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Noise in an Optical Amplifier: Formulation
of a New Semiclassical Model

Silvano Donati,Member, IEEE, and Guido Giuliani

Abstract—After pointing out some questionable assumptions
of the standard beating theory, we formulate a new semiclassical
wave theory of the noise in optical amplifiers. The theory is simple
yet rigorous and uses a few quantum statements in a classical
signal framework. The amplifier is modeled as a 2� 2 port device,
and the amplified spontaneous emission and associated noise are
shown to be just the amplified coherent state (or vacuum state)
fluctuation of the field entering the idler input. The new theory
can treat other closely related detection schemes as well, correctly
supplying both mean signal and noise.

Index Terms—Amplifier noise, optical amplifiers, optical noise,
optical signal detection noise, spontaneous emission.

I. INTRODUCTION

I N recent years, noise in optical amplifiers (OA’s) has been
analyzed by means of several theoretical frameworks [1],

each of which has given special emphasis and unveiled a
particular aspect of optical amplification. Broadly speaking,
these frameworks can be classified as: 1) quantum-mechanical
field operator; 2) rate equation; 3) photon multiplication;
and 4) field beating; the first two are quantum-mechanical
treatments and the others semiclassical. Treatments 1) and
4) consider the wave-like aspect of light and deal with the
electric field at optical frequencies, while 2) and 3) consider
the particle-like nature of light and deal with photon number.

The field-operator methods [2]–[5] are formal approaches
that describe the OA irrespective of the physical mechanism of
operation and determine the minimum amount of noise that the
OA must add to the amplified signal not to violate quantum-
mechanical commutation rules. The well-known result for the
minimum noise figure 3 dB is thus obtained.

The rate-equation method [6]–[8], based on the Kolmogorov
equation for transition probabilities, considers a real active
medium amplifier and allows one to compute the mean value

and variance of the number of
photons at the OA output as well as the photocount statistics.
Explicitly, and with the usual notation, it is

(1)

(2)

where is the spontaneous emission factor,
is the amplified spontaneous emission (ASE)
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(number of photons per mode at the OA output [1]) and
is the input-signal Fano factor. By taking

into account the optical amplifier bandwidth the previous
results can be expressed in terms of photodetected mean and
noise current as

(3)

(4)

where with the input signal power,
with the CW

ASE power, and electrical detection bandwidth.
The above quantum-mechanical treatments are obviously

exact but are not versatile (especially the field operator) due to
the operator description, which may become a burden in cases
of practical interest where realistic fiber links with cascaded
OA’s are considered. The reduction to a semiclassical descrip-
tion, either particle or wave, is thus a useful schematization,
commonly used in many situations occurring in electronics
and photonics.

The well-known standard field-beating theory due to Olsson
[9], which has been followed by other authors [1], [10],
[11], is based on the analysis, at the OA output, of beating
terms generated by the square-law process of photodetection
of the amplified signal field and the ASE field. The ASE
field is postulated to be a Gaussian noise variable with a
narrow-band white spectrum of double-sided spectral density

and width [in view of quantum-mechanics
results; see, for example, (1)]. The beatings between signal and
itself, signal and ASE, ASE and itself, correctly give the dc
components and the dominant noise term of the photocurrent.
However, the exact output noise expression is not obtained
from the beatings, since the first two terms of (4) are missing.
These missing terms are added heuristicallya posteriori and
attributed to the shot noise of the photodetection process [1],
[9], [10]. As will be explained in detail in Section II, the above
procedure is not meaningful because the so-called amplified
signal and ASE shot noises have no physical significance.
Hence, the standard field-beating theory should be regarded
as not consistent from a noise-analysis point of view. The
standard OA beating theory is derived from an argument that
is fairly valid at radio frequencies [12], [13] but fails in
describing noise properties of lightwave systems, because at
optical frequencies quantum noise predominates over thermal
noise and basic quantum principles must be taken into account,
even by semiclassical analysis.
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Recently, Berglind and Gillner [14] presented a semiclas-
sical field treatment based on hypotheses differing from Ols-
son’s; namely, they model the OA by means of an electrical
equivalent in which the gain is represented by a negative con-
ductance . Noise sources are explicitly included within the
OA by means of a noise spectral density proportional to
associated with the conductance. The latter assumption is
an indirect consequence of the existence of quantum vacuum
fluctuations, as clearly explained in [15]. The correct result (4)
is attained, and the terms are obtained by the
calculation, although again attributed to a shot-noise effect.
The one proposed in [14] is an elegant approach; however, its
formal correctness is hindered by the attempt to conform to
the “standard beating” framework by means of a misleading
hypothesis on noise sources, as it will be explained in Section
II.

In this paper, we present a new semiclassical wave-like de-
scription of the OA capable of yielding the correct result (4) for
the output noise within a self-consistent frame, which is also
valid in general cases (i.e., for coherent photodetection and
cascaded amplifiers). Our model is based on a few assumptions
from quantum theory. The most relevant assumption concerns
vacuum fluctuations which must be taken into account for both
the conventional and idler input of the OA and are shown
to be the cause of the ASE CW power and added noise. In
our treatment, proper electric field fluctuations are superposed
to the input signal, contrarily to what it is done in previous
semiclassical works [9], [14] that consider a noise-free pure
sine wave as input signal to the OA.

It should be observed that a well-proven semiclassical
approach is of extreme importance in dealing with engineering
applications of optical amplification, expecially if the model
is simple and has general validity. We would like to point
out that, to the best of our knowledge, no fully rigorous
development of a wave-like semiclassical model for photode-
tection of amplified signals has been performed to date. The
method presented in this paper parallels the procedure of
the quantum-field approach [3], [5], bearing in mind that we
suggest a treatment in which the electric field, and not the
corresponding operator, is represented directly, thus allowing a
great simplification due to the use of the conventional electrical
communication-theory principles and theorems.

The paper is organized as follows. In Section II, we sum-
marize and comment on the standard field-beating theory [9]
and on the recent analysis of [14]; in Section III, we present
in detail the new semiclassical formulation which overcomes
the revealed inconsistencies and fully accounts for the dc as
well as the noise components of the OA output; in Section
IV, we discuss the obtained results and compare our treatment
to others.

II. THE STANDARD SEMICLASSICAL BEATING THEORY

In the commonly accepted derivation of this theory, due to
Olsson and Henry [9], the analysis is carried out by looking at
the OA output with a photodetector. Here, the average output
current is the sum of amplified signal and ASE

(5)

and the currents are times the powers (assuming
unitary photodetector quantum efficiency i.e.,

(6)

The electric field amplitudes of signal and ASE at the AO
output are written as (the missing factor is
uninfluential). The amplified signal at frequencyis therefore

(7)

The assumption taken from quantum theory concerns the ASE
power and its optical spectral density. For one mode, the CW
ASE power is

(8)

where is the amplifier optical bandwidth. The ASE power
is assumed uniformly distributed over the optical bandwidth

and is decomposed in a number of elemental
intervals each having a power
and a random phase uncorrelated for each. The ASE
field is accordingly written as

(9)

In the limit the above ASE field has the same
statistical properties of a Gaussian-distributed narrow-band
noise variable [12]. The instantaneous (mean plus fluctuation)
photodetected current is then taken as

(10)

where the average is over optical frequencies. Inserting (7)
and (9) in (10) gives explicitly (11), shown at the bottom of
the next page. At the right hand side of (11), the first term
is the signal–signal beating; the second term is the so-called
signal–ASE beating and the third is the ASE–ASE beating. By
developing the cosine products in sum and difference of the
arguments, and dropping the high-frequency components, the
following dc and noise terms are obtained [9]:

1) from the signal–signal beating, the signal dc term
2) from the ASE–ASE beating, the ASE dc term

and a noise term with single-sided
spectral density given by

-
(12)

where for and
for and

3) from the signal–ASE beating, a noise term with single-
sided spectral density

- (13)

The two above noise terms alone do not give the correct result
(4) as obtained by the exact quantum-mechanical approach. To
match the correct expression, it is assumed that two white-
noise terms identified as amplified signal
and ASE photocurrent shot noise, shall be added to those
obtained by the calculation. The above derivation includes
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a few inconsistencies on which we will now comment. It is
well known that optical power-dependent photocurrent noise
is strictly related to the statistics of impinging photons or,
equivalently, to statistical properties of the detected optical
fields [8]. Thus, noise in photodetection can be correctly
inferred only by exploiting the amount of “optical noise” that is
converted into electrical noise at the detector. In this view, the
attribution of a shot-noise term to the photodetection of
a generic optical field yielding a mean dc photocurrent is
not always correct. For example, when detection of a coherent
state is considered, the shot-noise term can be explained either
by conversion at the detector of theoptical noise
derived by quantum optics, or by assuming a classical noiseless
sinusoidal optical wave impinging on a photocathode and
attributing the noise to the quantization of the electric charge
which results in Poisson statistics for the photoelectrons [16].
Among these two pictures, only the former is correct, since
it is also valid for non-Poissonian photon statistics, which is
really the case when amplified optical signals are considered.
It is well established that both amplified signal and output
ASE do not exhibit Poisson statistics [6], [17]–[19], hence
the procedure followed by the standard beating theory is quite
questionable.

There are also other arguments which suggest that standard
beating theory is inaccurate. First, this wave-like theory uses
results that are derived by a particle-like approach, thus
impeding a unitary description within a well specified frame,
totally wave-like or particle-like. Second, the attribution to
the amplified signal of a shot noise term is in contrast
with the fact that, when a shot noise-limited signal (carrying
the noise is amplified by the factor at the output
there shall be found the amplified shot noise .
Also the terminology of beating theory is inappropriate, as
the photodetection is not necessary to generate the so-called
beating terms: they already exist physically in the Poynting
vector whose modulus is .

Finally, it could be concluded that the standard beating ap-
proach is not a rigorous noise theory, since it fails in obtaining
the correct result in a consistent way. Olsson’s approach has
been later reported in textbooks [1] and rearranged by other
authors. In [10], the same procedure of [9] is followed with a
different formalism; in [11], the so-called shot-noise terms are
disregarded because negligible if compared with beating terms,
thus assuminga priori that the exact quantum-mechanical
result can be dropped.

A different semiclassical description of noise in OA’s has
been presented by Berglind and Gillner [14] which is based
on an electrical scattering matrix equivalence for the optical

gain medium, modeled in terms of negative and positive
conductances representing gain/stimulated emission and op-
tical loss/absorption, respectively. Noise generators of white
spectral density proportional to are associated with the
conductance . This result, derived from [15], is an indirect
consequence of the existence of quantum vacuum fluctua-
tions. An expression is obtained [14, eq. (19)] accounting for
the spectral density of the excess noise field spontaneously
emitted by the amplifier that is a correct result differing
in principle from Olsson’s, as it will be shown in Section
IV. However, after this result, the authors of [14] make an
arbitrary transformation which allows them to recover the
conventional ASE spectral density in agreement with [9],
to which the vacuum fluctuation spectral density is added.
In this step, the negative conductance(gain) is formally
represented as (twice the gain plus a loss), and
the existence of two uncorrelated noise sources of spectral
intensity and is assumed, hence obtaining a total
noise spectral density . This is an
arbitrary assumption, since the total quantum noise emitted by
a well-defined optical gain element (the negative conductance)
is altered (multiplied by 3). When one associates noise sources
to active or dissipative elements, only real elements are to
be considered, and formal manipulation on their value is not
allowed. As a result, also in [14] the dominant noise term is
the conventional signal–ASE beating. Moreover, also in this
approach input signal noise and its amplification are neglected.

The considered semiclassical analyses [9], [14] yield numer-
ically correct results but are affected by some inconsistencies.
For this reason, we intend to present a new simple and rigorous
description of noise in OA’s, capable of yielding the correct
results in a consistent way within a semiclassical framework.

III. A N EW SEMICLASSICAL WAVE-THEORY MODEL

Since at optical frequencies quantum noise predominates
over thermal noise, quantum-mechanical principles have to
be taken into account. In [14], the noise associated with a
conductance is a consequence of vacuum fluctuations [15].
Therefore, it is interesting to ask if a semiclassical theory
can be developed starting directly from this very fundamental
principle, as we do in the following.

The zero-mean electric field coherent (or vacuum) fluctu-
ation is independent of the field expectation value and its
variance is given by [8], [20], [21]

(14)

(11)
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to which corresponds the (double-sided) white power spectral
density

(15)

where the factor has been neglected. Equation (14)
comes from the minimum-uncertainty relation

for each polarization of the field, whereis the quantiza-
tion volume, i.e., is the mode (or detector) area,
and is the observation time. Letting
and (14) is obtained.

In our formulation, we try to assume the minimum number
of statements, listed below, coming from quantum theory
which are needed to supplement the classical description so as
to obtain a consistent framework capable of treating all cases.

1) The electric field fluctuation of a coherent
state has zero mean value and a variance

corresponding to a double-sided white
spectral density of irrespective of the field
amplitude . Therefore, also for (vacuum state
or unused input port) a fluctuation is
found and shall be taken into account.

2) The variance of the vacuum state is not directly observ-
able by a photodetector, i.e., the variance and
higher order moments of shall be ignored when
beating on a photodetector. This statement was made, in
a slightly different context, by Loudon [8] and accounts
for the fact that, when only the vacuum field impinges
on the detector, the photocurrent is identically zero for
both dc signal and noise components.

3) The fluctuation of the vacuum state shall be added
to each mode and to any input port of the physical
experiment at hand, even if the mode or port are unused.

We will illustrate the application of these statements with
simple examples before using them later to describe the OA
noise.

A. Detection of a Coherent Signal

Let us consider the model of a photodetector with quantum
efficiency receiving a coherent-state signal of signal power

. We assume that the total field is the sum of a determin-
istic signal field and a zero-mean fluctuation . The
deterministic signal is written as

(16)

The superposed fluctuation is that of the coherent state,
with zero mean value and the variance

(14). This fluctuation is represented mathematically in the
form of a Gaussian stochastic variable (in agreement with [8])
having a white double-sided spectral density given by (15).

The photodetector with nonunitary quantum efficiency
is a port for the vacuum state, and for clarification we

shall model it as an ideal photodetector preceded by a
beamsplitter with power transmission[22]. The beamsplitter
will therefore transmit a fraction of the signal field and
reflect a fraction (phase-shifted of 90 of the
vacuum field entering this unused port, as in Fig. 1.

Fig. 1. Model for the photodetection of a coherent signal with quantum
efficiency� through a beamsplitter of field transmission

p
�.

Here, has the same statistical properties of but
these two variables are statistically uncorrelated.

Accordingly to statement 2) made above, the photodetected
current is obtained by subtraction of a term
from the squared modulus of the total electric field impinging
on the photodetector, given by

. Thus, we have for the dc term

(17)

The spectral density of the zero-mean photocurrent fluctua-
tion can be obtained by the
Fourier transform of the photocurrent autocovariance function

[12] which is given by

(18)

where it is assumed that is the autocovariance of
the function and that of the function

. Equation (18) can be simplified using the
properties of autocovariance functions and keeping in mind
that the fields and are uncorrelated, i.e.,
the term yields a noise spectral density twice
the one given by . Thus, the first, second,
fifth, and sixth terms of (18) cancel out, while the third and
fourth terms yield a white photocurrent noise with single-sided
spectral density given by

(19)

which is the correct shot noise for the considered case. Note
that, from the semiclassical point of view, by reversing the
arguments, the double-sided spectral density of the
coherent state fluctuation (15) can be invoked as necessary
for the shot noise to be given by (19). Also, the amplitude
fluctuation of the detected current, which is known to be
Gaussian in the time domain (i.e., for the random variable

and a negative exponential in the frequency domain
(i.e., for the random instantaneous power) correctly comes out,
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since the coherent state fluctuation is assumed to be
Gaussian-distributed [23].

B. Detection of a Laser Signal with Excess-Noise

A real laser source does not emit a pure coherent state and
its photodetection noise is larger than pure shot noise. Also,
the correct modeling of a real source is of importance for
the evaluation of the performances of a communication fiber
link including OA’s. We can easily model such a source as a
deterministic field given by (16) to which a field fluctuation

is superposed. The double-sided spectral density of
is given by

(20)

where and denotes convolution. The total field
spectral density of the nonideal laser source is shown in
Fig. 2. The two rectangular-shaped noise densities in excess
of the vacuum fluctuation account for the ASE power which is
always emitted by a real source. A rectangular-shaped optical
gain is schematically assumed for the laser medium with
a bandwidth equal to . Photodetection of the considered
signal yields the following dc current:

(21)

where the CW ASE power emitted by the laser is
negligible for usual cases. The single-sided spectral density
of the noise current is now given by

(22)

and we have

(23)

where the approximation holds for most cases. It can be easily
seen from (23) that the quantity represents the Fano
factor of the considered real source

(24)

or, equivalently, it is the ratio between the source RIN and
the RIN of a pure coherent source. The above description
correctly accounts for the evolution of the Fano factor of
the light transmitted through an attenuator [21], which can
be represented by a beamsplitter as in Section III-A.

C. Model of the Optical Amplifier

The key point for the new description is that the additional
noise responsible for the ASE enters the optical amplifier from
an unused port. This statement is consistent with quantum
theory prohibiting an ideal two-port amplifier (i.e., with just
input and output). Rather, if the field-amplification coefficient
from input to output is quantum theory requires that
there shall be another port from which noise enters the optical
amplifier, with a field-transfer coefficient . Indeed,
if is the signal field at the physical input port field andis

Fig. 2. Spectral density of the total field emitted by a laser source with Fano
factor Fsource = k + 1.

Fig. 3. Model of an optical amplifier of gainG and complete medium
inversion (Nsp = 1) represented as an amplifying beamsplitter of field
transmission

p
G. At the idler port, the vacuum field fluctuation is applied.

the field at the idler input, the commutation relations require
[22], [24] that the transfer matrix be of the form

(25)

This matrix is identical to that of a beamsplitter with a fictitious
factor of power transmittance. From the relationship

point of view, the transfer matrix allows us to describe the
optical amplifier as a four-port device, as shown in Fig. 3.
We can again represent a coherent input signaland its
fluctuation , as in Section III-A, and
assume that the vacuum state enters the idler port with zero
mean value and a white spectral density given by (15). The
total electric field on the photodetector (assumed to have
unitary quantum efficiency) is now given by

The spectral dependence
of the optical gain is for
and for and where the
active medium is transparent. For the moment, let us consider
an OA with complete medium inversion, i.e., .

The photocurrent is obtained according to statement 2), and
the dc value is given by (26), shown at the bottom of the
page, and coincides with (3). The spectral density of the zero-
mean photocurrent fluctuation
is obtained by the Fourier transform of the photocurrent
autocovariance function which is now given by

(27)
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The Fourier transform of the first, second, fifth and sixth
terms of (27) gives the noise associated to ASE. The ASE
is not postulated in our model but rather comes out as the
amplification of coherent signal fluctuations and vacuum state
fluctuations. The ASE noise has a single-sided spectral density
(28), shown at the bottom of the page. The third term of (27)
gives the noise due to the amplification of the input signal
coherent state fluctuation, which has a single-sided spectral
density

(29)

The fourth term of (27) yields the noise due to the amplifica-
tion of the vacuum state fluctuations entering the amplifier
idler port. This constitutes amplifier excess noise with a
spectral density

(30)

The spectral densities (28)–(30) are reported in Fig. 4.
The total photocurrent noise spectral density is

and agrees with the
correct expression (4) and with the conventional result [9]. The
approach presented here suggests a clear interpretation for the
OA output noise terms. Neglecting the term (28), the dominant
noise is represented by two terms: 1) the amplification of input
signal coherent fluctuation (equation (29), amplified
shot noise) and 2) the excess-noise introduced
by the amplifier. For , these two terms have the same
magnitude and the 3-dB minimum noise figure is obtained. The
high-frequency white noise terms cannot be
physically regarded as ASE and amplified signal shot noises,
since they extend well beyond the limit for which electronic
formalism is valid. Further statistical properties of output noise
can be inferred from the structure of the terms of (27), keeping
in mind that the fluctuations and are
Gaussian-distributed. The probability density function for each
term of can be obtained, compounding the results with
standard statistical rules.

(a)

(b)

(c)

Fig. 4. Spectral density of OA output photocurrent noise terms (28)–(30).
(a) ASE noise, (b) amplified input-signal noise, and (c) amplifier excess noise.

D. Extensions of the Results

To avoid excessive burdening of the notation, in the pre-
vious section we have assumed ideal photodetector quantum
efficiency, a coherent input signal, and unitary ASE factor

. Now we can generalize the above results dropping these
assumptions.

First, let us note that a subunitary quantum efficiency of
the photodetector has nothing to do with amplifier noise, and
it is therefore reasonable to model it by a beamsplitter (as in
Section III-A) cascaded to the OA.

Second, the excess noise carried by the input laser signal
can be modeled as in Section III-B, thus obtaining the same
result given by the quantum theory when an input signal Fano
factor is assumed.

Third, to take into account incomplete inversion, i.e.,
a sort of ASE amplification shall be introduced.

(26)

(28)
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Fig. 5. Model of an optical amplifier of gainG and incomplete medium
inversion (Nsp � 1).

Since the ASE comes from the unused port, an amplifying
beamsplitter with a field transmission and a field
reflection shall be added on the idler port, as
shown in Fig. 5. To this beamsplitter, two input uncorrelated
fluctuations and are applied. With this new
scheme, it is an exercise to repeat the calculations as in
Section III-C, and the results for the dc photocurrent is found
coincident to (26), with an ASE CW power now given by

. The ASE photocurrent noise term
has now the form

(31)

The noise due to the amplification of the input signal fluctua-
tion (29) is unchanged, while the amplifier excess-noise term
is now given by

(32)

IV. DISCUSSION

Our new wave-like description allows a clearer interpreta-
tion of signal-dependent OA output noise as due to amplified
input signal noise and to the unavoidable excess noise intro-
duced by the amplifier. This picture very closely resembles that
of the photon probabilistic approach [6], [17]–[19] in which,
apart from ASE power fluctuations, the output noise consists
of amplification of the shot noise associated with the input
signal and of excess noise due to amplifier gain randomness.

A further comparison between our results and those obtained
in [14] is worthwhile. The spectral density of the noise field
spontaneously emitted by the OA is given in [14, eq. (19)].
This expression is a correct result and corresponds to the
output optical spectral density obtained in our approach by
amplification of the vacuum fluctuation entering the amplifier
idler port. In our model, this noise field contributes, by means

of interference with the amplified signal and with the amplified
noise carried by the signal itself, to the total output CW
and fluctuation power. This gives rise to the correct CW and
noise terms. In [14], input field fluctuations (that are at least
equal to vacuum fluctuations) are neglected and so is their
amplification. Hence, at OA output, the total optical spectral
density lacks a noise term, which is why the analysis is not
fully consistent. It is now clear the importance of taking
explicitly into account input signal fluctuations (or vacuum
fluctuations if no signal is applied to OA input) and their
amplification in order to obtain a consistent description.

When a transmission line with cascaded OA’s featuring
rectangular-shaped gain is considered, conventional semiclas-
sical approaches [9], [14] give correct results, despite the
inconsistencies analyzed above. However, the validity of these
approaches is limited to the case of pure coherent input
signal. This is a limitation that can be easily overcome by
our approach. Our method also allows the characterization of
a cascade of OA’s with arbitrary spectral gain shape, yielding
the exact ASE noise contribution which strongly depends on
spectral gain shape.

When there is no need to distinguish between various noise
terms, the calculation (26)–(27) can be carried out directly
on the total field and its whole spectral density can be
considered.

V. CONCLUSION

We have formulated a new semiclassical wave theory of
the noise in optical amplifiers which is a simple yet rigorous
translation of a few quantum statements. We have shown that
the OA can be modeled as a sort of amplifying beamsplitter
and that the ASE comes from the amplification of vacuum
fluctuations. Examples of application point out the general
validity of the description.
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