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Noise filtering in solar speckle masking reconstructions
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Abstract. — A new method of obtaining a sensitive noise filter for solar speckle masking reconstructions is presented
below. This filter separates the true image information from noise most reliably. Its efficiency is demonstrated by some
representative examples considering observed and artificial image data which were generated in a computer. The latter
set of data also suffered realistic degradations by the influence of seeing and noise taken from suitable observations.

Key words: techniques: image processing; interferometry — Sun: general

1. Introduction

In recent years, speckle interferometry has become an
important tool for the study of the solar surface. While
the original method introduced by Labeyrie (1970) only
gives corrected power spectra, further developments like
e.g. the Knox-Thompson algorithm (Knox & Thompson
1974) yield real diffraction-limited images. This technique
was adapted for solar investigations, among others, by von
der Lithe (1985, 1994).

Until now the best approach to restore seeing-degraded
images by speckle methods is the so-called speckle mask-
ing algorithm introduced by Weigelt and collaborators
(Weigelt 1977; Weigelt & Wirnitzer 1983; Lohmann
et al. 1983). It was proposed for solar application by
Pehlemann & von der Lithe (1989) and employed for the
first time by de Boer et al. (1992) and de Boer & Kneer
(1992).

A very important problem in the speckle reconstruc-
tion process is the separation of signal from noise. While
all available image information has to be collected, noise
must be suppressed. Only a reliable noise filter yields a
good reconstruction. Since the speckle masking process
delivers much more information about the phases of the
Fourier transformed reconstruction than necessary, this re-
dundancy can be exploited to improve the statistical reli-
ability.

2. The speckle masking algorithm

The measured intensity distribution i(z) of a speckle in-
terferogram can be described by the equation

i(z) = o(z) @ p(z), (1)

where z is a two-dimensional spatial coordinate, o(x) de-
notes the true object-intensity distribution, p(z) the in-
stantaneous point spread function of the combined sys-
tem of atmosphere and telescope, and ® stands for the
convolution operator. Fourier transformation renders

I(q) = O(q) - P(q), (2)

where I(g), O(q), and P(q) are the Fourier trans-
formed and therefore complex quantities of Eq. (1), and
q is the corresponding two-dimensional Fourier coordi-
nate. Classical speckle interferometry deals with series of
Fourier transformed speckle interferograms. Averaging the
squared moduli on the assumption that the observed ob-
ject does not alter yields

(1 1(a) ) = 0(a) I* - (| P(a) I*), 3)

where (... ) means the arithmetic mean of the series. If the
speckle transfer function (STF) (| P(q) |?) is known, the
modulus of the Fourier transformed reconstruction | O(q) |
can be calculated.

In order to obtain the real reconstruction, the complex
Fourier phases which are lost in Eq. (3) have to be deter-
mined additionally. They can be found using the speckle
masking algorithm which encodes them as phase differ-
ences in the speckle masking bispectrum. This method
makes it possible to calculate the true average Fourier
phases. Combining them with the corrected amplitudes
obtained from Eq. (3) yields the complex Fourier trans-
formed speckle reconstruction.

2.1. The speckle masking bispectrum

Speckle images usually consist of discrete, equally spaced
intensity values called pixels. For a picture of N x N
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elements the principal discrete Fourier transform I(i,j)
also has N x N elements, where ¢ and j denote integer
spatial-frequency indices. For the principal spectrum, they
range between —N/2 and +N/2 — 1. Using this notation,
the direct average frequency component lies at the index
i =0 and j = 0. With the same Fourier transformed im-
ages as in Eq. (3), the speckle masking bispectrum BS is
defined as

BS(q,p) = (1(q)

or in the discrete form

Since I(+N/2) = I(—N/2), the indices i,j,k,1,i + k,
and j + [ must range between —N/2 and +N/2. This
four-dimensional array contains all information about the
phases of the Fourier transformed reconstruction.

The size of the bispectrum is very large for realistic
image dimensions. For an image of 64 x 64 pixel, the cor-
responding bispectrum needs a RAM size of 128 Mbyte,
assuming that the bispectrum elements are stored as 8
byte complex numbers. This exceeds the equipment of
most computers. It is therefore unevadable to essentially
reduce the size of the bispectrum.

One possible remedy is to use the symmetry proper-
ties of the bispectrum which are given by Pehlemann &
von der Lithe (1989). They reduce the size of the non-
redundant bispectrum subset to 6.2 Mbyte, but have the
disadvantage that this subset is difficult to handle.

It is a simpler method to restrict the indices k and [
to values not exceeding a so-called truncation parameter

M:
k|, [11< M. (6)

This causes a certain loss of information but nevertheless
yields reliable reconstructions. Pehlemann & von der Liihe
recommend M = 5 as the optimal choice. In order to be
even more careful, a truncation parameter of M = 10 was
chosen for this investigation.

An additional possibility to reduce the size of the bis-
pectrum in a simple way is to utilize the elementary sym-
metry property

BS(Z7J7k7l) = BS*(_i7 _j7 _k7 _1)7

~1I(p) - I(—q—p)) (4)

(7)

where * denotes complex conjugation. Using this relation,
the range of the indices k and [ can be restricted to

0<k<M,l=0and |k|<M,1<1<M. (8

2.2. Phase recovery

Since the Fourier phases are encoded as phase differ-
ences in the bispectrum, they have to be recovered recur-
sively using the phase closure equation (cf. e.g. Lohmann
et al. 1983)

i (i+k,j+ ip(i,5) | aip(kl) | A—iD(i,5,k,L
PU+kG+) — Gi6(05) | Gib(kD) | =127, ,)’

9)
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where ¢ is the object phase, i.e. the phase of the finally re-
constructed image, and ® the bispectrum phase. In order
to avoid phase errors due to very small complex numbers,
it is better to consider complex phasors which are normal-
ized to 1. This causes no loss of information because the
modulus can be found using Eq. (3). Since ¢(0,0) = 0, the
recursion has to start with the initial values at the spatial-
frequency indices (1,0) and (0,1) which can be taken from
the direct average of the Fourier transforms. With these
two values and the bispectrum all remaining phasors can
be calculated using Eq. (9).

During the recovery process an increasing number of
different bispectrum elements and previously calculated
phasors contribute to the resulting new object phasor.
Considering the spatial-frequency index (m,n) with m =
i+ k,n = j+1, there are several permitted combinations
of 7, j, k, and [ which fulfil the truncation conditions. Each
of these combinations can be entered in Eq. (9) yielding
an individual result of the phasor value. The average of
all results gives the best estimate of the object phasor.

Following Pehlemann & von der Liihe, the numbers of
these values give the phase number function PN:

PN (m,n) = card (ei<¢>ﬁ(m,n) ), 8 =1,23,..., (10)
where the card function gives the number of elements in a
set. Based on this quantity, they define another function
which they call phase consistency PC"

1 PN (m,n)
P = . ipg(m,n) 11
C(m7 n) PN(m, n) ; € ( )

This function can be regarded as a measure for the reli-
ability of each individual phasor. If all phases in Eq. (11)
are equal the consistency amounts to 1. If the phases are
distributed randomly the consistency becomes very small.
Therefore one can judge each individual new phasor and
distinguish between trustworthy ones and those with a
poor signal-to-noise ratio.

This piece of information can be used to improve the
phase reconstruction process. With the phase consistency
of each calculated phasor taken into account, Eq. (9) can
be rewritten as follows

i (itk,j+)
e9(3) . PC(i,5) - €D . PO (k1) - e 12@IRD
(12)

giving those phasors with a bad signal-to-noise ratio a
lower weight on the averaging process.

In order to eliminate single phasors which differ sig-
nificantly from all the others, one may consider the corre-
lation C(a) of all phasors !> contributing to the object
phasor at the Fourier coordinate index (m,n),1 < a <
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PN(m,n) |ei¢ﬁ + ei¢a|

PN(m,n) et 2

(13)

If C(«) drops below the average of all single correlations
reduced by a small offset, the phasor el?= can be neglected.
This offset prevents the neglection of phasors which are
very close to the average. During the phase recovery ac-

nurber of overaged phosors

o

Fig. 1. Phase number function PN of the reconstructions

cording to Eq. (9) or Eq. (12) the succession of the recon-
structed frequency indices has to be observed. Phase errors
propagate in subsequently calculated phases and might
falsify the reconstruction process significantly. Pehlemann
& von der Lithe (1989) propose a sophisticated process to
find the next index from the bispectrum which they call
Octogon Method.

On the assumption that the power spectrum is ra-
dially symmetric and decreases with increasing spatial
frequency, there is a simpler way to find the next fre-
quency index. Instead of the four-dimensional bispectrum
one may consider the two-dimensional Fourier plane. Here,
the next phasor which has to be calculated is the one with
the smallest distance from the coordinate origin. This ap-
proach guarantees that the points with the highest signal-
to-noise ratio are calculated first. Therefore, it minimizes
the propagation of phase errors.

3. Treatment of noise

Every image recording process produces noise. A difficult
problem of image reconstruction and especially of speckle
interferometry is to separate the image signal from this
noise since the latter must not be amplified but should be
suppressed. A reliable noise filter is therefore most impor-
tant. There are several ways to find such a function.
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3.1. General limitation of power amplification

In order to get the corrected “true” power spectrum, the
observed averaged power spectrum has to be divided by
the corresponding speckle transfer function (see Eq. (3)).
Since no suitable reference as e.g. a star is observable
during daylight, this function has to be derived from
theory. A good model of the STF has been given by
Korff (1973). The only input parameter of his model is
the seeing-describing Fried parameter which can be ob-
tained from the spectral ratio method introduced by von
der Lithe (1984).

Since the theoretical transfer functions do not consider
the influence of noise, they become very small for high spa-
tial frequencies. This means a strong amplification of the
power spectrum in this spatial-frequency region. This is
also the region where noise becomes dominant. It is there-
fore advisable to restrict the power amplification to an
upper limit and ignore the parts of the power spectrum
which would be subjected to a higher amplification. This
limit depends on the noise behaviour of the camera sys-
tem and has to be determined from recorded pictures. In
his paper, von der Lithe (1993) claims that the amplitude
amplification should only be performed for those parts
of the power spectrum for which the STF is larger than
1073, The examples in this contribution were calculated
with a limit of 107° and with a smoothed transition of
the amplification to 0 in the region where the STF drops
from 5 10~* to 10~° in order to avoid a sharp edge in this
function.

3.2. Noise filter deduced from power information

Many noise filters are based on the signal-to-noise ratio.
Using speckle methods it can be calculated from a com-
parison between the image power spectrum and the noise
power spectrum. The latter can be found from a series of
flat-field images. Treating them like ordinary speckle im-
ages yields pictures which only contain the residual noise
and therefore allow the computation of the noise power
spectrum. Considering this two quantities, von der Liihe
(1993) developed a noise filter based on the variance of an
estimate of the power spectrum that has been corrected
for noise. This filter N F; is given by

CP(q) —ocp(q)

NED) =GR Toorta)”

(14)

where CP(q) is the noise-corrected power spectrum,
i.e. the image power spectrum reduced by the noise power
spectrum, and o¢p is the corresponding variance. Since
N F is very noisy and uncertain for high spatial frequen-
cies, von der Lithe recommends some probably empirical
truncation and smoothing procedures for his filter.

A simpler but very efficient noise filter giving compa-
rable results is the optimum filter (Brault & White 1971).
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Fig. 2. Speckle reconstructions (lower row) and their corresponding noise filters (upper row); from the left to the right the
reconstructions were calculated with the general power limitation, the noise filter of von der Lithe NF}, the optimum filter
N F3, the phase number filter N F3, and a combined filter N F5 - N F3; the grayscale representation of each image was adjusted

individually

Fig. 3. Test reconstructions of an artificial intensity distribution, from the left to the right this figure represents the original
intensity distribution, a typical speckle interferogram affected by seeing and noise, and the reconstructions with the optimum
filter N F», the phase number filter N F3, and the combined filter N F> - N F3; again, each picture is scaled individually

This filter N F5 can be written in a slightly modified form

* DP(q) — NP(q)

DP(q)

DP(q) represents the averaged image power spectrum and
NP(q) the corresponding noise power spectrum. Both fil-
ters are close to 1 when the signal-to-noise ratio is large
and tend to 0 when the signal-to-noise ratio approaches 1.

NFy(q) = (15)

3.3. Noise filter from phase information

Another possibility to construct a noise filter function is to
evaluate the reliability of each Fourier coordinate index.
This quantity is measured by the phase consistency PC
given by Eq. (11). As described in the previous section,
it quantifies the credibility of each individual phasor in
the Fourier plane. The phase consistency is close to 1 for
those parts of the Fourier transformed image which have

a large signal-to-noise ratio and decreases for less reliable
image information. Therefore, it can be used as a third
noise filter function N F3

NFs(q) = PC (16)

4. Examples

Figure 1 shows the phase number function PN of all fol-
lowing reconstructions which gives the number of averaged
phasors for every coordinate index in the Fourier domain.

This figure illustrates that the phase number function
increases with increasing spatial frequency until it reaches
an upper limit which is caused by the bispectrum trunca-
tion. For a truncation parameter of M = 10 which was
chosen for these examples, the maximum of the phase
number function amounts to 218. This high redundancy of
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the phase information is the reason for the high accuracy
and reliability of the reconstructions.

In order to test the performance of the different noise
filters, speckle masking reconstructions of two different
data sets were calculated. The first sample consists of 140
true (i.e. observed) speckle interferograms of solar granu-
lation in a quiet region near the disk centre of a size of
64 x 64 pixels corresponding to 5.2 x 5.2 arcsec? on the
Sun. The frames were obtained with the 70 cm Vacuum
Tower Telescope at the Observatorio del Teide in Izana
(Tenerife) at 8:00 UT on August 15, 1993. The seeing
conditions were moderate which means a Fried parame-
ter rg = 7 cm. The observed wavelength was 550 &= 10 nm
and the exposure time 4 ms.

Since finest solar structures are always unknown in de-
tail, the visual judgement of the reconstructions is very
difficult. It is hardly possible to decide whether a feature
close to the diffraction limit is real or not. In order to
dispel this doubt the second set was calculated from the-
ory. An artificial intensity distribution was subjected to
all effects of seeing and noise which were extracted from a
different series of real speckle interferograms. This proce-
dure yielded a sequence of 140 frames of a size of 64 x 64
pixels comparable to the first set. Both series were treated
with the same speckle masking procedure.

Figure 2 shows several reconstructions of the first data
set using different noise filters. It demonstrates the gain
in image quality using more and more sensitive filter func-
tions. The upper row gives the shape of the applied filter
in the Fourier domain and the lower row the corresponding
reconstructions.

The first picture on the left of Fig. 2 is very noisy since
it was calculated only with the general limitation of power
amplification. This kind of filter seems to be absolutely
insufficient to eliminate the noise content. The next re-
construction to the right was obtained with the noise fil-
ter NF; of von der Liihe. Although the image quality is
improved it still contains a lot of residual artefacts. The
reconstruction based on the optimum filter N F5 which is
shown in the middle of Fig. 2 nearly gives the same result.
Despite a certain improvement there is still some noise
present. The next picture to the right was calculated with
the phase number filter N F5. Compared with the previous
images the influence of noise is considerably suppressed.
The features have become smooth without losing their fine
structure. Finally, the last reconstruction on the right was
obtained using a combined filter N F5 - N F3. This picture
appears to be free of noise, but still contains all the details
seen in the foregoing reconstructions.

Figure 3 gives the results of the artificial data set. The
left image in Fig. 3 represents the original undisturbed in-
tensity distribution before its degradation by seeing and
noise. The next picture to the right shows the first frame of
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the set which is of average quality to give an impression of
the influence of seeing and noise. The reconstruction in the
centre was calculated with the optimum filter NF5, and
the next image to the right was obtained with the phase
number filter N F3. The last picture on the right is based
on the combined filter N F5- N F3. Again, it is obvious that
the image quality increases with increasing consideration
of information about the signal-to-noise ratio. Compared
with the original image the reconstruction calculated with
the combined filter NF5 - NF3 seems to deliver the best
result. It appears to be smooth and free from noise but
still to contain all original image information.

5. Conclusion

The comparison of the reconstructions obtained with dif-
ferent noise filters proves that the phase consistency is
a suitable noise filter function. Best results are obtained
when it is multiplied with an optimum filter. The resulting
filter function is very sensitive since it considers all power
and phase information about the noise in the Fourier do-
main. Therefore, it is superior to classical noise filters and
is highly recommended for solar speckle masking recon-
structions.
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