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Abstract: There has been great interest recently in the use of designed experiments

to improve quality by reducing the variation of industrial products. A major stim-

ulus has been Taguchi’s robust design scheme, in which experiments are used to

detect factors that affect process variation. We study here one of Taguchi’s novel

ideas, the use of noise factors to represent varying conditions in the manufacturing

or use environment. We show that the use of noise factors can dramatically increase

power for detecting factors with dispersion effects, provided the noise factors are

explicitly modeled in the subsequent analysis.
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1. Introduction

Planned experiments have become a major tool for quality improvement dur-
ing the last decade, stimulated in large part by the quality engineering ideas of
Genichi Taguchi (Kackar (1985), Phadke (1989), Nair (1992)). A major goal of
Taguchi’s quality improvement experiments is to determine which design factors
(i.e., controllable process parameters) have dispersion effects (i.e., affect variabil-
ity) and thereby to find settings of the design factors that will minimize vari-
ability. Robust design refers to quality engineering activities aimed at achieving
that goal. One of the novel ideas in Taguchi’s work on industrial experiments is
the use of noise factors, which are impossible or too expensive to control during
product manufacture or use but can be set at fixed levels in an experiment and
varied jointly with design factors.

Two examples will help clarify the aims and methods of robust design ex-
periments. Pignatiello and Ramberg (1985) described a study to identify process
conditions that would consistently produce leaf springs for motor vehicles with
a free height of 8 inches. Four design factors were studied: furnace temperature,
heating time, transfer time (from the furnace to a press that forms the camber
of the spring), and hold down time in the press. The final production step called
for submersing the spring assembly in a hot oil quench. The process engineers
suspected that the oil temperature influenced spring length. This temperature
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was difficult to control in regular production but could be monitored for inclu-
sion in the experiment as a noise variable, with the goal of identifying settings of
design factors that would minimize its effect on spring length.

Engel (1992) described a robust design experiment on an injection molding
process. The goal of this experiment was to find process settings that would
consistently obtain a target shrinkage value. Seven process parameters were
included as design factors. Three factors, percent regrind, moisture content, and
ambient temperature, were included as noise factors. These factors could be
controlled for the experiment, but would not be controlled in regular production.

This article will focus on two questions: (i) should noise factors be included
in an experiment? (ii) if they are included, how should the experimental data
be analyzed? We show that the use of noise factors can substantially improve
the ability to detect dispersion effects, but only if the noise factors are explicitly
modeled. Our study was motivated in part by Gunter (1988) (see also Carroll and
Ruppert (1988)), who noted that power to detect dispersion effects can be quite
low when conventional replication is used. We show that the use of product array
experiments can provide valuable information on dispersion effects with much
smaller samples. Among practitioners, a popular method of analyzing robust
design experiments with noise factors is to score each design factor combination
by a “signal-to-noise (SN) ratio”, as advocated by Taguchi (1987). Our results
show that the SN analysis fails to exploit the potential of noise factors.

The paper is organized as follows. In Section 2, we present the most com-
monly used experimental plans for noise factors and some simple models that
relate noise factors to dispersion effects. In Section 3 we present a study of sta-
tistical power in a simple setting. The power study proves the value of using
noise factors in robust design experiments. In Section 4 we discuss extensions
of the results to more complex and realistic settings. We illustrate the ideas in
Section 5 by re-analyzing the data from the leaf spring experiment. We conclude
with discussion and summary in Section 6.

2. Designs, Models and Analyses

Most robust design experiments, following the work of Taguchi (1987), have
used product arrays for joint study of design and noise factors. In these designs,
separate arrays are chosen for the design and the noise factors and then each
combination in the design factor array is paired with each combination in the
noise factor array, producing a matrix of data. The analysis recommended by
Taguchi involves two steps: (i) summarize the data for each design factor combi-
nation, then (ii) study how the summary measure depends on the design factors.
To test for dispersion effects of the design factors, Taguchi typically uses the
logarithm of the coefficient of variation as a summary statistic.



NOISE FACTORS, DISPERSION EFFECTS, AND ROBUST DESIGN 69

Recent statistical research on robust design experiments has favored a “re-
sponse model” analysis, which includes effects for both noise factors and design
factors. This idea is implicit in Easterling (1985) and has since been espoused by
Lorenzen and Villalobos (1990), Shoemaker, Tsui and Wu (1991), Steinberg and
Bursztyn (1994), Tsui (1996), Welch, Yu, Kang and Sacks (1990), and many of
the discussants in Nair (1992).

The simplest response model of interest is one that includes main effects
for all the factors together with design factor by noise factor interactions. The
model can be written as follows. Let Y denote the quality characteristic of
interest, X1, . . . ,Xk the design factors and N1, . . . , Nt the noise factors. Then

E{Y (X1, . . . ,Xk, N1, . . . , Nt)} = β0+
k∑

i=1

βiXi+
t∑

u=1

αuNu+
k∑

i=1

t∑
u=1

αiuXiNu. (1)

We will assume that all the observations are independent and have common
variance σ2. This assumption is discussed briefly in Section 6.

In actual production, we can set the levels of the design factors, but the noise
factors will vary according to their natural distributions. We assume in equation
(1) that the noise factors have been coded so that Nu is the deviation of the noise
factor from its expectation. Then, following Myers et al. (1992), if the design
factors are set to X1, . . . ,Xk, the process mean will be

β0 +
k∑

i=1

βiXi (2)

and the process variance will be

σ2 + VarN

{ t∑
u=1

[αu +
k∑

i=1

αiuXi]Nu

}
= σ2 + α(X)′V α(X), (3)

where αu(X) = αu+
∑k

i=1 αiuXi is the effect of Nu when the design factors are set
at X, and V is the random variation covariance matrix of the noise factors. This
matrix can be estimated from data external to the experiment, using observed
process data for noise factors that reflect variable production conditions or field
data for environmental factors.

The design factor by noise factor interactions link the design factors to the
process variance. If Xi interacts with Nu, then we can attempt to choose a level
of Xi for which the effect of Nu is close to 0. Shoemaker et al. (1991) showed
that Taguchi’s product array designs enable estimation of all these interactions.

The following simple analysis is suggested:



70 DAVID M. STEINBERG AND DIZZA BURSZTYN

1. Perform a standard factorial analysis of the k+t factor experiment to estimate
all main effects and design factor by noise factor interactions. A normal
(or half-normal) probability plot of all the orthogonal contrasts is useful for
screening out the important effects.

2. Minimize the process variance of Y by choosing levels of the design factors so
that each of the sums αu +

∑k
i=1 αiuXi is close to 0.

3. Adjust the process mean to a target level, if that is one of the goals of the
experiment, using design factors that have strong main effects but minimal
interactions with noise factors.
The end result is a process that is on-target and has minimal transmitted

variability. The key feature of this procedure is step 2, where design factor by
noise factor interactions are used to choose levels of the design factors that neu-
tralize the effects of the noise factors and thereby minimize transmitted variation.
The idea of exploiting these interactions was also discussed by Lorenzen and Vil-
lalobos (1990), Myers et al. (1992), Shoemaker et al. (1991), and Shoemaker and
Tsui (1993). See also sections 2, 3 and 6 of Nair (1992).

The above “algorithm” for analysing robust design experiments must, of
course, be complemented by common sense, process knowledge and good data
analysis. For example, it may be desirable, as suggested by Box (1988), to
transform the raw data before conducting the analysis. The choice of some
design factor levels will entail trade-offs between the process mean and the process
variance. An advantage of the response model approach is that it makes these
trade-offs explicit and easy to compute.

3. Noise Factors and Power to Detect Dispersion Effects

3.1. Testing for dispersion effects

Including noise factors in an experiment may be costly and difficult. It will
often be much simpler to assess dispersion from “conventional” replicate obser-
vations at design factor settings. Is the use of noise factors worth the trouble?
If they are included, should their effects be modeled explicitly or is the row-
summary analysis advocated by Taguchi (1987) preferable? In this section, we
focus on the ability to detect dispersion effects in the simple setting of a two-level
factorial design with just one control factor X and one noise factor N . The re-
sults for this simple case are useful in analyzing more realistic experiments with
many factors, which we discuss in Section 4.

For now, we assume that

Y (X,N) = β0 + βXX + βNN + βXNXN + ε, (4)

where ε ∼ N(0, σ2). Recall from Section 2 that X has a dispersion effect if it
interacts with N . We compare several design and analysis strategies in terms of
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their power for level α tests of the hypotheses

H0 : βXN = 0

H1 : βXN �= 0.

Although we do not recommend a rigid testing approach to data analysis, the
power comparisons provide an excellent basis for comparing the strategies.

An important decision in planning the experiment is whether or not to in-
clude the noise factor N . If so, we assume that a 22 design will be used with
m/2 observations in each cell. If not, we assume that m observations are taken
at each of two levels of X and that N varies at random according to a N(0, σ2

N )
distribution. At the analysis stage, one must decide whether to use row-summary
statistics or to explicitly model the noise factor effects. Each of the following sec-
tions examines a different design and analysis strategy. An important quantity
in describing the results is δ = βXNσN/σ.

3.2. Noise factor not included in the design

When the noise factor is not included in the experiment, one can test for a
dispersion effect using the ratio of the sample variances of the m observations
at each level of X, F = s2(+)/s2(−). For example, the analysis of Nair and
Pregibon (1988) reduces to an F -test in our simple setting. The use of Taguchi’s
signal-to-noise ratio for nominal-is-best type problems is essentially equivalent to
comparing the sample variances of the logged data (Box (1988)).

The F -test is two-sided because either level of X might have the lower vari-
ance. Thus we reject H0 if F > Fc or F < 1/Fc, where the critical value Fc is
the upper α/2 quantile of the F (m − 1,m − 1) distribution. The power of the
F -test depends on the true process variances at each level of X, which are

σ2(−) = σ2 + σ2
N (βN − βXN )2 and σ2(+) = σ2 + σ2

N (βN + βXN )2 (5)

when X = −1 and when X = 1, respectively. Then (σ2(−)/σ2(+))F has an
F (m − 1,m − 1) distribution and the power of the F -test is

Power(βXN , βN ) = Pr{F > Fc} + Pr{F < 1/Fc}
= Pr{(σ2(−)/σ2(+))F > (σ2(−)/σ2(+))Fc}

+ Pr{(σ2(−)/σ2(+))F < σ2(−)/(σ2(+)Fc)}
= Pr{F (m − 1,m − 1) > (σ2(−)/σ2(+))Fc}

+ Pr{F (m − 1,m − 1) < σ2(−)/(σ2(+)Fc)}
= Pr{F (m − 1,m − 1) > (σ2(−)/σ2(+))Fc}

+ Pr{F (m − 1,m − 1) > (σ2(+)/σ2(−))Fc}. (6)
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The last equality follows from the fact that if W has an F distribution with
equal degrees of freedom in numerator and denominator, then 1/W has the same
distribution.

The power of the F -test depends on βN as well as the other parameters.
Figure 1 illustrates the effect of βN on the power of the F -test when δ = 1 and
m = 8. The variance ratio is then

σ2(−)
σ2(+)

=
1 + ((βN/βXN ) − 1)2

1 + ((βN/βXN ) + 1)2
.

The power is highest when βN and βXN are approximately equal, so that the
noise variable makes almost no contribution to σ2(−) and the variance ratio is far
from 1. However, moderate reductions in process variance are difficult to detect,
as noted by Gunter (1988).

P
o
w

e
r

β(N)/β(XN)

Figure 1. The power of the F -test when the noise factor is not controlled
and δ = 1. When βN/βXN is not close to 1, the F -test has almost no ability
to detect the dispersion effect of X .

In the comparisons that follow, we exaggerate the efficiency of the F -test
by maximizing the power over βN . The relevant bound is given in the following
Lemma, which we prove in the appendix.

Lemma. When the noise factor is not controlled,

Power(βXN , βN ) ≤ Pr{F (m−1,m−1) > rFc}+Pr{F (m−1,m−1) > (1/r)Fc},
(7)

where

r =
(1 + δ2)1/2 − 1
(1 + δ2)1/2 + 1

(8)
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is the minimal value of the variance ratio σ2(−)/σ2(+) for fixed βXN .

3.3. Noise factor included in the design with response model analysis

Suppose that the noise factor has been included in the experiment at levels
±γσN . A standard factorial analysis computes the interaction term between X

and N as
XN = Ȳ (XN = 1) − Ȳ (XN = −1). (9)

The regression coefficient β̂XN is related to XN , for our scaling convention, by

β̂XN = XN/(2γσN ). (10)

The obvious way to test H0 is via the t-ratio,

t =
√

(m/2)XN/s, (11)

where s2 is the standard unbiased estimator of σ2. The level α t-test rejects H0

if |t| > t2m−4,1−α/2, the upper α/2 quantile of the t distribution with 2m − 4
degrees of freedom. The t-test can be used only if m > 2; otherwise there are no
residual degrees of freedom to estimate σ2. The power is

Power(βXN ) = Pr{|t| > t2m−4,1−α/2} (12)

and can be computed from the fact that t has a non-central t distribution with
2m − 4 degrees of freedom and non-centrality parameter γδ

√
2m.

3.4. Noise factor included in the design with row summary analysis

We now consider what happens when the noise factor has been included in
the experiment but the analysis is based on row summaries, as in Section 3.2.
Again the natural test statistic is the variance ratio F = s2(+)/s2(−), perhaps
after appropriate transformation of the original data.

When N has been controlled, the F -test is no longer valid! Under model
(4), the sample variance at each level of X includes a “between groups” sum of
squares component that reflects the different means at the two levels of N . Thus
s2(+) and s2(−) have non-central χ2 distributions with m−1 degrees of freedom
and non-centrality parameters

λ(+) = m(βN + βXN )2γ2σ2
N/(2σ2) (13a)

and
λ(−) = m(βN − βXN )2γ2σ2

N/(2σ2), (13b)

respectively, and the variance ratio has a doubly non-central F distribution. An-
alyzing the data as though the noise factors had not been included may lead not
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only to reduced power, but to incorrect rejection probabilities. If, for example,
H0 is true and most of the process variance is contributed by the noise factor,
the distribution of the variance ratio will be heavily concentrated about 1 and
the true level of significance will be much smaller than α. A test for H0 based
on the true null distribution is impractical, since the rejection region depends on
βN .

Although the F -test is invalid when N has been controlled, such row sum-
mary analyses are commonly used by practitioners (see many articles in the pro-
ceedings of the American Supplier Institute’s symposia) and have been applied
extensively in statistical journals (Engel (1992), Ghosh and Duh (1992), Nair
and Pregibon (1988), Tuck, Lewis and Cottrell (1993), Vining and Myers (1990)
and Rosenbaum (1994)). Thus we think it is relevant to consider the ability of
this analysis to detect dispersion effects. Let F ∗ denote a random variable with
the appropriate doubly non-central F distribution and let Fc be the upper α/2
quantile of the central F (m − 1,m − 1) distribution Then

Power(βXN , βN ) = Pr{F ∗ > Fc} + Pr{F ∗ < 1/Fc}. (14)

Using the technique in Scheffé (1959) to approximate the doubly non-central F

leads to

Power(βXN , βN ) ≈ Pr{F (m1,m2) > aFc} + Pr{F (m1,m2) < a/Fc}, (15)

where a = (m − 1 + λ(−)2)/(m − 1 + λ(+)2) and the degrees of freedom are

m1 =
[m − 1 + λ(+)2]2

m − 1 + 2λ(+)2
and m2 =

[m − 1 + λ(−)2]2

m − 1 + 2λ(−)2
.

For our comparisons we again exaggerate the efficiency of this test by maxi-
mizing the power over βN . We have no analytic bound here, so the maximization
is numerical. Inspection of the results shows that the best value of βN here al-
most eliminates the effect of the noise factor at one of the levels of the design
factor and is similar to that derived for the case when the noise factor is not
controlled.

3.5. Power comparison

Figures 2 and 3 graph the power as a function of δ = βXNσN/σ for m = 4
and m = 8. For the t-test, the power is graphed for γ = 0.5 and for γ = 1. For
the F -test with N controlled, the power is graphed only for γ = 1. For both
F -tests, we have graphed the upper bounds to the power.
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δ = β(XN)σ(N)/σ

Figure 2. The power of the dispersion tests with 4 observations at each setting
of X . The two long dashed lines are the t-tests – the higher line corresponds
to γ = 1.0 and the lower line to γ = 0.5; the solid line is the F -test when
N is not controlled; the short dashed line is the F -test when N is controlled
with γ = 1.0. For both F -tests, the graph shows maximal power over βN for
given δ.

P
o
w

e
r

δ = β(XN)σ(N)/σ

Figure 3. The power of the dispersion tests with 8 observations at each setting
of X . The two long dashed lines are the t-tests – the higher line corresponds
to γ = 1.0 and the lower line to γ = 0.5; the solid line is the F -test when
N is not controlled; the short dashed line is the F -test when N is controlled
with γ = 1.0. For both F -tests, the graph shows maximal power over βN for
given δ.
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The striking fact is that the t-test has much greater power for detecting
whether X has a dispersion effect than do either of the F -tests. Even when the
noise factor is controlled at ±0.5σN , the power of the t-test is roughly equal to
the best attainable power of the F -tests. From Figure 1, we know that the power
of the F -test can fall well below the maximum.

The power comparison answers the two questions that we posed in Section 1:
(i) Including noise factors in a robust design experiment can significantly increase
the power to detect dispersion effects and can thus overcome the difficulties
foreseen by Gunter (1988) and by Carroll and Ruppert (1988); (ii) It is essential
that the analysis explicitly model the noise factors when they have been controlled
in the experiment, rather than computing summary measures for each design
factor combination.

Bérubé and Nair (1998) reached similar conclusions about the usefulness of
noise factors, but from a slightly different perspective. They showed that the
ability to estimate dispersion effects is an increasing function of the percentage
of variance in the response that can be attributed to noise factors. Thus the
experiment will be most informative if it includes noise factors with large effects
on the response. These results complement our conclusions that using noise
factors can improve power to detect dispersion effects.

3.6. Choice of noise factor levels

If the noise factor is controlled, how should one choose its experimental
levels? Setting the levels at ±γσN , the non-centrality parameter for the power
calculation is proportional to γ

√
(m/2). Thus doubling γ has roughly the same

effect on power as quadrupling the sample size, which suggests that γ should be
chosen as large as possible. A drawback to choosing γ large is that equation (4)
may cease to be an adequate model for the data (see Tribus and Szonyi (1989)).
Equation (12) for calculating power will then be incorrect.

We recommend γ = 1.5 as a good default value, with γ = 1 a minimal choice.
Three reasons guide our advice: (1) The most important noise factors will often
have an effect on the response that, if not perfectly linear, is at least monotonic.
(2) For noise factors with a monotonic effect, large values of γ will be effective
for identifying levels of the control factors at which the noise factor has a small
effect. (3) The potential gains in power are substantial.

4. Dispersion Effects in Multi-Factor Experiments

In this section we consider the effect of both design and analysis on the
ability to detect dispersion effects in the common practical setting of experiments
with many factors and no replication. We assume that equation (1) provides a
reasonable model when both design factors and noise factors are controlled in
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the experiment and that a product array design with m observations in each row
has been used to facilitate the use of row summary analyses. We assume that
the noise factors vary randomly if they are not included.

We again conclude that there is much to be gained from including noise fac-
tors in the experiment, but only if they are explicitly modeled in the analysis.
Row summary analyses typically have low power, and, in certain circumstances,
can be totally misleading, missing relevant dispersion effects, identifying non-
existent effects, and advocating sub-optimal design factor settings. In the fol-
lowing subsections, we review the results for full factorial analyses, develop some
theory for studying row summary analyses, and then compare the methods in
several specific settings.

4.1. Full factorial analysis with noise factors

When noise factors are included in a robust design experiment, we can con-
duct a standard analysis, focusing on main effects and design factor by noise
factor interactions. A normal, or half-normal, probability plot can be used to
identify the important contrasts. The power for detecting a design factor by noise
factor interaction, and hence a dispersion effect, is again given by equation (12),
with appropriate adjustments to reflect the sample size and the error degrees of
freedom.

4.2. Row summary analyses

A number of different row summary statistics might be used to look for
dispersion effects. We will focus on comparing row variances. Our conclusions
will be relevant to the analysis proposed by Nair and Pregibon (1988), which is
based on modeling the logged variances, and to Taguchi’s signal-to-noise ratio
for reducing variance about a target value.

It is useful to decompose each row variance into components for each noise
factor and for residual variation. Denote the m observations in row i by yi,j, the
row average by ȳi and the design factor combination by Xi. The row variance is

s2
i =

∑
(yi,j − ȳi)2/(m − 1) =

( t∑
u=1

SSNu,i + SSEi

)
/(m − 1), (16)

where SSNu,i is the sum of squares for the uth noise factor and SSEi is the
residual sum of squares for the data in row i.

If the noise factors were controlled in the experiment, this is a standard
ANOVA decomposition and

SSNu,i = m[ȳi(Nu = 1) − ȳi(Nu = −1)]2/4. (17)
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If Nu was set at ±γuσu, where Var {Nu} = σ2
u under natural variation, then

αu(Xi) is the effect of Nu for row i and

E{s2
i } = σ2 +

m

m − 1

∑
[αu(Xi)]2γ2

uσ2
u. (18)

If the noise factors were not controlled, we can think of equation (16) as
decomposing the row variance into noise factor and residual components via the
regression model

Yi,j = µ(Xi) +
∑

αu(Xi)Nu(i,j) + εi,j, (19)

where Nu(i,j) is the value of the noise factor Nu for the jth observation in row i.
In this case,

E{s2
i } = σ2 +

m

m − 1
α(Xi)′V α(Xi), (20)

where V is the covariance matrix of the noise factors under random variation.
Thus in both cases the sum of squares component for the noise factors in-

creases as a function of the distance of αu(Xi) from the origin and similar con-
clusions will hold for the ability to detect dispersion effects.

4.3. Several design factors interact with one noise factor

Suppose there is just one active noise factor, Nu, which interacts with the
design factors X1, . . . ,Xr. The effect of Nu for a setting X of the design factors
will be

αu(X) = αu +
r∑

i=1

αiuXi.

The full factorial analysis will detect the interactions if they are large relative to
the error standard deviation.

The sensitivity of the row variance comparison will depend on the relative
sizes of the variances, as in Section 3. If αu is much larger than the interactions,
then all the rows will have similar variances and analyzing them will have low
power to detect dispersion effects.

Now consider what happens if αu ≈ 0. If just one design factor, say X1,
interacts with Nu, then αu(X) will have similar magnitude, but opposite sign,
depending on the setting of X1. The row variances will all be similar and no
dispersion effects will be found. However, if X1 is a continuous factor, the effect
of Nu can be neutralized by setting X1 to an intermediate level (see Lorenzen and
Villalobos (1990)). If several design factors interact with Nu, there may be many
settings of the design factors at which the interactions cancel one another and thus
minimize transmitted variation. Estimating the interaction coefficients easily
allows these settings to be identified. The row variances can differ substantially,
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since at other settings, the interactions may amplify one another, resulting in
large variances. However, no single factor adjustment will make the slope of Nu

closer to 0, so an analysis of row variances will not show any main effects for
the design factors. Instead, the analysis will detect interactions among design
factors. Moreover, if the design factor plan has resolution III, such an interaction
may be incorrectly interpreted as the main effect of a third factor which has no
dispersion effect at all. (See Steinberg and Bursztyn (1994) for an example.)

The most favorable situation for the row variance analysis occurs when αu

is large enough so that αu(X) has constant sign, but is near 0 for at least some
of the experimental settings of the design factors. This mirrors the analysis
in Section 3 that found highest power for the F−test when βN ≈ βXN . The
variance ratios will be most extreme if one of the design factors has a dominant
interaction rather than if all the factors have moderate interactions. But that
brings us back to the case studied in Section 3, where power is much lower than
with the response model analysis.

4.4. Interactions with several noise factors

From equations (18) and (20), the expected sum of squares for row i has a
noise factor component and a residual component. The row summary analysis
will be sensitive to a dispersion effect of a design factor X only if the noise factor
component dominates the sum of squares and is close to 0 for one experimental
level of X. If just one of the noise factors dominates the sum, we are again
back in the setting of Section 3, with low power for the row summary analyses.
If several noise factors are important, it may be that setting X near its high
level neutralizes some of the noise factors but setting X near its low level is
better for neutralizing others. In this case, an analysis of the row variances is
unlikely to detect any dispersion effect for X. In fact, the situation may be much
more promising and knowledge of such an interaction pattern can be quite useful
for reducing process variance. If several design factors interact with the noise
factors, it will often be possible to find joint settings of the design factors that
neutralize all the noise factors. Alternatively, the setting of X might be chosen
to neutralize some of the noise factors with the others controlled by measures to
reduce their natural variation such as improving the production environment or
tightening tolerances. The response model analysis effectively exposes all these
possibilities.

5. Example

In this section we illustrate the ideas of the previous sections by analyzing
the experiment described by Pignatiello and Ramberg (1985), whose goal was to
identify process conditions that would consistently produce leaf springs with a
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free height of 8 inches. The experimental plan was a 24−1 factorial in the design
factors crossed with the high and low levels of the noise factor, the oil quench
temperature. Three replicates were observed at each setting in the design.
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Figure 4. Half-normal probability plot of the factor effects in the leaf spring
experiment.

Table 1. The leaf spring experiment – major effects and interactions on free
spring height. The four design factors are Furnace Temperature (A), Heating
Time (B), Transfer Time (C), and Hold Down Time (D). The noise factor
is Oil Quench Temperature (O).

Main Effects Interactions
O −0.26 BO 0.165
A 0.22 AO 0.085
B −0.18
D 0.10
C −0.03

The response model approach treats the leaf spring experiment as a 25−1 frac-
tional factorial replicated three times. Figure 4 shows a half-normal probability
plot of the 15 effects and Table 1 lists the main effects and the large interactions.
The oil quench temperature (O) has a large main effect, −0.26, confirming that
uncontrolled production variation may cause substantial variation in free height.
Two design factors have large interactions with oil quench temperature, heating
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time (B) and furnace temperature (A). The effect of the oil quench temperature
can be neutralized by setting these factors at their high levels. The estimated
effect of the oil quench temperature is then −0.26 + 0.165 + 0.085 = −.01.

Pignatiello and Ramberg (1985) presented an analysis of these data based on
the signal-to-noise ratio SN = −20 log(s/ȳ) that has been proposed by Taguchi
(1987) for experiments whose goal is to minimize variance about a target value. In
this analysis, SN is computed from the average ȳ and the standard deviation s of
the 6 observations at each of the eight design factor combinations. The results are
summarized in Table 2. The SN analysis indicates that heating time (B) has a
dispersion effect and should be set at its high level. However, interpretation of any
additional effects is complicated by the large interactions. The next largest main
effect is due to transfer time (C), but is smaller in magnitude than an effect which
may be due to the BC interaction. If we assume that the BC interaction really is
responsible for that large effect, then the analysis suggests setting transfer time
to its low level. The dispersion effect of the furnace temperature is not detected
in this analysis.

Table 2. The leaf spring experiment – major effects and interactions on the
signal-to-noise ratio. The four design factors are labeled A-D.

Main Effects

B 9.27
C −4.57
D 2.94
A −0.34

Interactions

AD + BC −5.19
AC + BD 3.45
AB + CD −2.30

The analysis of summary measures from the leaf spring experiment misses the
simple solution found by the response model analysis for neutralizing the effect
of the oil quench temperature. Moreover, the failure occurs in a setting that is
ideally conducive to the row summary analysis. As noted in the last section,
this analysis should be most efficient when the effect of the noise factor is always
in the same direction, but is close to 0 for some combinations of the design
factors. In the leaf spring experiment, the effect of the oil quench temperature
at the eight design combinations ranges from −0.54 to 0.01. The variations in
the effect of the oil temperature are effectively explained by the settings of the
furnace temperature and the heating time, but the SN analysis fails to identify
the dispersion effects.

6. Discussion

Robust design experiments with controlled noise factors can be an extremely
valuable tool for quality improvement. In this section we discuss some additional
practical issues that add further weight to our recommendations.
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We have assumed throughout that the residual variance is constant. What
happens if the residual variance depends on the design factors? This situa-
tion might occur if some important noise factors could not be controlled in the
experiment. Non-constant residual variance will be reflected in row summary
measures of variation and has been advanced by Taguchi (1987), Taguchi (1992),
and Phadke (1992) as one of the reasons for using row summary analyses. This
feature strikes us as small compensation for the great loss in power to detect
dispersion effects directly related to the noise factors. Moreover, two critical
issues are ignored. First, the row summary analyses will still suffer from the
lack of power noted by Gunter (1988) – differences in residual variance will be
almost impossible to detect unless they are extremely large. Second, differences
in residual variation can also be studied from the response model analysis by
examining residuals (Asscher (1995), Bergman and Hynén (1997)), an approach
that we think is much more direct and effective than analyzing row summaries.

It has been argued that the product array designs proposed by Taguchi (1987)
for robust design experiments are impractical because they require too many runs
(see the discussion in Nair (1992)). For identifying dispersion effects, our results
show that good designs must enable estimation of design factor by noise factor
interactions. To estimate all these interactions, product arrays constructed from
Plackett-Burman designs have minimal sample sizes and thus can be an effective
choice. Engineering considerations may suggest that some interactions are much
more likely than others, in which case smaller designs can often be found (see
Shoemaker et al. (1991) and Welch et al. (1990)).

Finally, it is important to consider robust design experiments in the larger
context of quality improvement. Often the empirical analysis of these experi-
ments will indicate settings of design factors that provide a higher quality pro-
cess. However, the knowledge gained from a thorough analysis of the experiment
may lead to improvements well beyond those immediate empirical confines. We
believe that one of the greatest benefits of including noise factors in the design
and performing a response model analysis is the specific information that is ob-
tained on which noise factors really affect variation and which design factors, if
any, can be used to neutralize their effects (see also Shoemaker et al. (1991) and
Tsui (1996)). The knowledge that a noise factor has a large effect but does not
interact with any of the design factors can stimulate engineers to propose other
design factors that are good candidates for interactions or to devise measures to
control its natural variation. Knowing that a noise factor has a small effect may
enable engineers to scale back costly programs for its control. Row summary
analyses, focusing only on immediate empirical gains, ignore the detailed infor-
mation that can be obtained from relating the results to the noise factors and
leave many valuable stones unturned.
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We are convinced that there are great advantages to including noise factors
in robust design experiments. However, the common practice of analyzing row
summaries sacrifices many of those advantages and can lead to incorrect conclu-
sions and poor process settings. We have shown that direct modeling of noise
factor effects and their interactions with design factors greatly improves the abil-
ity to detect dispersion effects, facilitates determination of design factor settings
that minimize variation, and provides valuable information that can be used to
achieve further improvements in quality.
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Appendix – Maximal Power for the F-Test

Given the model assumptions in Section 3, we now prove the lemma stated
there.

Lemma. Suppose the noise factor is not controlled, m observations are taken
at each level of the control factor, and an F -test is used to compare the sample
variances. For fixed βXN , the power of the test satisfies the inequality

Power(βXN , βN ) ≤ Pr{F (m − 1,m − 1) > rFc} + Pr{F (m − 1,m − 1) < r/Fc},

where Fc is the upper α/2 quantile of the F (m − 1,m − 1) distribution, r =
((1 + δ2)1/2 − 1)/((1 + δ2)1/2 + 1), and δ = βXNσN/σ.

Proof. From equation (6), the power depends on βXN and βN through the true
variance ratio, R = σ2(−)/σ2(+). The power at R is equal to the power at 1/R,
so we can assume without loss of generality that R ≤ 1. Let ν = m− 1. We then
have

Power(βXN , βN ) = Pr{F (ν, ν) > RFc} + Pr{F (ν, ν) < R/Fc}
= 1 − G(RFc) + G(R/Fc),

where G denotes the distribution function of F (ν, ν). First, we will show that the
power is monotone decreasing for R < 1. Differentiating the power with respect
to R gives

−Fcg(RFc) + g(R/Fc)/Fc, (21)
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where g, the density function for F (ν, ν), is

g(u) =
Γ(ν)u(ν−2)/2

[Γ(ν/2)]2(1 + u)ν
. (22)

Using (22) in (21), we find that the derivative of the power function is propor-
tional to

R(ν−2)/2[(Fc + R)−ν − (1 + FcR)−ν ]. (23)

The sign of the derivative is thus the same as the sign of (1 + RFc)− (Fc + R) =
(1−R)(1−Fc). Since Fc > 1, the derivative is negative when R < 1, proving the
monotonicity.

The power of the F test is therefore maximized when R is minimal. For
fixed βXN , simple calculus shows that r is the minimal value of R.

References

Asscher, J. (1995). Design and analysis of robust design experiments with two components of

variance. Unpublished Ph. D. dissertation, The Technion – Israel Institute of Technology.

Bergman, B. and Hynén, A. (1997). Testing for dispersion effects from unreplicated designs.

Technometrics 39, 191-198.
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