater than 

unity indicates the presence of tonal components. 

 The Timbral Spectral descriptors describe the spectral 

characteristics of sounds in a linear-frequency scale. The 

Spectral Centroid (SC) is the power-weighted average of the 

frequency bins in the linear power spectrum. 

  

SC =

ISC(i)
i=1

N
f

N
f

,              (7) 

where 

 

Fig. (2). The general architecture of the noise diagnostic system with feature extraction and classification. 
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ISC(i) =

f
i
(k)P

i
(k)

k=1

length(S )

P
i
(k)

h=1

length(S )
,            (8) 

where 
 
N

f
 is the number of frames and  ISC (i) is the instan-

taneous spectral centroid of the ith frame 

 The Harmonic Spectral Centroid (HSC) is the amplitude-

weighted mean of the harmonic peaks of a spectrum. 

  

HSC =

IHSC(i)
i=1

N
f

N
f

,             (9) 

where 

  

IHSC(i) =

f
i
(h)A

i
(h)

h=1

N
h

A
i
(h)

h=1

N
h

,           (10) 

where 
 
N

h
 is the number of harmonic peaks, i is the frame 

index, 
  
f

i
(h)  is the frequency in Hz of the hth harmonic, 

  
A

i
(h)  is the magnitude of the hth harmonic, and  IHSC (i) is 

the instantaneous harmonic spectral centroid of the ith frame. 

 The Harmonic Spectral Deviation (HSD) indicates the 

spectral deviation of the log-amplitude components from a 

global spectral envelope. 

  

HSD =

IHSD(i)
i=1

N
f

N
f

,           (11) 

  

IHSD(i) =

log
10

( A
i
(h)) log

10
(SE

i
(h))

h=1

N
h

log
10

( A
i
(h))

h=1

N
h

,         (12) 

  

SE
i
(h) =

A
i
(h) + A

i
(h +1)

2
when h = 1

A
i
(h + l)

l= 1

1

3
when h [2, N

h
1]

A
i
(h 1) + A

i
(h)

2
when h = N

h

       (13) 

where 
  
SE

i
(h)  is the hth harmonic spectral envelope and 

IHSD(i) is the instantaneous harmonic spectral deviation of 

the ith frame. 

 The Harmonic Spectral Spread (HSS) is the amplitude-

weighted standard deviation of the harmonic peaks of the 

spectrum, normalized by the instantaneous Harmonic Spec-

tral Centroid (IHSC). 

  

HSS =

IHSS(i)
i=1

N
f

N
f

,            (14) 

  

IHSS(i) =
1

IHSC(i)

A
i

2 (h) ( f
i
(h) IHSC(i))2

h=1

N
h

A
i

2 (h)
h=1

N
h

,       (15) 

where 
  
IHSS(i)  is the instantaneous harmonic spectral spread 

of the ith frame and IHSC( )i  is defined in Eq.(10). 

 The Harmonic Spectral Variation (HSV) is the normal-

ized correlation between the amplitudes of the harmonic 

peaks of two adjacent frames. 

  

HSV =

IHSV(i)
i=2

N
f

N
f

1
,           (16) 

  

IHSV(i) = 1

A
i 1

(h) A
i
(h)

h=1

N
h

A
i 1

2 (h)
h=1

N
h

A
i

2 (h)
h=1

N
h

,         (17) 

where 
  
A

i 1
(h)  represents the magnitude of the hth harmonic 

peak of the previous frame, and IHSV(i) is the instantaneous 

harmonic spectral variation of the ith frame. 

 In addition to the MPEG-7 descriptors, we also use other 

types of feature including the LPC and MFCC. LPC [21] 

derives the coefficients of a forward linear predictor using 

the Levinson-Durbin recursion algorithm: 

   
x̂(n) = a(2)x(n 1) a(3)x(n 2) a( p +1)x(n p),   (18) 

where 
  
x̂(n)  is the estimated signal, 

 
p  is the order of the 

prediction filter, 
   
a(2), , a( p +1)  are the coefficients of the 

predictor, and 
  
x(n)  is the input signal. 

 MFCC [22] are cepstrum coefficients derived from the 

discrete cosine transform (DCT) based on the critical 

bandwidths of human hearing. These critical bandwidths are 

100 Hz below 1 kHz, but rise nearly exponentially above 1 

kHz. Human perception of sound can be regarded as a 

nonuniform filter bank, with fine resolution at low 

frequencies and coarse resolution at high frequencies, 

arranged according to the Mel-scale frequency scale. The 

relationship between the Mel-scale frequency and linear fre-

quency is given by 

  
mel _ f (k) = 2595* log

10
(1+

f (k)

700
),         (19) 

where 
  
mel _ f (k)  is the Mel-scale frequency and 

  
f (k)  is 

the linear frequency. The computation of MFCC starts with 

calculating the energy 
  
E(m)  of the mth band 
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E(m) = 10 log X (k)
2

B
m

(k)
k

,        (20) 

where X(k) is the FFT of the signal x(n), Bm(k) is the triangu-

lar weighting function [22] of the mth band and the summa-

tion is taken only for the frequency components in the mth 

band. After that, the energy 
  
E(m)  is converted to the Que-

frency domain by using discrete cosine transform (DCT) to 

result in the Mel-scale cepstrum coefficients: 

  

MFCC(n) =
1

M
cos

n(m 0.5)

M
m=1

20

E(m)         (21) 

 Finally, Sound Pressure Level (SPL) in dB is also em-

ployed as one of the sound features in the work. Zero-

crossing rate measures the rate of sign-changes in a signal. 

Pitch represents the fundamental frequency of the spectrum. 

Statistical descriptors including Autocorrelation, Skewness 

and Kurtosis are also included in the feature set. Skewness is 

a measure of asymmetry of data about the mean and is de-

fined as 

  
SK =

E (x μ)3{ }
3

,          (22) 

where E{} denotes the expectation operation, μ  and  are 

the mean and the standard deviation, respectively, of the 

time-domain data x. Kurtosis is a measure of how outlier-

prone a distribution is. The kurtosis K of a random variable x 

is defined as 

  
K =

E (x μ)4{ }
4

.           (23) 

 In feature extraction, normalization is usually necessary 

to ensure numerical performance of the ensuing classifica-

tion process. The features calculated using the aforemen-

tioned procedures are normalized as follows: 

Step 1. Divide the features into several parts according to 

the extraction methods. 

Step 2. Find the minimum and the maximum in each data 

set. 

Step 3. Rescale each data so that the maximum of each 

data is 1 and the minimum of each data is -1. That 

is, the features fall into the full range within the 

interval 
 
[ 1,1] . 

 In order to simplify the processing, it is usually desirable 

to reduce the feature set to its minimum. To this end, the 

following Sequential Forward Selection (SFS) procedure can 

be used: 

Step 1. Find the single feature that yields the highest suc-

cessful detection rate. 

Step 2. Keep the already-selected features and try to iden-

tify a newly added feature that yields the highest 

successful detection rate. 

Step 3. Repeat step 2 until the desired number of features 

has been selected or until there is no further im-

provement in the successful detection rate. 

3. CLASSIFICATION METHODS 

 In this section, a review of several algorithms used for 

the present noise classification problem is given. Only the 

concepts relevant to the current discussion are addressed. 

A. Nearest Neighbor Rule 

 NNR [12] is a straightforward approach to the problem of 

classification. In this method, we simply find the closest 

object from the training set. The thus found object is 

associated with the same class as that training data. The 

Euclidean distance is used as the distance measure: 

  
dist(x, x

train
) = x x

train

2

,            (24) 

where 
 
x

train
 is the training data and  x  is the object being 

classified. The flowchart of NNR is shown in Fig. (3). 

B. Artificial Neural Networks 

 ANN [13] is an important technique in artificial intelli-

gence that mimics human’s learning process. Biological 

learning involves adjustments to the synaptic connections 

that exist between the neurons, as shown in Fig. (4). The 

relationship of the input and output of a neuron can be repre-

sented by the following equation: 

  

y = f (net) = f ( w
n
x

n
+

n=1

N
x

),          (25) 

where 
 
y  is the output, 

 
x

n
 is the input, 

 
w

n
 is the weighting 

function, 
 
N

x
 is the number of input nodes,  is the bias, 

and 
   
f (i)  is the activation function which is usually a non-

linear function. In this paper, the following hyperbolic tan-

gent function is used: 

  
f x( ) = tanh x( ).   (26) 

 

Fig. (3). The idea underlying the NNR algorithm. The distance 
measure is the Euclidean norm. 
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Fig. (4). The schematic structure of a neuron. Learning process in 

ANN involves adjustments of weights assigned to the connections 
between the neurons. 

 Multilayer feedforward networks are widely used which 

can be shown as Fig. (5). Extending the above input and out-

put relationship of the neuron to the multilayer feedforward 

network leads to the following expression: 

  

y
o
= f

o
w

oh
g

h
h=1

N
z

v
hi

x
i
+

vh
i=1

N
x

+
wo

,          (27) 

where 
 
x

i
 is the input to the input layer, 

 
y

o
 is the output 

from the output layer, 
 
v

hi
 is the weighting function between 

the input layer and the hidden layer, 
 
w

oh
 is the weighting 

function between the hidden layer and the output layer, 
 
N

x
 

is the number of neurons in the input layer, 
 
N

Z
 is the num-

ber of neurons in the hidden layer, 
 
N

y
 is the number of neu-

rons in the output layer, 
 vh

 is the bias of the hidden layer, 

 wo
 is the bias of the output layer, 

  
g

h
i( )  is the activation 

function of the hidden layer, and 
  
f

o
i( )  is the activation 

function of the output layer. 

 

Fig. (5). The structure of a multilayer feedforward ANN. The ANN 

used in this paper has three layers including the input layer, the 

hidden layer and the output layer. 

 The features of signals are used as the inputs to the net-

work. While training the network, the outputs are compared 

to the targets of the training set. The error between the out-

puts and the targets is “back propagated” to the network and 

updates the weightings functions of the nodes in the hidden 

and output layers. The procedure of back propagation algo-

rithm is given as follows: 

Step 1. Decide the network structure and number of neu-

rons. 

Step 2. Initialize the network weighting functions. 

Step 3. Provide input targets of training set. 

Step 4. Calculate the network outputs. 

Step 5. Calculate the cost function based on the current 

weighting functions. 

Step 6. Update the weighting functions by using the gra-

dient descent method. 

Step 7. Repeat step 3 to step 6 until the network con-

verges. 

C. Fuzzy Neural Networks 

 FNN [17] is a technique that combines fuzzy reasoning 

with ANN. With reference to Fig. (6), the FNN adopted in 

this paper has five layers: the input layer, the membership 

layer, the rule layer, the hidden layer, and the output layer. 

 

Fig. (6). The structure of the FNN. The FNN used in this paper has 

five layers including the input layer, the membership layer, the rule 
layer, the hidden layer and the output layer. 

 The features of signals are used as the inputs to the net-

work. The second layer is the membership function that con-

nects the fuzzy logics with the neural networks. In the paper, 

the Gaussian function is selected as the membership func-

tion: 

  
F

i
= e

( x
i
μ

0
)2

2
0

2

,       

  (28) 

where 
 
μ

0
 and 

 0
 are the mean and the standard deviation, 

respectively, of the Gaussian function, and  x  is the feature 

of the signal. The fuzzy reasoning rule is established with the 

following format: 

 

θ

net ( )netf y
nx nw

1x

1w

xNx
xNw

Μ

Μ

∑
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N
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N
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If 
  
x

1
 is 

  
F

1
 and …and 

 
x

Nx
 is 

 
F

Nx
 then 

  
y

1
 is 

  
w

11
 and …and 

 
y

Ny
 is 

 
w

NyNz
,           (29) 

where 
  
x

1
,…,

 
x

Nx
 are the features of the signal, 

  
F

1
,…,

 
F

Nx
 

are the associated membership functions, 
  
y

1
,…,

 
y

Ny
 are the 

outputs of the FNN, and 
  
w

11
,…,

 
w

NyNz
 are the weights of the 

neural network. 

 The third layer is the rule layer and can be expressed as 

follows: 

 
r = F

i
,           (30) 

where  r  is the truth value of the rule. 

 The third layer of the FNN is the input layer of the neural 

network. We use the preceding ANN to train the FNN. The 

Centroid method is used to obtain the output of the FNN as 

follows: 

  

y
o
= f

o
w

oh
g

h
h=1

N
z

v
hi

r
i
+

vh
i=1

N
x

+
wo

        (31) 

D. Hidden Markov Models 

 HMM [18] is a very powerful technique for modeling the 

speech signals and therefore is widely used in speech recog-

nition. An HMM is characterized by five parameters. The 

first and the second parameters are the number of states in 

the model ( N ) and the number of distinct observation sym-

bols per state ( M ). The third parameter is the state transition 

probability distribution ( A ): 

   

A = {a
ij
}

a
ij
= P(q

t+1
= S

j
| q

t
= S

i
), 1 i, j N

,        (32) 

where 
  
S = {S

1
, S

2
,..., S

N
}  denotes the set of the states and 

 
q

t
 

denotes the state at time  t . 

 The fourth one is the observation symbol probability dis-

tribution ( B ): 

   

B = b
j
(k){ }

b
j
(k) = P(V

k
at t | q

t
= S

j
), 1 j N

.

1 k M

       (33) 

where 
  
V = {V

1
,V

2
, ...,V

M
}  denotes the set of the symbols. 

 The fifth one is the initial state distribution ( ): 

  

= {
i
}

i
= P(q

1
= S

i
), 1 i N

.         (34) 

 An HMM is in general denoted as ( , , )A B=  for 

convenience. Three fundamental problems for HMM design 

can be stated as follows [18]: 

Problem 1. Given the observation sequence 

   
O = o

1
,o

2
, ,o

T
 and a model 

  
= ( A, B, ) , 

how do we efficiently compute 
  
P(O | ) , the 

probability of the observation sequence? 

Problem 2. Given the observation sequence 

   
O = o

1
,o

2
, ,o

T
 and a model 

  
= ( A, B, ) , 

how do we choose an optimal state sequence 

   
Q = q

1
,q

2
, ,q

T
 that best explains the obser-

vations? 

Problem 3: How do we adjust the model parameters 

  
= ( A, B, )  to maximize the probability of 

the observation sequence 
  
P(O | ) ? 

 The solution of the problem 1 can be obtained by using a 

forward-backward procedure. The solution of the problem 2 

can be obtained by using the Viterbi algorithm. The solution 

of the problem 3 can be obtained by using the Baum-Welch 

algorithm. The details of these HMM solution algorithms 

can be found in Reference [18]. 

 In this paper, we use HMM to classify noises due to iso-

lated scooter faults. The block diagram of an HMM-based 

classifier is shown in Fig. (7). It is assumed that we have V  

types of noise to classify and each type is modeled by a dis-

tinct HMM. The observations are sound features extracted 

from the noises corresponding to each fault type. The states 

are variations in spectral composition of the noise. 

Step 1. For each fault type  V , we construct a model 
v

 

by estimating the model parameters that optimize 

the likelihood of observation vectors in the train-

ing set. 

Step 2. For each unknown fault type to be classified, cal-

culate the features of the noise data and form the 

observation sequence 
   
O = {o

1
o

2
o

T
} . 

Compute the likelihoods for all possible models 

  
P(O | v ), 1 v V  by solving problems 1 and 2 

using the Viterbi algorithm. Select the model that 

yields maximum likelihood. 

*

1
argmax[ ( | )].v

v V

v P O=          (35) 

4. EXPERIMENTAL INVESTIGATION 

 In order to validate the proposed noise classification 

techniques, a series of experiments are performed for scoot-

ers. Various noise types were created purposely on the plat-

form of an engine rig, as shown in Fig. (8). A scooter with an 

electronic fuel injection system, single-cylinder, four-stroke, 

0.125-liter internal combustion engine was employed in this 

application. A 1/2-inch condenser microphone was used to 

measure the noise produced by the scooter. The experiments 

were undertaken in a semi-anechoic room. Three practical 

cases were investigated in the experiments. 

Case 1. Three kinds of noise including a muffler expan-

sion noise, a one way clutch noise, and a belt 

damage noise were examined. These noises were 

measured while the engine was running. The spec-

trogram of each noise data is shown in Fig. (9a-c). 
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The time-domain waveform of each noise data is 

shown in Fig. (10a-c). The associated features are 

calculated and shown in Fig. (11). 

Case 2. Seven kinds of noise including an ac generator 

noise, a one way clutch noise, a noise of the en-

gine R-cover, a knocking noise of the engine L-

cover, a knocking noise of the engine R-cover, a 

knocking noise of the engine back-cover, and a 

knocking noise of the engine top-cover were ex-

amined. The first three kinds of noise were meas-

ured while the engine was running, whereas the 

others were measured while the engine is idle. 

Case 3. Five kinds of noise including the sound from the 

engine under the normal condition, the noise due 

to intake manifold leakage, the clutch damage 

noise, the pulley damage noise, and the belt dam-

age noise were examined. The noises were meas-

ured while the engine was running. 

 In the experiments, noise data were measured and stored 

under the sampling rate 44.1 KHz with 16 bit resolution. In a 

total, 600 frames were employed in each case, where 5/6 of 

the data was used for training, while 1/6 for testing. The sig-

nal processing parameters are: hop size = 441, win-

dow/frame size = 1323, and FFT size = 2048. 

 Feature extraction and noise classification were then per-

formed according to the procedure is depicted in Fig. (2). 

Features of the noise were extracted and normalized into the 

range [-1, 1]. The dimension of the feature space template 

was 75. With the input features and the target fault types, we 

started to train the diagnostic system. The previously men-

tioned classification techniques, NNR, ANN, FNN, and 

HMM were applied to the scooter noise data. After training, 

we entered the testing phase to identify the noise types. 

 The performance of the classification methods is com-

pared in terms of the successful detection rate which is  

 

 

Fig. (8). The Photo of the scooter test rig for the experiments on 
which various modes of faults can be created. 

defined as the ratio of the number of successful detection and 

the total number of the test frames. For clarity, Tables 1-3 

summarize the experimental results of cases 1-3, respec-

tively. The dimension of the feature space is 75. The number 

of training data is 500 frames and the number of testing data 

is 100 frames. The performance of classification methods are 

compared in terms of successful detection rate which is the 

ratio of the number of frames of correct identification and 

the total number of frames. The successful detection rate of 

case 1 was all very high (100%) because the difference of the 

three noises was clearly audible, even with human hearing. 

For a more difficult situation of case 2, the successful detec-

tion rate was still high (from 86% of NNR to 90% of HMM), 

but slightly varying with different fault types. Among which,  

 

 

Fig. (7). The block diagram of an HMM-based classifier. In the paper, the computation of probability 
  
P(O | )  is carried out by using the 

Viterbi algorithm. 

*

1
arg max ( )

v

v V
v P O λ

≤ ≤
⎡ ⎤= ⎣ ⎦

 

( )
v

P O λ  

2
( )P O λ  

( )
v

P O λ  

Signal Feature 

Analysis 

Probability 

Computation 

Probability 

Computation 

Probability 

Computation 

• • • 

Select 

Maximum 

 

   

 

Pulley 

1

Intake manifold 

Belt Microphone Clutch 
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(a) 

 

(b) 

 

(c) 

 

Fig. (9). The spectrogram of the three kinds of noise. (a) a muffler 

expansion noise, (b) a one way clutch noise, and (c) a belt damage 
noise. 

 

 

 

 

Fig. (10). The time-domain waveform of three kinds of noise. (a) 

Muffler expansion noise, (b) one way clutch noise, and (c) belt 
damage noise. 
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Fig. (11). The features of three kind of noise including a muffler 

expansion noise (-), a one way clutch noise (-.), and a belt damage 

noise (:). The abscissa shows the sequence of the features according 

to APPENDIX. 

the ac generator noise and the knocking noise of the engine 

L-cover seemed to be more difficult to identify than the other 

fault types, regardless of the classification algorithm used. 

The successful detection rate of case 3 was also very high 

(from 96% of HMM to 100% of NNR). A closer inspection 

of the result reveals that the belt damage was the most diffi-

cult fault to identify. In contrast, the engine under normal 

condition and the air leakage in intake manifold were two 

easiest fault types for our system. The experimental results 

suggest that the four classification techniques are effective in 

identifying fault type correctly using noise data. In particu-

lar, FNN has achieved the best performance of fault identifi-

cation in the test. Introduction of fuzzy logic seemed to have 

enhanced the performance of plain ANN. 

CONCLUSIONS 

 A scooter fault diagnostic system that makes use of fea-

ture extraction and intelligent classification algorithms has 

been developed in this study. Nineteen sound features in-

cluding the MPEG-7 descriptors and several other features in 

the time and frequency domains are extracted from noise 

data. The extracted features are normalized prior to classifi-

cation. Classification algorithms including the NNR, the 

ANN, the FNN, and the HMM are exploited to identify and 

classify the scooter noise. The proposed diagnostic system 

was validated by means of practical noise measurement for 

various fault types. Experimental results revealed that these 

four classification techniques had attained high successful 

detection rate in identifying faults of the scooter. Neverthe-

less, the identification performance may vary slightly with 

the algorithm and the type of noise used in the tests. Overall, 

the classification system based on FNN has achieved the best 

performance in the test. Introduction of fuzzy logic seemed 

to have enhanced the performance of plain ANN. 

 As a limitation of the present research, the proposed 

technique has been verified only by using internal tests. If 

external tests are used, where the training data and the testing  

 

Table 1. Identification Results of case 1 Summarized for 

Four Classification Algorithms. Three Kinds of 

Scooter Noise Including a Muffler Expansion Noise, 

a One Way Clutch Noise, and a Belt Damage Noise 

were Examined 

 

(A) 

 

Nearest Neighbor Rule 
Muffler  

Expansion  

One Way  

Clutch 

Belt 

Damage 

Muffler Expansion  100 0 0 

One Way Clutch 0 100 0 

Belt Damage 0 0 100 

Successful Detection Rate 100% 

 

(B) 

 

Artificial Neural Network 
Muffler 

Expansion  

One Way 

Clutch 

Belt 

Damage 

Muffler Expansion  100 0 0 

One Way Clutch 0 100 0 

Belt Damage 0 0 100 

Successful Detection Rate 100% 

 
(C) 

 

Fuzzy Neural Network 
Muffler 

Expansion  

One Way 

Clutch 

Belt 

Damage 

Muffler Expansion  100 0 0 

One Way Clutch 0 100 0 

Belt Damage 0 0 100 

Successful Detection Rate 100% 

 

(D) 

 

Hidden Markov Model 
Muffler Ex-

pansion  

One way 

Clutch 

Belt 

Damage 

Muffler Expansion  100 0 0 

One Way Clutch 0 100 0 

Belt Damage 0 0 100 

Successful Detection Rate 100% 

 

(E) 

 

Classification Method Successful Detection Rate 

Nearest Neighbor Rule 100% 

Artificial Neural Network 100% 

Fuzzy Neural Network 100% 

Hidden Markov Model  100% 
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Table 2. Identification Results of Case 2 Summarized for Four Classification Algorithms. Seven Kinds of Scooter Noise Including 

the AC Generator Noise, a One Way Clutch Noise, a Noise of the Engine R-Cover, a Knocking Noise of the Engine L-

Cover, a Knocking Noise of the Engine R-Cover, a Knocking Noise of the Engine Back-Cover, and a Knocking Noise of 

the Engine Top-Cover 

 

(A) 

 

Nearest Neighbor Rule AC Generator 

Knocking  

Noise of  

L-Cover 

One-Way  

Clutch 

Noise-  

R-Cover 

Knocking  

Noise of  

R-Cover 

Knocking  

Noise of  

Back-Cover 

Knocking  

Noise of  

Top-Cover 

AC Generator 76 0 0 24 0 0 0 

Knocking Noise of L-Cover 0 89 0 0 11 0 0 

Noise-One-Way Clutch 12 0 84 6 0 0 0 

Noise-R-cover 2 0 0 98 0 0 0 

Knocking Noise of R-Cover 0 12 0 0 88 0 0 

Knocking Noise of Back-Cover 0 2 0 0 12 86 0 

Knocking Noise of Top-Cover 0 10 0 0 0 4 86 

Successful Detection Rate 86% 

 

(B) 

 

Artificial Neural Network AC Generator 

Knocking  

Noise of  

L-Cover 

One-Way  

Clutch 

Noise-  

R-Cover 

Knocking  

Noise of  

R-Cover 

Knocking  

Noise of  

Back-Cover 

Knocking  

Noise of  

Top-Cover 

AC Generator 85 0 0 15 0 0 0 

Knocking Noise of L-cover 0 84 0 0 16 0 0 

Noise-One-Way Clutch 0 0 98 2 0 0 0 

Noise-R-cover 0 0 1 99 0 0 0 

Knocking Noise of R-Cover 0 10 0 0 90 0 0 

Knocking Noise of Back-Cover 0 2 0 0 0 95 3 

Knocking Noise of Top-Cover 0 0 0 0 0 3 97 

Successful Detection Rate 92% 

 

(C) 

 

Fuzzy Neural Network AC Generator 

Knocking  

Noise of  

L-Cover 

One-Way  

Clutch 

Noise-  

R-Cover 

Knocking  

Noise of  

R-Cover 

Knocking  

Noise of  

Back-Cover 

Knocking  

Noise of  

Top-Cover 

AC Generator 96 0 0 4 0 0 0 

Knocking Noise of L-cover 0 82 0 0 10 5 3 

Noise-One-Way Clutch 0 0 99 1 0 0 0 

Noise-R-cover 0 0 2 98 0 0 0 

Knocking Noise of R-Cover 0 0 0 0 98 0 2 

Knocking Noise of Back-Cover 0 4 0 0 0 96 0 

Knocking Noise of Top-Cover 0 0 0 0 1 0 99 

Successful Detection Rate 95% 
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Table 3. Identification Results of Case 3 Summarized for 

Four Classification Algorithms. Five Kinds of 

Scooter Noise Including the Engine Under The 

Normal Condition, the Noise Due to Intake Manifold 

Leakage, the Clutch Damage Noise, the Pulley Dam-

age Noise, and the Belt Damage Noise 

 

(A) 

 

Nearest Neighbor Rule Normal Air Leakage Clutch Pulley Belt 

Normal 100 0 0 0 0 

Air Leakage 0 100 0 0 0 

Clutch 0 0 100 0 0 

Pulley 0 0 0 100 0 

Belt 0 0 0 0 100 

Successful Detection Rate 100% 

 

(B) 

 

Artificial Neural Network Normal Air Leakage Clutch Pulley Belt 

Normal 100 0 0 0 0 

Air Leakage 0 100 0 0 0 

Clutch 0 0 98 2 0 

Pulley 0 0 2 98 0 

Belt 0 0 2 3 95 

Successful Detection Rate 98% 

(Table 3) contd….. 

(C) 
 

Fuzzy Neural Network Normal Air Leakage Clutch Pulley Belt 

Normal 100 0 0 0 0 

Air Leakage 0 100 0 0 0 

Clutch 0 0 98 2 0 

Pulley 0 0 2 98 0 

Belt 0 0 3 3 94 

Successful Detection Rate 98% 

 

(D) 
 

Hidden Markov Model Normal Air Leakage Clutch Pulley Belt 

Normal 100 0 0 0 0 

Air Leakage 0 99 1 0 0 

Clutch 0 3 96 1 0 

Pulley 0 1 0 97 2 

Belt 0 4 0 6 90 

Successful Detection Rate 96% 

 

(E) 
 

Classification Method Successful Detection Rate 

Nearest Neighbor Rule 100% 

Artificial Neural Network 98% 

Fuzzy Neural Network 98% 

Hidden Markov Model 96% 

(Table 2) contd….. 

(D) 

 

Hidden Markov Model AC Generator 

Knocking  

Noise of  

L-cover 

One-Way  

Clutch 

Noise- R- 

Cover 

Knocking  

Noise of  

R-cover 

Knocking Noise  

of Back-Cover 

Knocking  

Noise of Top- 

Cover 

AC Generator 80 0 0 20 0 0 0 

Knocking Noise of L-cover 0 84 0 0 16 0 0 

Noise-One-Way Clutch 0 0 90 10 0 0 0 

Noise-R-cover 0 0 10 90 0 0 0 

Knocking Noise of R-Cover 0 0 0 0 95 5 0 

Knocking Noise of Back-Cover 0 0 0 0 4 96 0 

Knocking Noise of Top-Cover 0 0 0 0 1 0 99 

Successful Detection Rate 90% 

 

(E) 

 

Classification Method Successful Detection Rate 

Nearest Neighbor Rule 86% 

Artificial Neural Network 92% 

Fuzzy Neural Network 95% 

Hidden Markov Model 90% 
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data belong to different set, it is anticipated that not only the 

detection rate will drop but also the difference in robustness 

of each classification algorithm against uncertainties and 

variations of the data may become clear. This conjecture 

should be examined via external tests in the future research. 

Extension of the present system to accommodate more fault 

types by using more features and classification algorithms is 

currently on the way. 
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with “ ”. 

Spectral Features Dimension Sequence Spectral Features Dimension Sequence 

 Audio Spectrum Centroid 1 33  Harmonic Spectral Centroid 1 69 

 Audio Spectrum Flatness 24 44~67  Harmonic Spectral Deviation 1 70 

 Audio Spectrum Envelope 10 33~43  Harmonic Spectral Spread 1 71 

 Audio Spectrum Spread 1 68  Harmonic Spectral Variation 1 72 

 Spectral Centroid 1 74 Sound Pressure Level  1 19 

LPC 13 20~32 MFCC 13 4~16 

Pitch 1 17 Autocorrelation 1 2 

Temporal Features Dimension Sequence Temporal Features Dimension Sequence 

 Log Attack Time 1 73  Temporal Centroid 1 75 
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Statistical Features Dimension Sequence Statistical Feature Dimension Sequence 

Skewness 1 18 Kurtosis 1 3 
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