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ABSTRACT

We develop optimal forward and inverse variance-stabilizing trans-
formations for the Rice distribution, in order to approach the prob-
lem of magnetic resonance (MR) image filtering by means of stan-
dard denoising algorithms designed for homoskedastic observa-
tions.

Further, we present a stable and fast iterative procedure for ro-
bustly estimating the noise level from a single Rician-distributed
image. At each iteration, the procedure exploits variance-
stabilization composed with a homoskedastic variance-estimation
algorithm.

Theoretical and experimental study demonstrates the success of
our approach to Rician noise estimation and removal through vari-
ance stabilization. In particular, we show that the performance of
current state-of-the-art algorithms specifically designed for Rician-
distributed data can be matched by combining conventional algo-
rithms designed for additive white Gaussian noise with optimal
variance-stabilizing transformations.

1. INTRODUCTION

The magnitude of magnetic resonance (MR) images can bemodeled
by the Rice distribution. This distribution has two parameters: the
unknown noise-free magnitude of the data, and the standard devia-
tion of the additive noise that corrupts the real and imaginary parts
of the data.

Estimation of the magnitude is a particularly challenging
denoising problem because of two main reasons, namely het-
eroskedasticity and bias: first, the standard-deviation of the noise
corrupting the magnitude depends also on the unknown magnitude
itself; second, the expectation of the noisy magnitude differs from
the unknown noise-free magnitude by a nonlinear function of the
noise standard-deviation and of the noise-free magnitude. Special
ad-hoc algorithms need to be designed for filtering MR images, in
order to address both the heteroskedasticity and bias in the Rician-
distributed data.

To enable the application to MR image filtering of conven-
tional algorithms designed for homoskedastic observations (e.g.,
for data corrupted by additive white Gaussian noise), we develop
optimal forward and inverse variance-stabilizing transformations
for the Rice distribution (Section 3). The forward transformation
makes the data accurately homoskedastic, and thus the noise re-
moval can be accomplished by applying a homoskedastic denoising
algorithm; the inverse transformation is designed to be applied on
the denoised data and to return a maximum-likelihood (ML) esti-
mate of the noise-free magnitude. To the best of our knowledge,
this is the first approach of this kind to the MR image filtering prob-
lem.

A second fundamental contribution of this work consists in a
stable and fast iterative procedure for robustly estimating the noise
level from a single Rician-distributed image (Section 5). At each
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iteration, the procedure exploits variance-stabilization composed
with a homoskedastic variance-estimation algorithm. We require
neither the presence of a dark uniform background, a preliminary
segmentation of the data, nor a high signal-to-noise ratio.

Theoretical and experimental study demonstrates the success
of our approach to Rician noise estimation and removal through
variance stabilization. In particular, we show that by combining
conventional algorithms designed for additive white Gaussian noise
with optimal variance-stabilizing transformations, we can match the
performance of current state-of-the-art algorithms specifically de-
signed for Rician-distributed data.

2. PRELIMINARIES

In this section we review the main theoretical and technical ele-
ments necessary for the development of our contributions.

2.1 Rician-distributed data

Let z ∼R(ν,σ) be the realization of a random variable with Rician
probability density function (p.d.f.) with parameters ν ≥ 0 and σ >
0,

p (z|ν,σ )= z

σ2
e
− z2+ν2

2σ2 I0
zν

σ2
, z ≥ 0, (1)

where In denotes the modified Bessel function of order n, In (x)=
∞
m=0

(x/2)n+2m
m!�(n+m+1) [16]. Equivalently, z can be obtained as

z = crν+σηr 2+ ciν+σηi 2, (2)

where cr and ci are arbitrary constants such that 0 ≤ cr ,ci ≤ 1 =
c2r + c2i , and ηr and ηi are random variates independently distrib-
uted following the standard normal p.d.f., ηr ,ηi ∼ N (0,1). The
Rice distribution is used for modeling magnitude MR images or
volumes, with an observation model of the form

z (x)∼R(ν (x) ,σ) , x ∈ X , (3)

where X ⊂ Zd are the pixel (d = 2) or voxel (d = 3) coordinates,
ν : X → R

+ is the unknown original (noise-free) signal, and z :
X→R

+ is the raw magnitude MR data.

2.2 R(·,σ ) as one-parameter family of distributions; scaling
The parameter σ is assumed as fixed and, until Section 4, we con-
sider that its exact value is known a priori. Thus, z is treated as
distributed according to a one-parameter family of Rician distrib-
utions, parametrized with respect to ν. Figure 1 shows the distri-
butions R(ν,σ) for ν ∈ [0,5] and a fixed σ = 1. Let us remark
that assuming a particular value of σ (e.g., σ = 1) is not a funda-
mental restriction: from (2) one can easily see that if z ∼R(ν,σ)
then λz ∼R(λν,λσ) for any λ > 0, which means that it suffices to
carry out the analysis and computation of the transformations for,
say, σ = 1, and then apply this result to all cases σ > 0 upon simple
linear rescaling of data and parameters.
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Figure 1: The one-parameter family of Rician p.d.f.’s R(ν,1) for
ν ∈ [0,5] .

2.3 Mean and variance of Rician data

The mean and variance of z ∼R(ν,σ) are, respectively,

µ= E {z|ν,σ } = σ π

2
L − ν

2

2σ 2
, (4)

s2 = var{z|ν,σ } = 2σ2+ν2− πσ
2

2
L2 − ν

2

2σ2
, (5)

where L (x) = ex/2 (1− x) I0 − x2 − x I1 − x2 . Equation (5) is
illustrated, for the case σ = 1, in Figure 2. For large values of ν we
have

E {z|ν,σ } ≈ ν+ σ
2

2ν
, var{z|ν,σ } ≈ σ 2− σ

4

2ν2
. (6)

Two crucial issues follow from (4) and (5). Firstly, (5) implies
that the noise variance is not uniform over the data. Secondly,
the expectation (4) differs essentially from the parameter of inter-
est, namely ν. The former problem is addressed by the (forward)
variance-stabilizing transformation applied to the data before filter-
ing, whereas the latter is addressed by the inverse transformation
applied upon filtering, which is designed so to directly provide an
estimate of ν out of the filtered transformed data.

2.4 Maximum-likelihood estimate νML (z) of ν given z

If σ = 1, the maximum-likelihood (ML) estimate of ν given a sin-
gle sample z, which we indicate by νML (z), is the solution of the

equation zν
I1(νz)
I0(νz)

= 1 for z >√2 [15], and νML (z)= 0 for z ≤
√
2.

This estimate will become useful for the construction of the opti-
mized transformations in Section 3.2.

2.5 Stabilization of variance

The rationale behind applying a variance-stabilizing transformation
is to remove the dependence of the noise variance from the value of
the parameter ν and hence from the coordinate x . Without loss of
generality, we look for transformations f such that the variance of
the transformed data is stabilized to 1, i.e. var{ f (z) |ν,σ } ≈ 1.

2.5.1 Scaling of the stabilizer for Rician data

With the same notation as in Section 2.2, if f is a stabilizer for
R(·,σ ), then fλ defined by

fλ (w)= f (w/λ), ∀w ∈ [0,+∞) , (7)

is a stabilizer for R(·,λσ), because var{ f (z) |ν,σ } =
var{ fλ (w) |λν,λσ }.

2.6 Three steps: stabilization, denoising, and inversion

Variance-stabilizing transformations are often exploited for the re-
moval of signal-dependent noise through the following three-step
procedure. First, the noise variance is stabilized by applying a
variance-stabilizing transformation f to the data. This produces
a signal in which the noise can be treated as additive with unitary
variance. Second, the noise is removed using a conventional de-
noising algorithm for additive noise (e.g., additive white Gaussian
noise). Third, an inverse transformation is applied to the denoised
signal, obtaining the estimate of the signal of interest.

In what follows, we indicate the denoising algorithm by the op-
erator� and the denoised signal before inversion by D=�( f (z)).
Denoising algorithms attempt to estimate the expectation, thus D
can be treated as an approximation of E{ f (z)|ν,σ }.
2.7 Exact unbiased inverse

2.7.1 Estimation of E{z|ν,σ }
Since f is necessarily a nonlinear mapping, we may have

E{ f (z)|ν,σ } /= f (E{z|ν,σ }), (8)

and, thus,

f −1(E{ f (z)|ν,σ }) /= E{z|ν,σ }, (9)

which means that the inverse transformation applied after denois-
ing (in the three-step procedure of Section 2.6) should not coincide
with the algebraic inverse of f , as this would introduce bias in the
estimation of E{z|ν,σ } from the observed z.

The problem of bias in variance-stabilized denoising is solved
by the exact unbiased inverse [14],[7] that is defined by the mapping

I f : E{ f (z)|ν,σ } 0−→ E{z|ν,σ } = µ. (10)

Note that (10) assumes that the mapping E{z|ν,σ } 0→ E{ f (z)|ν,σ }
is invertible. In particular, we require this mapping to be strictly in-
creasing, or, equivalently, that E{ f (z)|ν,σ } is strictly increasing
with ν. This condition supplants the traditional requirement of in-
vertibility of f , which instead we may allow to be nonmonotone.
The mappings ν 0→ E{z|ν,σ } and ν 0→ E{ f (z)|ν,σ } are both nec-
essarily smooth, because of the smoothness of p (z|ν,σ ) with re-
spect to ν. The exact unbiased inverse (10) is extended to values
D /∈ {E { f (z) |ν,σ } , ν ∈ [0,+∞)} as

I f (D)= infν E {z|ν,σ } if D ≤ infν E { f (z) |ν,σ } ,
I f (D)= supν E {z|ν,σ } if D ≥ supν E { f (z) |ν,σ } . (11)

2.7.2 Estimation of ν

The exact unbiased inverse I f can be composed with the mapping
E{z|ν,σ } 0→ ν, thus obtaining the exact unbiased inverse V f for
the estimation of ν:

V f : E{ f (z)|ν,σ } 0−→ ν. (12)

V f (D)= 0 if D ≤ infν E { f (z) |ν,σ } ,
V f (D)=+∞ if D ≥ supν E { f (z) |ν,σ } . (13)

2.7.3 Maximum-likelihood interpretation of I f and V f

Under the rather generic assumption that D− E{ f (z)|ν,σ } is dis-
tributed according to a unimodal distribution with mode at 0, it can
be easily shown (with a proof and motivation analogous to that in
[14]) that I f (D) and V f (D) are maximum-likelihood estimates of
E{z|ν,σ } and ν, respectively. We refer the reader to [14] for further
details about this form of inversion.

3. VARIANCE-STABILIZING TRANSFORMATIONS FOR
RICIAN DATA

3.1 Asymptotics for large ν

Starting from (4) and (5), we can express the variance s2 as a func-
tion of the mean µ (so-called variance function) as

s2 (µ)= var{z|µ,σ } = σ 2 1− σ 2

2µ2
+O 1

µ4
. (14)



Table 1: The terms included in the optimization functional (16).

Accuracy of stabilization Fstabil ( f )= νmax
0 (std{ f (z) |ν,1}−1)2 dν

Smoothness of f Fsmooth ( f )= zmax
0

f )) (z) 2 dz
Asymptotic Fasympt ( f )= zmax

0
1

(zmax−z+>)4 f (z)− fasympt (z) 2 dz
Closeness of V f ( f (z)) to νML (z) Finverse ( f )= zmax

0
V f ( f (z))−νML (z) 2 dz

Thin:

std{z|ν,1}

Thick:

std fasympt (z) |ν,1

ν

Figure 2: The standard deviation of the stabilized Rician data
std fasympt (z) |ν,σ (thick line) versus the standard deviation of
the nonstabilized data std{z|ν,σ }, for fixed σ = 1 plotted as func-
tion of ν.

This can be used for computing the asymptotic stabilizer for large
values of ν (i.e. for large values of µ) as the indefinite integral [6]

z

var{z|µ,σ }− 12 dµ=
z 1

s (µ)
dµ.

After neglecting the “big O” term in (14), by solving
1
σ

z µ

µ2− σ22
dµ, we arrive to the primitive

fasympt (z)= z2

σ2
− 1
2
+a, (15)

where a ∈ R is an arbitrary constant and z ≥ σ/√2; for complete-
ness, we can define fasympt (z) = a for all z < σ/

√
2. Figure 2

illustrates the stabilization provided by (15); as can be seen in this
figure, the stabilization improves rather quickly with ν. However,
the stabilization remains poor for smaller values of ν, as it is natural
to expect from a design based on asymptotics.

3.2 Optimization of the stabilizer for finite ν

To achieve good stabilization also for small values of ν, we resort
to the numerical direct optimization procedure [8, 9]. Without loss
of generality, let σ = 1. We consider a finite parameter range �=
[0,νmax]. Because of the exponential decay of the p.d.f. (1), only
a finite range of values Z = [0, zmax] is numerically relevant for
�; values z > zmax are treated by defining f (z)= fasympt (z) (15),
with the constant a = f (zmax)− z2max− 12 .

The direct optimization [8, 9] operates by progressively mod-
ifying the stabilizer f over Z with the goal of minimizing a cost
functional F ( f ) : f 0→R. This functional F comprises a main term
Fstabil, which incorporates the accuracy of stabilization over�, and
a few penalty terms, which enable the additional properties needed
for the practical use of stabilizer. The various terms are given in
Table 1, and the overall functional F is obtained by summing these
terms as

F ( f )= Fstabil ( f )+λsmooth · Fsmooth ( f )+
+λasympt · Fasympt ( f )+λinverse · Finverse ( f ), (16)

where λsmooth,λinverse,λasympt ≥ 0 are penalty parameters. In or-
der to guarantee the existence of the exact unbiased inverses I f
(10) and V f (12), the optimization is constrained to functions for
which the mapping E{z|ν,1} 0→ E{ f (z)|ν,1} is strictly increasing.
Without loss of generality, f (0)= 0.

Let us explain the role of the various penalty terms in (16)
(see also Table 1). Firstly, Fsmooth regularizes the stabilizer, pe-
nalizing oscillating solutions. While Fstabil appreciates only the
stabilization for ν ∈ �, the largest values z ∈ Z influence more
the stabilization for ν > νmax than that for ν ∈ �; Fasympt forces
f to approach fasympt as z approaches zmax, thus preserving the
good stabilization provided by fasympt for ν > νmax. The epsilon

> = 2× 10−16 in the denominator is used solely for ensuring nu-
merical well posedness. The role of Finverse is more subtle as it
operates directly over the exact unbiased inverse V f of f ; specif-
ically, if there are singularities that cannot be filtered by �, i.e.
D = �( f (z)) ≈ f (z) /= E { f (z) |ν,1}, then V f (D) can be quite
different from ν = V f (E { f (z) |ν,1}); Finverse ensures that in such
a case V f (D) will not be far from νML (z), which, in maximum-
likelihood sense, is the best estimate that we can have out of an
individual z sample alone.

Different penalty parameters correspond to a different opti-
mized stabilizer argmin f F ( f ). In this paper, we use the two opti-
mized stabilizers shown in Figure 3, which for brevity are referred
to as the stabilizers “A” and “B”.

3.3 Exact unbiased inverse

The exact unbiased inverse transformations I f and V f for the opti-
mized f can be computed by evaluating numerically E { f (z) |ν,1}
with ν ∈ [0,νmax]. For D > maxν∈[0,νmax] E { f (z) |ν,1} =
E { f (z) |νmax,1}, we can consider its asymptotic expression for
large values of D. In particular, it can be shown [1] that the dif-
ference between the exact unbiased inverse I f and the algebraic

inverse f −1 is asymptotically zero. Thus, from (15), we have for
large D

I f (D)≈ f −1asympt (D)= σ (D−a)2+ 1
2
. (17)

Further, by leveraging asymptotic expansions of (4) we obtain

V f (D)= I f (D) 1− σ 2

2I2f (D)
+ . . . ≈ σ (D−a)2

(D−a)2+ 1
2

.

For values of D outside of the range of E { f (z) |ν,σ },
ν ∈ R+, the definitions (11) and (13) are always valid. Of
course, infν E {z|ν,σ } = E {z|0,σ }, supν E {z|ν,σ } = +∞, and,
because of (15), supν E { f (z) |ν,σ } = +∞. Further, since the
mapping E{ f (z)|ν,1} is strictly increasing with ν, we also
have infν E { f (z) |ν,σ } = E { f (z) |0,σ }. Note that the infima
are attained. Therefore, the range {E { f (z) |ν,σ } ,ν ≥ 0} =
E { f (z) |0,σ } ,+∞), and for D ≤ E { f (z) |0,σ } we have
I f (D)= E {z|0,σ } and V f (D)= 0.

Exact unbiased inverses V f (D) corresponding to the stabilizers
in Figure 3 are plotted within the same figure.

4. NOISE-LEVELMISMATCH

Up to now, we assumed that the parameter σ was known exactly.
However, in practice, there can be some mismatch between the true
value of σ and the value σ̂ = λσ assumed in place of σ : it is then
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Figure 3: Optimized stabilizers obtained with penalty parameters (top) λasympt = 1, λsmooth = 10−2, λinverse = 10−
1
2 , and (bottom)

λasympt = 1, λsmooth = 10−4, λinverse = 0: (from left to right) f , std{ f (z) |ν,σ }, and the exact unbiased inverse V f , for σ = 1. The
thin dashed curves in the center plots represent std fasympt (z) |ν,1 and std{z|ν,1}.
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std{ fλ(z) |ν,1}

ν

“B”

std{ fλ(z) |ν,1}

ν

Figure 4: Noise-level mismatch. Standard deviation of the transformed data std{ fλ (z) |ν,1}, for different values of λ, as indicated by the
italic numbers superimposed on the curves. The plots correspond to the stabilizers f of Figure 3.

natural to ask ourselves how well can fσ̂ (7) be used for stabilizing
R(·,σ ), if f is the stabilizer forR(·,1).

Figure 4 shows the standard deviations std{ fλ (z) |ν,1} =
std{ fλσ (z) |σν,σ } of the transformed data for a wide range of val-
ues of λ, where f is the stabilizer “A” or “B” from Figure 3. Values
of λ smaller or larger than 1 correspond, respectively, to underesti-
mation or overestimation of the standard-deviation parameter σ in
the definition of the distribution of z (1)-(3).

From (7) and (15), follows that fλ is asymptotically affine for

large z, with derivative approaching 1λ . Therefore, as can be seen
from the plots in Figure 4, we have

std{ fλσ (z) |σν,σ } = std{ fλ (z) |ν,1} −→
ν→+∞

1

λ
. (18)

5. NOISE-LEVEL ESTIMATION

Exploiting the results from the previous sections, we devise a gen-
eral iterative scheme based on variance stabilization aimed at esti-

mating the value of the σ parameter in (1)-(2) from a single realiza-
tion z.

Let E denote an estimator of the standard deviation σ of the
homoskedastic noise corrupting a signal. Popular examples for es-
timating σ of additive white Gaussian noise (AWGN) in natural im-
ages are the median or mean absolute deviation of the high-pass
filtered signal:

EMedianAD {z} =med{|H {z}|}/�−1 (3/4) , (19)

EMeanAD {z} =mean{|H {z}|} π/2, (20)

where H {z} = z~whi, and whi is a high-pass convolutional kernel
having zero mean and unit L2-norm,

whi = 0, |whi|2 = 1,
such as, e.g., a wavelet function.



5.1 Iterative scheme for estimating σ

The proposed scheme is expressed by the following recursive sys-
tem:

σ̂1 = E{z} ,
σ̂ k+1 = E fσ̂ k (z) σ̂ k , k ≥ 1. (21)

The idea of this recursion originates from (18). The estimate σ̂ k
is used to define a variance-stabilizing transformation for z. If the
estimated value σ̂ k is correct, then the transformation fσ̂ k success-
fully stabilizes the data and when E is applied to the stabilized data
it should return a value E fσ̂ k (z) close to 1. If the estimated value

σ̂ k is not correct (e.g., an under-estimate of σ ), then the stabilization
is not accurate, being roughly the inverse of the misestimation ratio
(18), E fσ̂ k (z) ≈ σ

σ̂ k
. Hence, we correct the current estimate σ̂ k

by multiplying it by E fσ̂ k (z) . Observe that if E fσ̂ (z) = 1 for
some value σ̂ , then this σ̂ is a fixed point for (21) and we want the
sequence σ̂ k to converge to such σ̂ . The system (21) is initialized
by the estimator E applied on the non-stabilized data z.

In practice, we can guarantee converge with exponential rate to
an accurate and stable estimate σ̂ of the true value σ by applica-
tion of the contraction mapping theorem. Due to space limitation,
here below we provide only a sketch of the proof under a simplified
modelling.

5.2 Convergence of the iterative scheme for estimating σ

The study of convergence is based on a perturbation analysis of the
univariate mappingMz : σ̂ k 0→ σ̂ k+1 defined by

Mz σ̂ = E fσ̂ (z) σ̂ ,

modeling E fσ̂ (z) ≈meanx∈X std fσ̂ (z) |ν (x),σ . To give a
rough and very preliminary intuition of our study, let us consider the
case where E{ fσ (z)} = 1. This case would arise under the ideal hy-
potheses that the stabilization is exact, i.e. std{ fσ (z) |ν,σ } ≡ 1, and
that the estimator E successfully returns this value, i.e. E{ fσ (z)} =
std{ fσ (z) |ν,σ } ≡ 1. In this case, σ is a fixed point for the mapping
Mz , i.e. σ =Mz (σ), and any of the following conditions may be
leveraged to ensure convergence of the sequence σ̂ k (21) to σ :

1. Mz is a contraction, i.e. there exists γ ∈ [0,1) such that
Mz σ

) −Mz σ
)) ≤ γ σ )−σ )) for any pair σ ),σ )).

2. Mz is continuous and Mz σ̂ −σ < σ̂ −σ for σ̂ /= σ .
These conditions are met within a neighborhood of σ provided

that Mz is smooth and
∂
∂σ̂
Mz σ̂

σ̂=σ < 1. Simple deriva-

tions yield ∂
∂σ̂
Mz σ̂

σ̂=σ = σ
∂
∂σ̂
E fσ̂ (z)

σ̂=σ + 1. If we

substitute E fσ̂ (z) with meanx∈X std fσ̂ (z) |ν (x) ,σ ,

the bound on ∂
∂σ̂
Mz σ̂

σ̂=σ can be replaced by

∂
∂σ̂
std fσ̂ (z) |ν,σ

σ̂=σ +
1
σ < 1

σ , ν ≥ 0. Upon scaling,

this coincides to ∂
∂λ std fλ (z) | νσ ,1 λ=1+1 < 1, ν ≥ 0. Thus,

under the above ideal hypotheses, the iterative scheme (21) can
successfully be used to estimate σ provided that

−2< ∂

∂λ
std{ fλ (z) |ν,1}

λ=1
< 0, ν ≥ 0. (22)

Figure 5 gives an illustration of the ∂
∂λ std{ fλ (z) |ν,1} λ=1 for the

stabilizers “A” and “B”; it can be seen that the inequality (22) in-
deed holds for both transformations.

6. EXPERIMENTS

This section is structured in three parts. First, we consider the de-
noising problem assuming exact knowledge of σ ; second, we focus
on the problem of estimating the value of σ from a given image;
third, we present denoising experiments where the stabilization is
made with an estimate σ̂ of σ , in order to illustrate the robustness

“A” (red dashed)

“B” (black solid)

∂
∂λ std{ fλ (z) |ν,1} λ=1

ν

Figure 5: Partial derivative of the standard deviation of the stabi-
lized Rician data std{ f (z) |ν,σ } for fixed σ = 1 with respect to the
σ value asssumed by the stabilizer, plotted as function of ν.

with respect to stabilization based on an imprecise value of σ . As
test data, we use the T1 phantom of size 181×217×181 from the
BrainWeb dataset [2] corrupted with different levels of Rician noise.

6.1 Denoising (exact σ )

To validate our stabilization approach, we compare the denoising
performance of a state-of-the-art filter specifically designed for Ri-
cian noise removal against its counterpart designed for Gaussian ob-
servations. The latter filter is applied between our forward variance
stabilizing transformation “A” and the corresponding exact unbi-
ased inverse. In particular, as filters we use the optimized blockwise
volumetric NLmeans algorithm with wavelet mixing (OB-NLM3D-
WM) [4], in its Gaussian [3] and Rician [17] versions. Here the sta-
bilizer is scaled according to the exact noise level σ . For the sake
of memory requirements when using the OB-NLM3D-WM algo-
rithms [12], only the 181×217×51 middle portion of the phantom
was processed. The PSNR results are given in rows 2 and 4 of Table
2. There are only marginal differences between the results obtained
with the Rician version of the algorithm and those obtained using
the Gaussian version inserted in the proposed variance-stabilization
framework.

6.2 Noise estimation

To validate our iterative scheme for estimating σ , we compare the
state-of-the-art robust estimator [5, 13] for Rician data, which is
based on the EMedianAD (19) and exploits both automatic segmen-
tation and iterative SNR correction [11] in order to achieve unbiased
estimation for the Rice distribution, against its direct counterpart for
additive white Gaussian noise (obtained by disabling the iterative
correction [11]), which we use at every iteration of the scheme (21)
in place of the operator E. For the variance stabilization, we use the
optimized transformation “B”. About three to five iterations of (21)
are usually sufficient to reach numerical convergence of σ̂ k with a

relative precision (stopping rule) of
|σ̂ k−σ̂ k−1|

σ̂ k
<10−4.

Figure 6 shows the average relative error 1− σ̂σ over 10 inde-
pendent replications where the estimated values σ̂ are obtained with
our approach (“VST + Gaussian MAD”) and by the method [5]
(“Rician MAD”). As can be seen in the plots, there is no essential
difference in performance between the two methods, which con-
firms that our recursive technique based on variance stabilization is
successful in enabling the accurate estimation of σ̂ from Rician ob-
servations using estimators of the standard deviation designed for
additive Gaussian noise.

6.3 Denoising with estimated σ

Here we repeat the experiments of Section 6.1 with the only modi-
fication that the value of the noise level σ assumed by the transfor-
mations in not the exact one but the one estimated by the proposed
estimation algorithm, as detailed in Section 6.2. The PSNR results



σ (%) 1 3 5 7 9 11 13 15

Noisy observations z 40.04 30.52 26.11 23.21 21.05 19.32 17.89 16.66
Rician OB-NLM3D-WM with exact σ 43.14 38.14 35.18 33.11 31.51 30.19 29.04 28.02
Rician OB-NLM3D-WM with estimated σ̂ 43.15 38.14 35.18 33.11 31.51 30.18 29.04 28.01
VST + Gaussian OB-NLM3D-WM with exact σ 43.21 38.25 35.25 33.14 31.52 30.19 29.03 27.99
VST + Gaussian OB-NLM3D-WM with estimated σ̂ 43.22 38.25 35.24 33.14 31.52 30.15 29.01 27.97

Table 2: Denoising of Rician-distributed volumetric phantom data. PSNR (dB) results obtained using the optimized blockwise volumetric
NLmeans denoising algorithm with wavelet mixing in its version specifically designed for Rician data (Rician OB-NLM3D-WM) versus
those obtained using the proposed variance-stabilization framework (VST) combined with the standard version of the denoising algorithm,
which is designed for Gaussian data (Gaussian OB-NLM3D-WM).

Figure 6: Noise-level estimation performance as 1− σ̂σ . The thin
dashed lines show the unit deviation from the mean result (thick
line) over 10 independent replications.

are given in rows 3 and 5 of Table 2. There is basically no signif-
icant difference between these results and those obtained using the
exact value of σ (rows 2 and 4 of the table).

7. CONCLUSIONS

We developed optimized variance-stabilizing transformations for
the Rician distribution, as well as the corresponding exact unbiased
inverse transformations. This makes possible the successful appli-
cation of denoising algorithms designed for filtering data corrupted
by AWGN for the more challenging problem of MR image filter-
ing. We have also verified the stability of the variance stabilization
with respect to misestimation of the noise-level parameter. From
this analysis we derived an algorithm for estimating the noise level
from a single Rician-distributed image which is based on conven-
tional noise standard-deviation estimators for AWGN.

The developed framework delivers state-of-the-art results in
both estimation and removal of Rician noise using simpler algo-
rithms designed for AWGN instead of ad-hoc algorithms specifi-
cally designed for Rician-distributed data.

An open-source Matlab implementation of the proposed frame-
work is provided at [10].

Ongoing research is aimed at generalizing these results to
generic exponential distribution families.
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