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ABSTRACT

With increasing availability of low-cost image editing soft-
wares, the authenticity of digital images can no longer be
taken for granted. Digital images have also been used as
cover data for transmitting secret information in the field of
steganography. In this paper, we introduce a new set of fea-
tures for multimedia forensics to determine if a digital image
is an authentic camera output or if it has been tampered or
embedded with hidden data. We perform such image foren-
sic analysis employing three sets of statistical noise features,
including those from denoising operations, wavelet analysis,
and neighborhood prediction. Our experimental results demon-
strate that the proposed method can effectively distinguish
digital images from their tampered or stego versions.
Index Terms— Multimedia forensics, Tampering detec-

tion, steganalysis, noise features.

1. INTRODUCTION

In the modern information era, digital images have been widely
used in a growing number of applications related to military,
intelligence, surveillance, law enforcement, and commercial
applications. Meanwhile, with the growing number of low-
cost easy-to-use image editing softwares, the authenticity of
an image can no longer be taken for granted. In the field of
steganography, digital images have also been used as cover
data for transmitting secret information, and a number of data
hiding algorithms have been developed for such stego pur-
poses. Distinguishing digital images as direct camera outputs
from their tampered or stego versions involves establishing
the integrity of digital images. Although semi-fragile water-
marking [1] and robust hashing have been proposed as solu-
tions to image integrity establishment, they would require the
watermark to be inserted or the hash to be generated at the
time of image creation; but most digital cameras in the mar-
ket still lack such capability. Hence, there is a strong need as
part of the emerging field of multimedia forensics to develop
non-intrusive methodologies for tampering detection and ste-
ganalysis.
Existing methods for image tampering detection and ste-

ganalysis can be classified into two categories. In the first
category, manipulation-specific methods are developed with
the aim of detecting a particular type of tampering opera-
tion such as compression, filtering, gamma correction, and
re-sampling [2], or for identifying the presence of hidden data
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embedded using a specific steganographic embedding algo-
rithm [3, 4]. Although these methods work well in detecting
a particular type of tampering or steganographic embedding
operation, it would require an exhaustive search over all the
possible kinds of operations to establish the integrity of a digi-
tal image. In the second category, classifier-based approaches
are proposed for generic tampering detection [5] and for blind
steganlysis [6, 7] on digital images. These techniques pro-
vide a framework for universal image forensic analysis inde-
pendent of the nature of tampering or stego manipulations.
Features such as image quality metrics [5] and higher-order
wavelet statistics [7] are utilized to build the classifiers.
In this work, we propose using statistical noise features

of digital images to discriminate direct camera outputs from
their tampered and stego versions. The basic idea behind
our approach is that image manipulations, such as tamper-
ing and steganographic embedding, change the image noise
statistics in specific ways, and such changes can be utilized to
perform forensic analysis. Specifically, we characterize im-
age noise from multiple perspectives via image de-noising,
wavelet analysis, and neighborhood prediction; and obtain
statistical features from each noise characterization. As we
will show later in this paper, a classifier built using the pro-
posed noise features can effectively distinguish digital images
from their tampered or stego versions.
The rest of the paper is organized as follows. The de-

tails of the proposed noise features are described in Section 2.
In Section 3, we present experimental results on applying the
proposed noise features to image tampering detection and ste-
ganalysis. The final conclusions are drawn in Section 4.

2. STATISTICAL NOISE FEATURE EXTRACTION

In this section, we discuss methodologies to extract image
noise features for tampering detection and steganalysis. We
characterize image noise from the following three aspects [8].
For the first set of features, we apply denoising algorithms
to an image to obtain estimates of image noise. We extract
the second set of features based on Gaussian fitting errors
of wavelet coefficients. Finally, we characterize image noise
through neighborhood prediction and use the prediction error
for extracting the third set of features.
Noise Features from Denoising Algorithms: To extract
image noise features, we first utilize image denoising algo-
rithms. As shown in Fig. 1(a), given an image I , denoising
operation is applied to obtain its denoised version ID. The
estimated image noise nI at the pixel location (i, j) is then
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Fig. 1. Statistical noise feature extraction via (a) image denoising, (b) wavelet analysis, and (c) neighborhood prediction.

found by pixel-wise subtraction nI(i, j) = I(i, j)− ID(i, j).
Let e(i, j) = log2(|nI(i, j)|). The mean and the standard
deviation of {e(i, j)} form the first set of features:
⎧⎨
⎩

f (1)(I)=μe = 1
MN

∑M

i=1

∑N

j=1 e(i, j),

f (2)(I)=σe =
(

1
MN

∑M

i=1

∑N

j=1

(
e(i, j)−f (1)(I)

)2
) 1

2
(1)

whereM and N indicate the size of the image I .
To capture the different aspects of noise, we apply four

different denoising algorithms to an image: linear filtering
with an averaging filter, linear filtering with a Gaussian filter,
median filtering, and Wiener adaptive image denoising. Low-
pass linear filtering using averaging or Gaussian filters helps
model the high-frequency noise, non-linear median filtering
addresses the “salt and pepper” noise, and adaptive methods
such as Wiener filtering can tailor noise removal to the local
pixel variance. In our experiments, we use an averaging filter
of size 3 × 3, a Gaussian low-pass filter of the same size and
with a standard deviation σ = 0.5, a median filter of size
3× 3, and adaptive Wiener denoising with two neighborhood
sizes 3 × 3 and 5 × 5, respectively. Using these denoising
settings, we obtain five denoised versions for image I . For
each of them, we extract the two features in (1) from each of
the three color components (RGB), and therefore arrive at a
total of 5× 2× 3 = 30 features.
Noise Features from Wavelet Analysis: We obtain the sec-
ond set of noise features via wavelet analysis. After one stage
2-D wavelet decomposition, an input image is decomposed to
four subbands, namely, low-low (LL), low-high (LH), high-
low (HL), and high-high (HH) subbands. Among these four
subbands, the LL subband contains low-frequency compo-
nents, while the other three are for high-frequency compo-
nents. In literature, it has been observed that for a large class
of images, the wavelet coefficients in the LH, HL, and HH
subbands do not follow a Gaussian distribution [9]. This is be-
cause the spatial structure of these images consists of smooth
areas interspersed with occasional edges, and therefore coef-
ficients in the high-frequency subbands are sharply peaked at
zero with broad tails. When applying tampering operations

or data hiding to an image, such non-Gaussian property of
the high-frequency wavelet coefficients may be affected. The
noise strength may also be changed due to the tampering op-
erations or the data hiding.
Based on above analysis, we extract statistical noise fea-

tures in the wavelet domain as follows, and the basic modules
are shown in Fig. 1(b). Given an image I , we first normalize
it to be Ĩ with unit energy, i.e.,

Ĩ(i, j) =
I(i, j)

(
1

MN

∑M

k=1

∑N

l=1 I(k, l)2
) 1

2

. (2)

Then, we perform one stage 2-D wavelet decomposition to Ĩ

and obtain its three high-frequency subbands HH , HL, LH .
After that, for each of these three subbands, we calculate the
mean μY and the standard deviation σY of the wavelet sub-
band coefficients {Y (u, v)}. We take the standard deviation
as our third statistical noise feature:

f (3)(I) = σY . (3)

With the computed sample mean μY and variance σ2
Y , we ar-

rive at a Gaussian distributionN(μY , σ2
Y ), and further quan-

tify the goodness of fitting this Gaussian distribution to the
distribution of {Y (u, v)}. Let p(y) and q(y) denote the prob-
ability density functions (PDFs) of the Gaussian distribution
N(μY , σ2

Y ) and the distribution of the subband wavelet coef-
ficients {Y (u, v)}, respectively. We quantify the goodness of
Gaussian fitting by measuring the distance between p(y) and
q(y) as δ1 =

∫
|p(y) − q(y)|dy, whose discrete-summation

approximation is taken as the fourth statistical noise feature:

f (4)(I) =
∑

i

|p(yi)− q(yi)|Δy, (4)

where i is the index of histogram bins, Δy is the length of
each bin, p(yi) is the value of the Gaussian PDF p(y) at the
center of the ith bin, and q(yi) is the count of the ith bin
normalized toward a valid PDF (

∑
i q(yi)Δy = 1). The two

features f (3)(I) and f (4)(I) are extracted from each of the
three high-frequency subbands and for each of the three color
components, and therefore a total of 2× 3× 3 = 18 features
are obtained in the wavelet domain.
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Noise Features from Neighborhood Prediction: Most im-
ages consist of some smooth regions, where pixel values can
be predicted from certain neighboring pixels with high accu-
racy. However, when smooth regions of an image are contam-
inated by noise, non-trivial prediction errors may be resulted
in during the neighborhood prediction. Therefore, we char-
acterize image noise in terms of the neighborhood prediction
error in the smooth regions, and then extract the third set of
noise features from it.
In Fig. 1(c), we show the basic modules of extracting sta-

tistical noise features via neighborhood prediction. Given an
image I , we first identify its smooth region according to local
image gradient values. Before calculating the gradient val-
ues, we still normalize I to be Ĩ with unit energy as in (2).
Comparing horizontal/vertical image gradient values gh and
gv with a threshold tg, we identify pixels in the smooth re-
gion as those of both a small horizontal gradient and a small
vertical gradient. Setting a threshold ti on the pixel intensity
value, the smooth region is further partitioned to be a dark
smooth region and a bright smooth region. In our test, we set
the gradient threshold tg = 0.2 and the intensity threshold ti
as the median of the pixel intensity values in Ĩ .
For each of the two smooth regions, we now perform neigh-

borhood prediction. We predict each pixel value bi in a given
region using a linear model on its eight-connected neighbor-
hood {ai,1 − ai,8}: b̂i =

∑8
k=1 xkai,k. Here, xk ≥ 0 is the

weight associated with ai,k, and the non-negative constraint
indicates positive correlation between bi and its neighbors.
Given a region withN pixels, we denote itsN pixel values as
a column vector b = [b1, b2, . . . , bN ]T , and the non-negative
weight coefficients as a column vector x = [x1, x2, . . . , x8]

T .
Further, we represent the eight neighbors of each pixel as a
row vector, and organize all of them as a matrixA of sizeN×
8. The estimation of the weight coefficients x can then be for-
mulated as a non-negative least-squares problem,minx ‖Ax−
b‖2 subject to xk ≥ 0, k = 1, 2, . . . , 8, and solved using the
algorithm in [10]. After that, we calculate the absolute predic-
tion errors Δb = |b̂ − b| between the predicted pixel values
b̂ = Ax and their original counterparts b. Finally, we take
the mean and the standard deviation of Δb as our last two
statistical noise features:

f (5)(I) = μΔb, f (6)(I) = σΔb. (5)

For each of the two smooth regions, we extract the two fea-
tures in (5) for each of the three color components, and there-
fore a total of 2 × 2 × 3 = 12 features are obtained from the
neighborhood prediction.

3. SIMULATION RESULTS AND DISCUSSIONS

In this section, we present experimental results on applying
the proposed noise features for image tampering detection and
steganalysis. We use 500 images from five different cam-
eras, Canon Powershot A75, FujiFilm Finepix S3000, Mi-
nolta DiMage S304, Epson PhotoPC 650, and Nikon E4300,

as authentic digital images. These images are captured under
completely random conditions with different scenarios and
different lighting conditions.

Results for Image Tampering Detection: In the test of tam-
pering detection, the 500 authentic images are first processed
to generate 28 different tampered versions per image by (1)
average filtering with filter orders {3,5,7}, (2) median filtering
with filter orders {3,5,7}, (3) rotating with degrees {1,5,10,20},
(4) re-sampling with percentage {50, 70, 85, 115, 130, 150%},
(5) adding noise of Peak Signal to Noise Ratio (PSNR) {5,
10} dB, (6) gamma correction with γ = {0.5, 0.7, 0.85,
1.15, 1.3, 1.5}, and (7) image sharpening with filter orders
{2,4,6,8}. For each of the seven types of tampering oper-
ations listed above, we calculate the 30 + 18 + 12 = 60
noise features discussed in Section 2 for the tampered images.
The 60 noise features are also calculated for the 500 authen-
tic images. A ν-support vector machine (SVM) with a radial
basis function (RBF) kernel [11] is then used for classifying
the authentic images and the tampered images. We randomly
choose 250 authentic images along with their corresponding
tampered versions for training, and test on the remaining im-
ages. Computing the fraction of correctly classified tampered
images PD, and the percentage of authentic images wrongly
classified as tampered images PF , we obtain the receiver op-
erating characteristics (ROC). In Fig. 2(a), we show the ROC
averaged over 100 iterations for each of the seven types of
tampering, each time with a different selection of the 250
training images. We observe from the figure that the perfor-
mance is good for most manipulations and the PD is close to
90% even under a very low PF close to 5%. This suggests that
the proposed noise features can reflect the changes between a
direct camera output and its further tampered versions, and
effectively detect tampering.

Results for Steganalysis: In the steganalysis test, we use the
same 500 authentic images as the cover images, from each of
which a number of stego images are generated by embedding
random messages of different sizes. In a general scenario, the
maximum embedding payload depends on the nature of the
cover data and the steganographic embedding method. In our
test, we first find the average of the maximum embedding pay-
load across the 500 cover images and then embed messages
at 100%, 75%, 50%, and 25% of this value. In our current
studies, we consider two popular types of least significant bit
(LSB) based steganographic algorithms, namely, F5 [12], and
hide4pgp [13].
In the case of F5, the maximum embedding payload av-

eraged over our 500 cover images is around 12 KB. Corre-
sponding to the percentages of 100%, 75%, 50%, and 25%,
messages of sizes 12 KB, 9 KB, 6 KB, and 3 KB are embed-
ded into each of the 500 cover images to generate 4× 500 =
2000 stego images in total. For each of the four message sizes,
we calculate the 60 noise features for all the 500 stego im-
ages in each category. Using these features as well as those

VI - 99



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PF

P
D

Performance results for Tampering

Spatial Averaging
Median Filtering
Rotation
Resampling
Additive Noise
Gamma Correction
Sharpening

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PF

P
D

Performance results for F5

12 KB
9 KB
6 KB
3 KB

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PF

P
D

Performance results for Hide4pgp

192 KB
144 KB
96 KB
48 KB

Fig. 2. Receiver Operating Characteristics for (a) different types of tampering operations, and steganographic embedding
algorithms (b) F5 and (c) hide4pgp; from left to right.

from the 500 cover images to perform SVM training and test-
ing as in the tampering detection test, we obtain ROC curves
as shown in Fig. 2(b). We can see that the performance in
discriminating the cover and stego images is good and a PD

close to 90% is obtained for PF ≈ 10%. Further, we notice
that the discrimination performance is relatively independent
of the embedding rate, suggesting that the proposed noise fea-
tures can perform accurate steganalysis on F5 even under low
embedding payloads. This is because F5 always decreases
the magnitude of DCT coefficients when generating stego im-
ages. Similarly, we show the ROC curves in Fig. 2(c) for the
hide4pgp algorithm under 100%, 75%, 50%, and 25% of the
maximum embedding payload averaged over the 500 cover
images. In this case, we observe that as the embedded mes-
sage size increases, the steganalysis performance improves.
Under the average maximum embedding payload, we notice
that the PD is close to 98% even for PF ≈ 10% for most
cases, demonstrating the goodness of the proposed noise fea-
tures for image steganalysis.

4. CONCLUSIONS

In this paper, we have introduced a novel approach for tam-
pering detection and steganalysis on digital images, using three
sets of statistical noise features. We apply image denoising al-
gorithms to obtain estimates of image noise and then extract
the first set of features from them. Observing that image ma-
nipulations affect the non-Gaussian property of wavelet sub-
band coefficients, we extract the second set of features via
wavelet analysis. We also perform neighborhood prediction
and utilize the prediction error to derive the third set of noise
features. Using these three sets of features, we build a robust
classifier that can effectively distinguish direct camera out-
puts from their tampered or stego versions. We have presented
detailed simulation results with seven types of tampering op-
erations and with two steganographic embedding algorithms.
The obtained results demonstrate the effectiveness of the pro-
posed noise features for image forensic analysis. We believe
that the proposed technique would provide a systematic and
effective way to establish the integrity of digital images.

5. REFERENCES

[1] J. Fridrich, “Image Watermarking for Tamper Detection,” Proc.
of the IEEE ICIP, vol. 2, pp. 404–408, Oct 1998.

[2] A. C. Popescu and H. Farid, “Statistical Tools for Digital Foren-
sics,” Proc. of Intl. Workshop on Info. Hiding, Toronto, Canada,
& Lect. Notes in Comp. Sc., vol. 3200, pp. 128–147, May 2004.

[3] J. Fridrich, M. Goljan, and D. Hogea, “Steganalysis of JPEG
Images: Breaking the F5 Algorithm,” Proc. of Intl. Workshop
on Info. Hiding, 2002.

[4] A. Westfeld and A. Pfitzmann, “Attacks on Steganographic Sys-
tems,” Proc. of Intl. Workshop on Info. Hiding, and Lecture
Notes in Computer Science, pp. 61–76, 1999.

[5] I. Avcibas, S. Bayram, N. Memon, M. Ramkumar, and B.
Sankur, “A Classifier Design for Detecting Image Manipula-
tions,” Proc. of the IEEE ICIP, vol. 4, pp. 24–27, Oct 2004.

[6] I. Avcibas, N. Memon, and B. Sankur, “Steganalysis Using Im-
age Quality Metrics,” IEEE Trans. on Image Processing, vol.
12, no. 2, pp. 221–229, Feb 2003.

[7] S. Lyu and H. Farid, “Steganalysis Using Higher-Order Image
Statistics,” IEEE Trans. on Info. Forensics and Security, vol. 1,
no. 1, pp. 111–119, Mar 2006.

[8] H. Gou, A. Swaminathan, and M. Wu, “Robust Scanner Identi-
fication based on Noise Features,” IS&T SPIE Conf. on Security,
Stego., and Watermarking of Multimedia Contents IX, Jan 2007.

[9] S. G. Chang, B. Yu, and M. Vetterli, “Spatially Adaptive
Wavelet Thresholding with Context Modeling for Image De-
noising,” IEEE Trans. on Image Processing, vol. 9, no. 9, pp.
1522–1531, 2000.

[10] C. L. Lawson and R. J. Hanson, Solving Least-Squares Prob-
lems, Prentice-Hall, 1974.

[11] C. J. C. Burges, “A tutorial on support vector machines for
pattern recognition,” Data Mining and Knowledge Discovery,
vol. 2, no. 2, pp. 121–168, 1998.

[12] A.Westfeld, “F5–A Steganographic Algorithm: High Capacity
Despite Better Steganalysis,” Proc. of Intl. Workshop on Info.
Hiding, Pittsburgh, PA, April 2001.

[13] Hide4pgp, Steganography software available online at
www.heinz-repp.onlinehome.de/Hide4PGP.htm.

VI - 100


