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ABSTRACT

A piecewise cross correlation technique has been developed to
analyze the outputs of remote detection devices. The purpose
of this technique is to eliminate the noise from optical back-

ground fluctuations, from transmission fluctuations and from
detectors by calculating the instantaneous product of the
detector output and a reference signal. Each noise component

causes positive and negative oscillations of the instantaneous

product and may thus be cancelled by an integration of the

instantaneous product. The resultant product mean values will
then contain the desired information on the spatial and temporal
variation of emission, absorption and scattering processes in

the atmosphere.

The piecewise correlation technique differs from previous digital

analyses of stationary time series by separating statistical and
temporal variations of product mean values. The statistical
variations describe the amount of still uncancelled noise. The

range of these variations is calculated by determining the fre-

quency band width of the noise from the decrease of an accumu-

lative statistical error with integration time. The temporal

variations of the product mean values describe a change in the
meteorological boundary conditions. They are indicated by the

calculated errors which exceed the range of statistical varia-
tions that is expected for the given noise band width. Further-

more, such temporal variations set a level of irreducible noise

components since the uncancelled noise cannot be distinguished
from the temporal variations of the meteorological boundary
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conditions. However, the change of these boundary conditions

may very often be suppressed by suitable normalization and trend

removal techniques.

The accomplishments to date provide for automatic piecewise

changes of gain factors and coordinate shifts which eliminate

intolerable temporal variations of meteorological boundaries

provided the signals do not exceed the dynamic range of the

amplifier or the tape recorder.

Our recommendations are to continue the present studies on noise

elimination in the presence of time dependent boundary conditions.

Particular emphasis should be given to the temporal variations of

product mean values which are caused by changes in aerosol con-
centrations, optical background fluctuations, variations of wind

speed and changes of wind direction. Future development of piece-

wise correlation techniques should concentrate on noise elimina-

tion and interpretation of rapid scanning remote detection

devices such that optical and meteorological phenomena might be
monitored in real time.

1. INTRODUCTION

A new "piecewise" correlation technique has been developed to eliminate

noise in photometer outputs. The need for such a program became apparent in

crossed beam field tests [Montgomery, 1969, this Vol.] where temporal varia-

tions of meteorological boundary conditions sometimes produced irreducible

noise components which were fatal. The new correlation techniques have sub-

sequently isolated and eliminated temporal variations of meteorological bound-

ary conditions by piecewise normalization and detrending procedures. The same

techniques could also be applied to any other remote detection device or any

other set of meteorological data.

The noise elimination is based on the integration of a lagged product

between the photometer output and a reference signal. Section 3 gives a

review of the usual noise elimination by product integration which is used

for stationary time series where the boundary conditions are time invariant

[Bendat and Piersol, 1966]. The piecewise correlation was developed to extend

this classical product mean value calculation to meteorological boundary con-

ditions which are time dependent. In this case, the calculated product mean

values will be subject to both statistical and temporal variations. In theory,

temporal and statistical variations could be separated by analyzing a large

group of imaginary experiments which should all have identical time dependent

boundary conditions [Crandall and Mark, 1963]. This theory is reviewed in

Section 4. However, it cannot be applied directly, since meteorological condi-
tions cannot be controlled to give many realizations of the same phenomenon.

The best one can hope for is that temporal variations of meteorological condi-

tions are of such a type that suitably modified portions of one long record

could be treated as independent realizations. The conditions of stationarity

and the results of this approximation are discussed in Section 5.

Our program is new in that the variations between different piecewise

estimated time averages are used to calculate accumulative statistical errors
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which should depend on the number of processed pieces in a universal way if the

replacement of realizations with pieces is justified. Conversely, deviations
from this behavior can be used to determine deviations from stationarity as
discussed in Section 6. Temporal variations of meteorological boundary condi-

tions restrict the noise elimination to the level of the temporal variations,
since one cannot distinguish between statistical and temporal variations of
product mean values. Fortunately, suitable normalization and trend elimination

procedures are often sufficient to remove the temporal variations of boundary
conditions. Piecewise variable ordinate shifts and gain factors have been pro-
posed for trend elimination and normalization [Jayroe and Su, 1968]. The
experience to date indicates that these piecewise modifications of photometer
records were sufficient to remove temporal variations of boundary conditions

and thereby increase the ability of noise elimination. The results are sum-
marized in Section 7. Conclusions and recommendations are given in Section 8.

2. NOTATION

a. Independent Variables

t observation time

T integration time

AT piece length

i piece number (t/AT)

m accumulation number (T/AT)

f frequency

-r time lag between photometer output and reference
signal

TM =1/6 AT maximum time lag

k = 1,2, ... N number of imaginary realizations.

b. Dependent Variables

I d.c. coupled photometer output

i a.c. coupled photometer output

x = iA output from photometer A

y = iB reference signal or output from photometer B

ra root mean square value of i

R product mean value of x and y
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ZAR statistical error of product mean value

R = xy
x y

normalized statistical error of product mean value

power inside frequency interval

1 1

4TM 4TM

ordinate shift for piece i.

c. Operators

( ) Statistic

1
( )i =

iAT

(i-1)AT

m

( )m m X (
i=l

( ) dt piecewise mean

)i accumulative mean

m

_= m 1 YA( )m m - 1i=

i=l

(()i- ( )m)
piecewise statistical error

a( )m

A( )m = m
accumulative statistical error

1
E[( )] =

N

N

L ( )(k)
k=l

sample of expected value or ensemble

average for one group of N realizations

(a (1))2 = 1

N

h=l

( )(h)
2- E( )

- El(T-)]I) sample of variance between
realizations

+T
max

r( ) = -- f ( ) dT average over time lags.

max
-T

max
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d. Subscripts

i time interval (i - 1) AT - t _ itLT

m accumulation over all pieces up to i = m

x from record x

y from record y

a straight time integration

w weighting with piecewise variable gains

d detrending with piecewise variable

c ordinate shifts

C combined piecewise shifts and gains.

3. NOISE ELIMINATION BY INTEGRATION OVER PRODUCTS

The subdivision of two data records into signal and noise components and

the subsequent elimination of the noise are both based on the integration of

instantaneous products. This is illustrated in Fig. 1 in terms of an idealized

physical model that is used for the interpretation of crossed beam results

[Krause, 1967]. Two data records, IA(t) and IB(t),_ are obtained by monitoring

the fluctuations of the radiative power which is received inside the narrow

field of view of the two telescopes,A and B. Each time history, I, accounts

for all sources of radiative power along the entire line of sight. The tem-

poral changes of emission, scattering, or absorption processes will cause a

fluctuation, i, in the recorded time history, I, which may be calculated by

subtracting the mean value, I, that is obtained for a certain recording period,

AT.

tl+ A

x(t,...rc) = IA LxAA- (t)

t l

(1)

y(t,...) = IB(t) - B(t)

In our experiments this subtraction is done automatically by using a.c. coupled

amplifiers. In this case AT is proportional to the time constant of the a.c.

coupling element (x 100 seconds).

Local information from the area of minimum beam separation is retrieved

from the two signals, x and y,by determining statistically which modulations
are "common" to both beams. The concept of "common" signals has been developed

in the analysis of communication signals and random vibrations [Bendat, Piersol,

1966] and is based on "lagged product calculations." The two modulations, x

and y, are analyzed for common signals by multiplying them with each other and
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Figure 1. Retrieval of Common Signals.
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by averaging this instantaneous product over time. This gives a "two-beam pro-
duct mean value:

t +T

R( )(ti; AT; x(t; ... ...) .. T V xy dt. (2)

t 1

The instantaneous product oscillates between positive and negative values
and these oscillations will cancel each other, at least partially, when the
product is averaged by integrating it over time, as illustrated in Figure 1.
Two beams are said to have no common modulations if the two-beam product mean
value vanishes. This complete cancellation will occur when the increase or
decrease of radiative power in one beam is independent of the power changes in
the other beam in the sense that the change in the other beam may be positive
or negative with equal likelihood. Typical examples for such independent beam
modulations are the combined source and detector noise and any cloud which
traverses only one beam without hitting the other beam. The partial cancella-

tion of the oscillations of the instantaneous product is used to split a given
time history, x(t), into a "noise" component, XN, and a "common" component, xc.
Both components are defined only with respect to a second reference signal,y.

The noise component, xN,of the first record, x,is that component which vanishes
when multiplied with the reference signal

x y() = 0. (3)

Conversely, the "common" component,

x C x - x
N
, (4)

is that component of signal x,which is responsible for the finite value of the
product mean value:

-(1) = (-I ) = ((1)
x y (x

c
+ x

N
) y = Xc Y (5)

The second signal could also be split into a common componentyc,and a noise
component, YN, by taking the first signal, x, as the reference signal:

Y = Yc + YN'(6)

Substituting Eq. (6) into Eq. (5), one finds that the product mean value is

made up only of the common signals.

x y = Xc yc (7)
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The integration of the instantaneous product has thus eliminated the "noise"
components and the resultant product mean value is contributed only by the
signal component which is common to both data records, x and y. However, the

word "common" does not mean that the components Xc and Yc are identical. It
refers only to physical processes which produce a change simultaneously in both
signals in such a way that the signs of these changes are either equal or

opposite. A cloud which traverses two lines of sight (see Fig. 1) is a good
example of such a physical process. Although this cloud will cause common

changes in both photometer records x and y, these changes will be quite differ-
ent since the two lines of sight intersect different portions of the same cloud.

4. TEMPORAL AND STATISTICAL VARIATIONS OF PRODUCT MEAN VALUES

The value of a product mean value, R, will depend in general on both the
position, t, of the integration period and on the length, AT, of the period.

The variation with t reflects a temporal variation of the meteorological bound-

ary conditions such as a change of wind speed and direction or a new type of
lag in the area which is common to both lines of sight. The dependence on AT

may also reflect a temporal variation of the common signals. However, it is

often more likely that the change is produced by the noise components which are
not completely cancelled since any finite integration period will have over a

finite number of oscillations of the instantaneous product. Such incomplete

cancellation of extraneous noises reflects a change which may be classified as
statistical, since it is associated with the uncontrollable change of physical

phenomena other than the common physical process, i.e., a random change in
boundary conditions. Both temporal and statistical variations will mostly occur
simultaneously and are therefore very difficult to separate.

A detailed description of temporal and statistical variations of product
mean values is possible, in theory, by treating the actual conducted experiments

as one sample of a population of imaginary experiments which are all recorded
for identical time dependent boundary conditions. Assume that k = 1, 2, 3,... N

realizations of the atmospheric field have been observed. Statistical averages

may then be established by averaging over the different realizations instead of

averaging over time. This "ensemble" average shall be denoted by the operator

and will be called the "expected value":

N

E[( )] =1 ( ) (8)

k=l

Let x(k)(t) and y(k)(t) denote the photometer records of the k-th realiza-
tion. The expected value of the product mean value would then be

N t +AT N

E[x 1] = x (X t) yx k(t) dt = (k) R() (9)
X N (k) (k)
k=l t1 k=l
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The temporal variations of this ensemble average can be determined since the

time dependence of R(tl; AT, ...) is not cancelled when integrating across the

ensemble.

The statistical variations of the experimentally accessible product mean

value R(1) can also be established by analyzing the variations between the

individual realization, k, and the expected value. The "expected" statistical

variation of R(1) is provided by a mean square error calculation or "variance":

Vr N 2 

Var() - )(k) _ E[( (10)

k=l

A sample of the variance between individual product mean values is thus given by

N 2

VarR = N 1 - E[x y]

k=l

tl+ATN 2
N1l x {~ f (k)(t)y(k)(t)dt_ R}. (11)

k=l t1

The associated standard deviation, (Var R(1))1/2,describes one likely variation

between the individual realization, R(k), and the expected value,R. Other varia-

tions will occur with other probabilities. Fortunately, the practical implica-

tions of the central limit theorem imply that the probability of mean value

variations ought to follow the normal distribution. Knowing sucI a universal

distribution, one can then calculate a certain limit, tp(Var RPl))l/2, which

will not be exceeded by the individual variations R(1) - R for the fraction p

of all N realizations. These limits provide a confidence interval for the

statistical variation between a single realization, k = 1, and the expected

product mean value. The 80 percent confidence interval would be

(l) to.o(N) (Var R())1/2 R < () + to.o (N)(Var R(1) (12)

The "percentile factors" of the normal distribution, tp, are listed in Table 1.

Equation (12) gives the desired estimate for the expected statistical

variations of individual product mean values. The associated confidence

interval could be calculated if Var R(') were accurately known. However,

Eq. (11) gives only one sample of this variance. A new group of N realiza-

tions would give a different sample of Var R( 1 ) . The accurate description of

the statistical variations should therefore consider not only the variations

between individual realizations of a single group but also the variation

between different groups of realizations. Let (9(1)) 2 denote the "population

variance", which is calculated by taking the arithmetic mean of all samples of
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TABLE 1

Percentile Factors and Confidence Intervals for Stationary Records

Student's t Distribution X2 -Distribution

m t.9 0 m 29 X2l0 X.9 0/m X. lo/m

.0158

.211

.584

1.06

1.61

2.20

2.83

3.49

4.17

5.58

7.04

8.55

10.1

11.7

15.7

19.8

46.5

2.71

4.61

6.25

7.78

9.24

10.6

12.0

13.4

14.7

17.3

19.8

22.3

24.8

27.2

33.2

39.1

74.4

m

Accumulative Means

( )m - tp A( )m E[( )] < ( )m + tp A( )m '

Normalized Accumulative Error

X. 10

m

X. 9 0

c~B

564

.707

.578

.500

.447

.408

.378

.353

.333

.317

.288

.267

.250

.236

.222

.200

.183

.128

2

3

4

5

6

7

8

9

10

12

14

16

18

20

25

30

61

m -> Xo

3.08

1.89

1.64

1.53

1.48

1.44

1.42

1.40

1.38

1.35

1.34

1.33

1.33

1.32

1.32

1.31

1.30

1.28

.823

.716

.625

.558

.507

.465

.433

.407

.383

.347

.318

.295

.277

.261

.230

.028

.142

.063

.153

.191

.206

.211

.212

.210

.208

.204

.201

.190

.183

.179

.174

.160

.150

.112

m 1Nm
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Var (1), i.e., the mean over all groups. The relative variation between the
variance estimate from a single group and the average over all groups could
then be expressed by the new variable,

X2 N Var () (13)
(a(1))2

The probability distribution of this variable is given by another universal dis-
tribution function, the X2 -distribution. Knowing this distribution, one can
calculate a lower limit,X. lo(N), which will be exceeded by the X2 samples of
all but 10 percent of the admitted groups. One can also calculate an upper
limit, X2. 90 (N), which will exceed 90 percent of all X2 samples. Both limits
together then give a confidence interval for the statistical variation of
variance estimates between different groups of realizations. The 80 percent
confidence interval would be

N Var R ())2 N Var (14)

Xo. 90 (N) Xo. lo(N)

2 2
The percentile factors X0o.1 and Xo.9 0 are also listed in Table 1. For N Ž 30
they may be calculated from the equation [Spiegel, 1961]

2

Xp2 = (Zp + 2(N- 1) - 1)2 = N(1 - 2N(1 + - ) (15)

In summary, we find that a single group of N realizations can provide the
following samples:

(a) The expected product mean value R, Eq. (9).

(b) One sample, Var i(1), for the desired statistical variations
between the individual product mean values from different
realizations, Eqs. (11) and (12).

(c) The confidence interval for the statistical variations of
variance estimates between different groups of N realizations,
Eq. (14).

All of these samples are based on universal distribution functions,which are
independent from the particular physical process that produces the common
signals. This universal behavior may therefore be used to separate the
universal statistical variations of product mean values from specific tem-
poral variations of these product mean values. One such possibility is dis-
cussed in Section 6.

565



NOISE ELIMINATION BY PIECEWISE CROSS CORRELATION OF PHOTOMETER OUTPUTS

5. STATISTICAL ERROR CALCULATION FOR STATIONARY DATA

Unfortunately, the results of the last section cannot be applied directly
to experimental data, since meteorological boundary conditions cannot be adjusted
to obtain many realizations of the same meteorological conditions. The alterna-
tive is then to assume that the meteorological boundary conditions are suffic-
iently time invariant during one experiment such that individual pieces of a
long record represent statistically independent realizations of these invariant
boundary conditions. For this purpose, a long record of length T is subdivided
into i = 1,2, ... m pieces of length zT = T/m. The time average over one of
these pieces may be expressed by

t=iAT

( )i = T ( ) dt. (16)

t=(i-l)AT

Each of these piecewise estimates is then treated as if it came from a new
realization. This means that the summation over realizations is replaced with
a summation over pieces

m mAT N

m ( )i mT ( ) dt = ( ) [( . (17)

i=l o k=l

The following conditions [Bendat and Piersol, 1960] must be met to justify this
replacement of realizations with pieces:

(a) The time history of the statistic "( )" is a self-stationary
process.

(b) The autocovariance function z(T) of this time history meets
certain integrability conditions.

(c) The individual piece length AT exceeds the time lag range within
which the autocovariance z(T) has become negligibly small.

Experimental data mostly meet the conditions (b) and (c). However, the condi-
tion (a) means that the replacement of realizations with pieces is only justi-

fied if the temporal variations of the product mean value are negligible. Such
time histories are called stationary. For such stationary time series all
remaining variations are statistical. This means that the variations between
piecewise averages and the statistical variations between sets of pieces should
all follow the universal probability distributions given in the last section.
The "fit" of these distributions may thus be used as a criterion for station-
arity. One such criterion is developed in the remainder of this section.

The desired criterion for stationarity considers the variations of
"accumulative" averages which were defined in Eq. (17). The accumulative
average of product mean values is derived by substituting Eq. (17) into
Eq. (9).
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m

R = (xY)i
m m m

i=l

m iAT
1 r

T 

i=l (i-l)AT

N

1i x(k) y (k

N L
k=l

x(t) y(t) dt

= R.

The statistical variations of these accumulative averages are derived from the
differences between pieces. A sample for the expected variance, ((l1))2,between
any two pieces might be derived by substituting Eq. (17) into Eq. (10). This

gives

Var R() = 1
(N - 1)

1

(m - 1)

(m - 1)

N

{ X(k)

k=l

m

X {(x Y)

i=l

m

i=l

2

R}Q

{m}I (

2

-(1))2

The associated standard deviation, At), will be called the piecewise error.

Any new group of m pieces or m realizations would give another sample of the
piecewise error. A confidence interval for the statistical variations of

piecewise errors between different groups of pieces is derived by substituting

Eq. (19) into Eq. (14).

m(R (1))2

X2 (m)
0.90

m(m(i))
2

( ()) 2 !m(t X)2

The statistical error of the accumulative mean, ARm, should be much smaller
than the error of a piecewise mean, ARm, since the statistical variations

between pieces will partially cancel each other during the summation. For

stationary data the reduction will be equal to l/m,since the cancellation

accounts for m independent realizations of the same experiment. A sample of
the mean square error of an accumulative mean is thus given by:
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(A( )m) 2 =- m) 2

m

m(m - 1) j il

i=l

(21)

The associated standard deviation, ARm, will be called the "accumulative error."
Any new group of m pieces or m realizations would give a new sample of the
accumulative error. A confidence interval for the statistical variations between
these groups is derived by substituting Eq. (21) into Eq. (20) and by dividing
with m. The result is

m(ARm)2

XM (R(m) m

m( R )2m(ARm) 2

X2 (m)
0.10

(22)

In most applications the accumulative error is normalized with the product of
the accumulative root mean square values

= tm/ y!ARm

m (2)m l/ 2 (y2)m1/2

(23)

The confidence interval for the normalized accumulative errors follows by

dividing Eq. (23) with the product of the accumulative root mean square values:

m (MRm)2

2
X 0.9O (m)

(a(1))2

m( X2)/ 2 (y2)1/2

_< m (aRm) 2
2

Xo. lo (m)

Expressing the population variance of piecewise means in terms of a "noise"
band width,B,

(,(1))2 =
(x2) (5

BAT

Y2)
m

(25)

and substituting this definition into the last inequality, one finds

m(6Rm)
2

< 1 < m( (Rm)2

2 BT 2
Xo. 9o (m) Xo.lo (m)

(24)
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However, the two factors, m/X2 and m/X lo1 ,both asymptotically approach the

value, 1, according to Eq. (14 9: Therefore, Eq. (25) gives the well known result
that the relative statistical error of a product mean value should decrease with

the inverse square root of integration time.

6 =- m 1 (2 6a)

1 / 2-(y1/ 2 (BT) 1/

Direct calculations of the accumulative statistical error, ARm,may thus be used

to determine the noise band width,B,from the asymptotic decrease of this error

with the inverse square root of integration time. Furthermore, the knowledge
of this band width can then be used to calculate the confidence levels for the
relative accumulative error. Rearranging the two inequalities of Eq. (26),

one gets

X0 .1 0() Xo.9 (m)
A 8R (27)

m\TBAT m ml·AT

Figure 2 illustrates such a direct calculation of the confidence interval
that is expected for stationary data. This example employs product mean values

from a crossed beam test in a supersonic jet. The abscissa is given by the

inverse square root of integration time, T,or accumulation number,m = T/AT. The

ordinate gives the relative statistical error which was calculated from Eq. (21).

The actual data follow a straight line through the origin very closely as pre-

dicted by Eq. (26a). The slope of this line gives a noise band width of

B = 22,276 cps. This noise band width has been used to calculate the confidence

intervals according to Eq. (27) and Table 1. All directly calculated statis-
tical errors fall into this interval. One can thus say that the probability is

better than 80 percent that the entire record was stationary.

By processing m = 14800 pieces, it was also possible to reduce the statis-

tical error ARm of the accumulative product mean value, Rm,to 0.2 percent of the

mean square value of the actually recorded integrated signals. This demon-

strates the surprising power of digital correlation techniques to retrieve very

small signals out of noise. The successful development of the associated

"piecewise" correlation computer program and the success of crossed beam

detection of wind profiles and turbulence parameters in subsonic and super-
sonic jets [Fisher, Krause, 1967] with the program provided the basis and the

starting point for extending crossed beam measurements into the atmosphere.

6. DEVIATIONS FROM STATIONARITY AND IRREDUCIBLE NOISE

Fluctuation measurements with winds, humidity, and temperature sensors on

meteorological towers indicate that the power spectra of these fluctuations

may contain significant energy for frequencies down to 0.01 cps, i.e., for

periods as long as 2 minutes. The length of one piece should be two to five

times larger than this period if such pieces are to be treated as independent

realizations of the same meteorological conditions. We chose a piece length
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of AT = 450 sec = 7.5 minutes for most of our work. At least 5 different

realizations of a physical phenomenon are then required to establish the level
or irreducible noise components and nonstationarities from the statistical

variations between these pieces.

We have chosen to illustrate the noise and stationarity analysis for a
marginal case where only 6 pieces are available. The test conditions and the
photometer records x(t) and y(t) are shown in Fig. 3. The piecewise means of
photometer output "A", xi, are shown in Fig. 4a together with the accumulative
mean,x6,of these means. Furthermore, the statistical error of the individual

piecewise mean, i66, is added and subtracted from each piecewise mean. The
striking observation is that the mean of piece 6 makes a sudden jump which is
so large that it exceeds the statistical errors. In case of stationary data,
the different values of the piecewise means should stay within the confidence

interval given by Eq. (12). The observed large jumps fall,however, outside
such an interval; therefore, it is unlikely that these jumps are of a statis-
tical origin. One should rather anticipate sudden changes in the meteorological

boundary conditions.

The deviation from stationarity,which is anticipated because of the large
jump of the sixth piecewise mean, is clearly indicated by the accumulative error

of these means. These errors were calculated according to Eq. (21) and plotted

against T'l / 2 as shown in Fig. 4b. The expected stationary process was then

defined by fitting the calculated points with a straight line through the-origin.

The slope of this line gives a noise band width of B = 0.19 cps,which is then

used to calculate the 80 percent confidence interval according to Eq. (27).

However, the directly calculated errors increase suddenly between pieces 5 and
6 and exceed the confidence interval. This exceedance illustrates clearly the

deviation from stationarity that was anticipated from the above visual inspec-
tion of Fig. 4a.

The exceedance of the confidence interval can be used to define and

analyze a deviation from stationarity in many different ways. Fig. 4b illus-

trates the most simple of all classifications which completely disregards the

shape of the actual error curve. A period of a record is called stationary if

the accumulative error falls within the 80 percent confidence interval of the

expected stationary process. Conversely, a period of a record is called non-

stationary if the calculated errors exceed the expected confidence interval.

The experience which was gained with this classification is summarized in

Table 2.

The second important aspect of the accumulative error curves is the esti-

mate of the irreducible amount of noise. Such an analysis is based on the

results of the last section,which should apply within a period of stationarity.

According to the discussion of equations (9) and (11), the accumulative statis-
tical error will be contributed predominantly by the uncancelled noise compo-

nents, since the meteorological boundary conditions are time invariant in a

period of stationarity. The finite extent of the period of stationarity means,

therefore, that an irreducible amount of noise exists which is equal to the

lower limit of the accumulative statistical error inside the given period. The

calculation of statistical error curve, ARm(T), will therefore provide a direct

estimate of the irreducible noise for-each period of stationarity as illustrated

in Fig. 4b.
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Table 2

Preliminary Experience on Temporal Product Mean Value Variations

Straight Time Integration Piecewise Gain Change

T1 -T 2 T1 -T2

Run Ta B T1 T2 Tma (R)min T T (6R)min

(sec) (cps) (sec) (sec) (%) (sec) (sec) (%)

A 6750 .063 NA NA 0 NA 0 6750 100 .050

B 4050 .044 NA NA 0 NA 0 4050 100 .067

C 4500 .045 3600 4500 20 .078 0 4500 100 .052

D 7200 .063 2250 7200 62 .060 0 7200 100 .046

E 3240 .063 NA NA 0 NA 0 3240 100 .065

F 4950 .012 0 4950 100 .060 450 4950 91 .045

G 4500 .111 NA NA 0 NA 0 4500 100 .044

H 10350 .250 NA NA 0 NA 0 10350 100 .019

I 2700 .063 NA NA 0 NA 0 2700 100 .040

T1 = start of stationary period

T2 = end of stationary period

T2-T
T-Tx = percentage of stationarity
Tmax

NA = not applicable.

7. PARTIAL REMOVAL OF TEMPORAL VARIATIONS BY PIECEWISE ORDINATE

SHIFTS AND GAIN FACTORS

The existence of an irreducible amount of noise would be fatal to crossed

beam experiments if this irreducible noise exceeds the small levels of the
common signal. However, the results of the last section imply that the
"irreducible" amount is inversely proportional to the length of the period

of stationarity. If one could partially remove the temporal variations of

the meteorological boundary conditions, then the amount of "irreducible"

noise might be further reduced by allowing a longer period of stationarity.

In other words, the term "irreducible" applies only to a straight time inte-
gration as described by Eq. (16). Averaging procedures other than time inte-

gration might provide smaller "irreducible" noise levels by removing the time
dependence of boundary conditions through suitable normalization and trend
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elimination procedures. Jayroe and Su proposed the concept of "accumulative"
means which differ from straight time integration by employing piecewise
variable ordinate shifts and gain factors [Jayroe and Su, 1968]. The applica-

tions of these shifts and gains will now be discussed for the same test run
that has already been used.

A piecewise variable ordinate shift may be described as an attempt to
remove large scale (i.e., low frequency) trends. Consider lagged product mean
values which differ from the product mean values of Eq. (2) only by delaying
signal x relative to signal y:

iAT

Ri(,) = x(t - -r)(t)i= x(t - T) y(t) dt.

(i-l),%T

(28)

This lagged product mean value (or temporal correlation function) is calculated
for equally spaced time lags and truncated at a time lag

1
T = AT.
max 6

'Figure 5a shows such a piecewise estimated correlation function for piece 1 of

our test run (Fig. 3). The ordinate of this correlation curve shall then be
shifted by an amount Pi(O) which makes the area under the shifted curve vanish.

max

Pi(0) = 2 f Ri(T) dT. (29)
max

-T
max

This ordinate shift is equal to the cross power inside the narrow frequency
band

1 < 1

4 -M -4 M

Af . S(f - 0)
1

2M f=c

too

m r, -i21 e
a J Rj (-) e

Ri(T) dT - P. (0).

The ordinate shift Pi(O) therefore removes all power at frequencies below
1/4TM, i.e., all slowly varying trends. The ordinate shift may thus be
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described as a piecewise trend elimination method. The application of this
detrending procedure leads to the following accumulation average:

m

(Rm d =m i ' (31)

i=l

Figure 5b shows the ordinate shifts, Pi(O), which have been calculated
for the six pieces of our test run. These shifts oscillate between positive
and negative values in such a way that the accumulative shift, Pm(O), stays
very small. Apparently, the temporal variations of product mean values (Fig.
5c) may be insignificant, although the temporal variations of the mean values
(Fig. 4a) are large.

Piecewise ordinate shifts are effective in removing trends. However, in
many cases the temporal variations of the boundary conditions will also cause
changes at higher frequencies. One change that was observed often is a piece-

wise jump of fluctuation amplitudes. The average fluctuation amplitude, a, for

a piece is given by the root mean square value

iAT

,a i =~ AT f x2 dt. (32)

(i-l)AT

Temporal variations of fluctuation amplitude are then indicated by the varia-
tions of this root mean square value. Figure 6 illustrates this variation

for the test run. The temporal variation of the boundary condition that was
discovered(Fig. 4b)also,apparently, causes a large jump of the amplitude
between pieces 5 and 6. However, the effect of this jump could be minimized
by normalizing with the associated root mean square value. This would reduce
the fluctuations of the normalized signal x/axi to the level of the previous
pieces. The opposite would be true with a piece that is characterized by a

sudden decrease of fluctuation levels. Temporal variations of signal ampli-
tudes can thus be suppressed effectively by using a piecewise bariable gain
factor which is proportional to 1/a

i
. Such a nondimensional gain factor has

been defined by multiplying l/ai with the accumulative root mean square value

m
=2 1 i 2
a= - a.. (33)
m m33)

i=l

The application of this gain, =/o, leads to a new type of accumulative average

which may be denoted by

m

(R m) = m -

i=l axi yi
i=l a.xiay3
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Combined weighting and detrending gives a fourth type of accumulative average:

(Rm) = m

m -i

Ri -Pi (O)

i=l ai yi~l xi. yi.

All of these different accumulation procedures may be summarized by the use of
a unified accumulative average,

a a

R(-; m; ... ) = xm ym
m

v a.i i- 
ix y

i=l x y

which allows for a free choice of gain factors, a/a, and ordinate shifts, s.
The various options that have been tried to this date are characterized by
the following choices:

Straight time integration: subscript a

ax = axm; ay am; S = 0.
y ym i

Piecewise detrending: subscript d

a = a
x xm

a = aym; S = Pi ( 0° )
Y ym 1

Piecewise weighting: subscript w

ax = axi; ay = ayi;
s = 0.

I

Combined detrending and weighting: subscript c

a = .;
x x1

ay= a i;
i = i(O)

The value of these choices may be judged from the
accumulative statistical error,

(5R(¶; T; m) 2 = (c.T.,m)

xm ym

1

m(m - 1)

behavior of the associated

i - (Rm Sm) 

x y
i=l

(36)
J
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The desired accumulation procedure should suppress the temporal variation of
meteorological boundary conditions. According to section 6, this suppression
may be judged by fitting the tail (m large) of the error curve with a straight
line. The best accumulation procedure is the one that gives the best fit.
Furthermore, the slope of that line gives the noise band width, B, of the piece-
wise modified noises and can be used to calculate the confidence interval for
the entire error curve from Eq. (27). The whole procedure is illustrated in
Fig. 7 for the test run and differs from the illustration given in Fig. 4 in
the following aspects:

(a) The statistical error refers to product mean values, not
mean values.

(b) The time lag dependence of the product mean value has been
cancelled by integration:

+T
max

zR2(T;m) _ 1 je (37)

ma2 J 6R2(T; T; m) d (-

max

max

(c) Four different error curves have been calculated using the dif-
ferent options for piecewise shifts and gains that were
identified above by the subscripts a, d, w and c.

The straight time integration,curve a, indicates that both the beginning
and the end of the record are strongly affected by temporal variations of
the boundary conditions. These variations cannot be described by low fre-
quency trends since the piecewise detrending, curve d, is not effective to
alter the shape of the error curve. Only the use of piecewise gains pro-
duces error curves (c and a) which approximate a straight line through the
origin. The slope of this line gives a bandwidth B = 0.063 cps,which in
turn is used to calculate the confidence interval X/mn`.LT Both curves w and
c fall into this interval; i.e., the piecewise modified photometer records

are stationary with_a probability exceeding 80 percent. The smallest error
of these curves, 3R ; 0.075, gives then the irreducible amount of noise that
is left after accumulating over a period of T = 45.00 = 2700 seconds. A
further noise reduction would require a longer record.

The use of piecewise gains proved to be a very powerful tool in cases
where the meteorological boundary conditions were known to be highly time
invariant. One of the more dramatic changes of meteorological conditions
under clear skies is the change of wind direction. Fig. 8 provides an
example of piecewise gain changes for moderate fluctuations of wind direc-
tions (± 22° , run H). Without piecewise gains we get a curve that fits the
confidence interval; however, this curve does not exhibit the desired straight
line fit. The use of piecewise gains improves the approximation of a sta-
tionary record significantly and also slightly improves the noise elimination.
Figure 9 provides an example for extreme temporal variations of boundary con-
ditions (±1800, run A). The wind was blowing from all directions during the
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SYMBOL ACCUMULATION METHOD
STRAIGHT TIME INTEGRATION

* ( ) = Rj , a (x2)1/2 (y2)/2

PIECEWISE GAINS

( )i = Ri , (x2)/2; (2)i1/2

PIECEWISE SHIFTS

( )i : Ri - Pi(O), : (2)1/2 (y2)1/2

COMBINED PIECEWISE GAINS AND SHIFTS

( )i : Ri .- ( 0 ) . : (xT') 11/2; (. ),i/2

NORMALIZED STANDARD ERROR

.20

cO m '~ 6 4 :5 2
. a . *

T(sec) 2700 1800 1330 900

Figure 7. Application of Piecewise Shifts and Gains to Test Runs.
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a - TIME INTEGRATION

w-PIECEWISE GAINS

X.90

m/Bi 1
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.01 .02 .03

T-1 /2

T (sec) 6300 2700 1800 900

Removal of Temporal Product Mean Value

Variations with Piecewise Gains (Run H).
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SEPARATION O0
DIRECTION FLUCTUATIONS

a - TIME INTEGRATION
w- PIECEWISE GA INS

= _+180 deg

X .90

mJBAiT

. EXPECTED
L STATIONARY

,a

/2 (.063cps) - / 2

.02

m a,/

.03
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T (sec)

Figure 9. Removal of Temporal Product Mean Value

Variations with Piecewise Gains (Run A).
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recording period. In this case, the straight time integration produces an
error curve which does not resemble a stationary process at all. However,

even in this extreme case the use of piecewise gains proves sufficient to

eliminate the temporal fluctuations of product mean values.

Our preliminary experience with the application of piecewise correlation

methods indicates that temporal variations of product mean values occur quite

frequently for observation periods between 1/2 and 2 hours. Table 2 gives a

summary of the first 9 runs where statistical and temporal product mean value

variations were separated. In six out of nine runs the temporal variations of
stationarity did not exist at all. Two of the six cases are illustrated in

Figs. 7 and 9.

For record lengths up to 2 hours, the use of piecewise gains and ordinate

shifts has always been sufficient to remove temporal variations of product

mean values provided that the amplifier or tape recorder is not driven into
saturation by these temporal variations. Saturation by a large temporal

variation of meteorological conditions however always occurred and was the

dominant factor which determined the maximum record length, T. Elimination

of this saturation problem should allow longer recording times and thereby

contribute to a further reduction of noise below the values of (8R)min that
are listed in Table 2.

8. CONCLUSIONS AND RECOMMENDATIONS

The piecewise correlation technique was developed to eliminate noise in
the output of remote detection devices. The noise is reduced by multiplying

the photometer output with a reference signal and by integrating this instan-

taneous product over time. This method is quite common for stationary time

series where the boundary conditions of the experiment are time invariant.

The piecewise correlation technique is new by extending this elimination of
noise to meteorological boundary conditions which are time dependent. The

simple time integration of products cannot reduce the noise level below the

level of temporal variations, since one cannot distinguish between statistical

and temporal variations of the product mean value.

The mathematical theory of product mean value variations is based on the
difference between a large group of imaginary experiments, all of which have

the same time dependent boundary conditions. This theory cannot be applied

directly since meteorological conditions cannot be controlled to repeat

themselves many times. However, individual pieces of a long record may often

be normalized and detrended in such a way that the resultant piecewise modi-
fied data behave as if they belonged to independent realizations of the same

meteorological boundary conditions. Piecewise correlation techniques are thus

based on the premise that one can, in most cases, find suitable piecewise

modifications of the photometer outputs and the reference signal which produce

two new signals that are stationary although the experiment itself is quite

nonstationary.

The effect of piecewise modifications of the photometer outputs may be

judged by curve fitting the resultant accumulative error curve with a straight

line. The modifications have been successful if the accumulative error

decreases linear with the inverse square root of integration time. The slope
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of the straight line fit gives the frequency band width of the noise components

which one wishes to suppress. Knowing this band width, one can also calculate

a confidence interval that should contain most of the calculated statistical

errors. Temporal variations of product mean values are then indicated by
those errors which fall outside this confidence interval.

The experience gained with piecewise correlation techniques indicates that
significant temporal variations of product mean values do occur quite fre-
quently (50 percent of all runs). However, these temporal variations have been

removed successfully by employing piecewise changes of gain factors and piece-
wise ordinate shifts. The proposed automatic changes of gains and ordinates
are thus suitable piecewise modifications. They have successfully reduced the

temporal variations of product mean values below the level of the statistical

variations in all cases where the temporal variations of the meteorological
boundary conditions did not drive the amplifier or the tape recorder into
saturation.

The piecewise correlation technique provides a new tool that can distin-
guish between statistical and temporal variations of product mean values. The
statistical variations are due to the still uncancelled noise and the temporal

fluctuations are caused by a temporal change in meteorological boundary condi-
tions. We recommend continuing the present studies of noise elimination in

the presence of time dependent meteorological boundary conditions. Particular

emphasis should be given to the temporal variations of product mean values

which are caused by changes in aerosol concentrations, optical background fluc-

tuations, variations of wind speeds and changes of wind direction.

The above recommendation is based on the technical problems that were

encountered in our first cross beam field tests. These problems and the pro-

posed solutions may be described as follows.

Temporal variations of local scattering process were frequently observed
under clear skies which are so large that both the a.c. amplifiers and tape

recorders are driven into saturation. Amplifier saturation is being reduced by

installing a new coupling circuit with a stepwise variable time constant that

is triggered by the incoming signal. Tape recorder saturation will be elimin-

ated by replacing the analog recorder with an on-line digital data logging

system.

Temporal variations of the optical background radiation were caused by

distant clouds and haze which drift through the photometer's field of view.

The associated background noise far exceeds the signal contributions from the

desired target layers and may be so large that it cannot be-reduced sufficiently
by integration of products. In crossed beam tests these background fluctua-
tions have been suppressed by pointing the telescopes to the horizon beneath

the cloud level. Infrared photometer systems are now being assembled which

should suppress the background fluctuations by setting the monochromator band-

pass to a spectral region where the optical path length terminates below the
cloud level.

Temporal variations of wind speeds have often caused the dominant tem-

poral variations of product mean values. One promising approach to eliminate
noise in the presence of speed fluctuation is to replace the photometer output

with its time derivative. The correlation of time derivatives is presently
being employed to retrieve the probability density of wind component fluctuations.
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Large temporal variations of wind directions change the altitudes where

the common signals originate. A single-beam fan arrangement is being assembled

which sets a fan of six narrow fields of view by mounting a plurality of photo-

diodes in the focal plane of the collector optics. A new piecewise correla-

tion program is being coded for multichannel operation to process the output

from several detectors simultaneously. The fan system will then be used to

study the altitude distribution of the common signals and the restrictions on

altitude resolution that are imposed by large wind direction changes.

A successful elimination of noise in the presence of time dependent

meteorological boundary conditions would provide an opportunity to extend

remote detection techniques to the description of dynamic phenomena such as

winds and turbulence. In particular, the theory of a rapid scanning crossed

beam system [Krause, et al., 1966] indicates that wind and turbulence profiles
could conceivably be monitored in real time with a single flyby. Furthermore,

a crossed beam system which is mounted on an airplane or a satellite moves so

rapidly that temporal variations of wind speed and wind direction should no

longer interfere with the noise elimination [St. John and Blauz, 1968]. Our

recommendation for future studies is therefore to develop piecewise correla-
tion techniques and onboard computer systems for rapid scanning remote detec-

tion devices such that space and time variations of optical and meteorological

phenomena might be monitored in real time in regions where balloons are not

available.

We hope to continue our present field test programs to collect design
information that could be used for the development of rapid scanning remote

detection devices. The long range objective of these field tests is to

isolate the space time variations of local emission, absorption and scatter-

ing processes at various altitudes and to determine the irreducible amount of

noise which is imposed by the variations of the meteorological boundary condi-

tions. The design of airplane instrument packages and of on-line computer

systems should be initiated as soon as the results of the continued field

tests indicate the feasibility of such a step.
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