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Noise in GPS coordinate time series 
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Abstract. We assess the noise characteristics in time series of daily position estimates for 23 

globally distributed Global Positioning System (GPS) stations with 3 years of data, using spectral 

analysis and Maximum Likelihood Estimation. A combination of white noise and flicker noise 

appears to be the best model for the noise characteristics of all three position components. Both 
white and flicker noise amplitudes are smallest in the north component and largest in the vertical 

component. The white noise part of the vertical component is higher for tropical stations (+23 ø 

latitude) compared to midlatitude stations. Velocity error in a GPS coordinate time series may be 

underestimated by factors of 5-11 if a pure white noise model is assumed. 

1. Introduction 

Geophysical studies using geodetic measurements of surface 

displacement or strain require not only accurate estimates of 

these parameters but also accurate error estimates. Geodetic 

measurements of displacement differ in two important ways from 

other types of geophysical data, and these differences complicate 
error estimation. 

First, we generally require a long time series of measurements, 

often several years or more, in order to obtain accurate site ve- 

locity estimates. This means that a variety of errors with differ- 

ent timescales can corrupt the data. An individual error source 

may also change with time; for example, the instrument may 

improve. It is convenient to characterize errors as white (no time 

dependence) and colored (time-correlated). While the effect of 
white noise can be greatly reduced through frequent measure- 

ment and averaging, this is less useful for time-correlated noise 

and, in fact, provides no benefit at all for one type of time- 
correlated noise, the random walk. 

Second, while we generally seek to infer the motion of large 

crustal units, what we actually measure is the motion of a mark 

or monument on or just below the ground surface. Spurious 

motion of the mark (monument noise) -unrelated to motion of the 

larger crustal units of interest has been identified as an important 

noise source for many geodetic measurements [Johnson and 

Agnew, 1995; Langbein et al., 1995]. Analysis of long (decade 
or more) time series of high-precision two-color electronic dis- 

tance measurement (EDM) data from sites in California suggests 
that monument noise can be modeled as a random walk 

[Langbein and Johnson, 1997]. 

For geodetic data acquired with the Global Positioning Sys- 

tem (GPS), a variety of time-correlated processes in addition to 

monument noise corrupt velocity estimates and, in fact, likely 

dominate the error budget at the present time. In other words, 
GPS velocity estimates may not yet be accurate enough to ob- 
serve monument noise except in extreme cases. Other sources of 
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time-correlated noise include mismodeled satellite orbits, other 

reference frame effects (e.g., Earth orientation), mismodeled 

atmospheric effects, and mismodeled antenna phase center ef- 
fects, which may vary with satellite elevation, azimuth, and local 
environmental factors. 

Studies of time-correlated noise in GPS time series have been 

hampered by the relatively short time that high-quality time se- 

ries have been available. Rigorous analysis of time-correlated 

noise in GPS data may well require decade or longer time series, 

but high-precision results from continuously operating stations 
have been available only since about 1992 or 1993. The present 

study reports the noise characteristics of 23 globally distributed 

GPS sites that have operated more or less continuously for about 

3 years. 

2. Previous Work 

Zhang et al. [1997] analyzed 1.6 years of essentially continu- 
ous daily measurements from 10 sites in southern California, 

and the reader is referred to that work for additional background 
on some of the issues discussed here. Zhang et al. [1997] were 
able to reduce regionally correlated noise (probably dominated 
by orbit errors) by use of a filtering algorithm that subtracted 
common mode, nontectonic signals from the GPS time series 

[Wdowinski et al., 1997]. This method is applicable whenever 
data from a relatively dense network are available but is not yet 
possible for a globally distributed set of sites, because of their 

isolation. Noise in the residual time series studied by Zhang et 
al. [1997] was characterized as "fractal white" (spectral index 
0.4, defined below) or a combination of white noise and flicker 

noise (spectral indices of 0 and 1, respectively). Given the short- 
ness of the time series available to them, Zhang et al. [1997] 
could not distinguish between these models. 

This study differs in three ways from that of Zhang et al. 
[1997]. First, we study a global distribution of sites (Figure 1), 
which allows us to assess regional differences in noise. This is 
important for the GPS, where orbit, reference frame, and atmos- 

pheric errors are likely to be important and may exhibit regional 
differences. Second, we have studied "raw" GPS coordinate time 

series, as opposed to data with orbit and reference frame errors 

reduced or eliminated through common mode techniques. Thus 
our results should be applicable to GPS coordinate time series 
from any site, no matter how isolated. Filtered data or relative 

position (baseline) data can be expected to be less noisy than 
results presented here, provided the baselines are short enough. 
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Figure 1. Distribution of Global Positioning System stations used in this study. 
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Third, longer time series (3.0 years, nearly a factor of 2 longer) 
are now available, enabling a more accurate assessment of long- 

period time-correlated noise. 

3. Data Analysis 

Since early 1994, GPS data from a number of continuously 
operating stations (currently 120) have been analyzed in the Ge- 

odesy Laboratory of the University of Miami to study various 

geophysical phenomena. We selected 23 stations with time 

spans longer than 2.5 years for noise analysis (Table 1, Figure 1). 

Seventeen stations have 3.0 years of data or more. The 1994 and 

later period used here is a convenient one. Many stations experi- 
enced frequent equipment changes prior to 1994. Also, these 

later data tend to be less noisy compared to earlier data, espe- 
cially in the Southern Hemisphere, perhaps reflecting improve- 

ment in satellite ephemerides as the number of global tracking 
stations increased rapidly between 1991 and 1994. 

To speed analysis, for most applications (and this analysis) we 
use satellite orbit and clock files provided by the Jet Propulsion 

Laboratory (JPL) [Zumberge et al., 1997]. The resulting daily 
station coordinates are transformed into global reference frame 

ITRF-94 [Boucher et al., 1996]. Analysis procedures are de- 

scribed by Dixon et al. [ 1997]. 
We use two methods, spectral analysis and Maximum Likeli- 

hood Estimation (MLE), to assess time-correlated noise in these 

time series. We use spectral analysis to estimate the spectral 
index of noise, while MLE is used to characterize the amplitudes 

of the stochastic processes with integer spectral indices. 

3.1. Spectral Analysis 

The power spectra, P, of many geophysical phenomena are 

well approximated by a power-law dependence on frequency f of 
the form [Agnew, 1992] 

P(f ) = Pof -'• (1) 

where a is the spectral index and P0 is a constant. Larger a im- 
plies a more correlated process and more relative power at lower 

frequencies. White noise has a spectral index of 0, flicker noise 

has a spectral index of 1, and a random walk has a spectral index 
of 2. 

Spectral indices need not be limited to integer values. Geo- 

physical phenomena and noise with fractional spectral indices in 

the range 1<o•<3 are termed "fractal random walk," while indi- 

ces in the range -1 <o•<1 are termed "fractal white noise" [Agnew, 

1992]. Noise processes with-1<o•<1 are stationary, while proc- 

esses with spectral index larger than 1 are nonstationary. A sta- 

tionary random process is one whose statistical properties (e.g., 

mean and variance) are invariant in time. 

Following Langbein and Johnson [1997], the spectrum of a 
set of measurements can be modeled as the sum of white noise 

and colored noise: 

e(f) = eo(f + f;") (2) 

where J3 is the crossover frequency of the power spectrum de- 
fined as the point at which the two processes have the same 

power levels. The constants a, P0, and J• can be estimated by 
fitting a curve to the power spectrum of a time series. The un- 
certainties are determined by seeing how well the model fits the 
spectrum using standard least squares. We have used an iterative 

nonlinear least squares method to estimate these parameters. In 
order to speed convergence, we apply the natural logarithm to 
both sides of (2): 

In P(f) = In P0 + ln(f -a + f•-a) (3) 

The differential form of this equation can be written 

d{ln[P(f)]}: dln(P0)- f-a + f•-a 
+ f-a In f + f•-a In fo da (4) 

_ f6 

Using the relationship between parameters and measurements 

given in (4), we can form a set of observation equations, AX = V, 
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Table 1. Station Description (Post-1994) 

ID Station Name Lat, deg Long, deg H, a m Receiver b Antenna e 

ALGO Algonquin 45.96 -78.07 202 TR TR 

BRMU Bermuda 32.37 -64.70 -8 TR TR 

CASA Mammoth Lakes 37.64 -118.10 2390 TR TR; add antenna skirt (1) 

CMBB Columbia 38.03 -120.39 695 Ashtech Z-12 Ashtech; TR (2) 

FAIR Gilmore Creek 64.98 -147.50 319 ROGUE; TR(3) ROGUE; TR(3) 

FORT Fortaleza -3.88 -38.42 20 TR TR 

GOLD Goldstone 35.42 -116.89 987 ROGUE ROGUE; TR (4) 

GU3•'4 Guam 13.59 144.87 202 TR TR 

KERG Kerguelen Island -49.35 70.26 74 ROGUE TR 

KIT3 Kitab 39.14 66.88 643 TR TR 

KOKB Kokee Park 22.13 -159.66 1167 ROGUE; TR(5) ROGUE; TR(5) 

KOUR Kourou 5.25 -52.81 -25 ROGUE ROGUE 

KRAK Krakatua 37.71 -118.88 2359 TR TR 

MASl Maspalomas 27.76 -15.63 197 TR TR 

ONSA Onsala 57.40 11.92 46 TR ROGUE 

PIE1 Pietown 34.30 -108.12 2347 TR TR 

QUIN Quincy 39.97 -120.94 1106 TR TR 

RCM5 Richmond 25.61 -80.38 -25 TR TR 

S32qT Santiago -33.15 -70.67 723 ROGUE; TR(6) ROGUE; TR(6) 

SHAO Shanghai 31.10 121.20 22 TR TR 

TIDB Tidbinbilla -35.40 148.98 665 ROGUE ROGUE; TR(7) 

YAR1 Yaragadee -29.05 115.35 241 ROGUE ROGUE 

YELL Yellowknife 62.48 -114.48 181 TR TR 

alleight above ellipsoid. 

bReceiver: ROGUE, ROGUE SNR-8; TR, ROGUE SNR-8000 or SNR-8100. Numbers in parentheses are equipment 
change dates: (1) June 3, 1995; (2) Aug. 20, 1997; (3) April 16, 1996; (4) Oct. 31, 1995; (5) Jan. 10, 1996; (6) July 17, 
1996; (7) June 26, 1996. 

½Antenna: ROGUE, DORNE MARGOLIN R; TR, DORNE MARGOLIN T; Ashtech, Ashtech GEODETIC L1/L2 P. 
Numbers in parentheses are equipment change dates (see previous note). 

where A is a function of Po, J• and a, X=[dln(Po),dJ•, da] r is the 
update vector for parameters, and V is the difference between the 

observed and the computed power spectra. A normal equation 
can be created based on least-squares in the form 

NX= (5) 

where the normal matrix N = ATA = I%1 and vector L = ATV = 
llil. The Levenberg-Marquardt method [Press et al., 1992] is 
used to solve the nonlinear parameter estimation. The normal 

matrix here gives only the trend at a particular point, but not how 

far that slope extends. We can replace the normal matrix N in (5) 

with a new matrix N' = [n•. ] defined by the following rules: 

, In,•(1 + X) i=j 
n,• = [n,• i ½ j 

(6) 

When k is very large, the matrix N' is forced to be nearly diago- 
nal, and the step size by which the solution is approached is re- 
duced because the diagonal elements of the normal matrix are 

enlarged. On the other hand, as •, approaches zero, N' will be 
close to the real normal matrix N. 

Given an initial guess for the set of fitted parameters X, we 
use the following iterative steps modified from the Levenberg- 
Marquardt method: 

1. Pick a modest value for •,, say •, = 0.001. 

2. Compute normal matrix N, L and misfit z2(X). 
3. Modi-fy the normal matrix as in (6) and solve the modified 

normal equation (5) for fix and evaluate 2,2(X+fiX). 
4. If z2(X+ 8g)2 z2X, increase •, by a factor of 10 and go back 

to step 3. 

5. If z2(X+fiX)(z2X, update the trial solution with X+fiX, de- 
crease •, by a factor of 10, and go back to step 2. 

6. The iteration can be stopped when z2(X+fiX) decreases by 
a negligible amount for •, < 0.01. 

For example, when a=l, (2) approaches Po/f at low frequen- 
cies, which corresponds to flicker noise, and approaches a con- 
stant Po/f• at high frequencies, which corresponds to white noise. 

The amplitudes of white noise and flicker noise components can 
be calculated from estimated values of Po and J•, and similarly 
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for the case of random walk noise (a=2) or arbitrary a. Noise 

components derived in this way are less precise than those de- 
rived with the MLE techniques described later, although they can 

provide an independent estimate for comparison purposes. 
In our case, a and Po vary by less than 10, while J• is much 

more variable and may cause convergence problems, especially if 
it is close to zero (white noise dominates over time-correlated 

noise). In case of divergence, a straight line can be fitted to the 
spectrum to estimate the spectral index, although this may under- 
estimate the spectral index at low frequency for time series com- 
posed of white noise plus time-correlated noise. Again, reference 
to MLE allows an independent estimate. 

Time series are windowed prior to spectral analysis. The sim- 

plest window is a boxcar window, in which the finite data set is 
left alone. Specialized windows can be used to reduce spectral 
leakage and sidelobe effects [Press et al., 1992], but can some- 
times artificially enhance the power at low frequencies, which is 
undesirable for our application. Boxcar windows were used for 
most of the results presented here. To verify the stability of our 
spectral estimates, we also analyzed the time series using several 
other common windowing techniques. In general, these gave 
similar results to the boxcar window results, as described below 

(section 4.1.). 
Two techniques (Fourier spectrum and least squares) can be 

used to estimate the periodogram of a time series, depending on 
whether the data are evenly spaced or not. For a series of N dis- 

crete observations x.•, (j = 1, N) at equal spacing, the power spec- 
trum by means of a periodogram is defined from the discrete 
Fourier transform as [Scargle, 1982] 

P(f,, ) = -• x, cos 2•f,, + x, sin 2•f,, (7) 

where f,, = n/T, T is the thndamental period, and n = 1 ..... N/2. If 

x• is pure white noise, P(f,,) is an exponentially distributed 
random variable with an expectation value equal to the variance 

of the white noise. The amplitude estimates of the spectrum at 

the frequencies f,, are independent. 
In many situations (including many of our GPS time series), 

evenly spaced data cannot be obtained. There are ways to mod- 
ify unevenly spaced time series to simulate evenly spaced ones. 
Interpolation is one approach, but most interpolation techniques 
perform poorly for large gaps [Press et al., 1992], a problem at 
some of the GPS sites. We follow the approach of Lomb [1976], 
who used a nonlinear least squares technique to estimate spectra 

by fitting sine waves directly to the data. Given a set of N obser- 
vations x.• with zero mean at t s (/= 1 to N), we can set up the fol- 
lowing model at a given frequencyf 

xj +ej =acos2zr(t•-v)f +bsin2zr(t•-v)f (8) 

where the errors 5 are independent and have zero mean and 
common variance, a and b are unknowns, and •' is introduced 

for simplification, defined by 

tan(4zrf,)= Z sin4n'tjf Z cos4rrtjf (9) 
j=• j=i 

Then the periodogram can be derived as follows: 

P(f) = •- • cos2 2/r(tj _ •r)f 
J=l 

IN ] Z xj cos2rr(tj - r) f 
j=l 

N 

Z sin 2rr(tj - •:)f 
j-! 

(10) 

Scargle [1982] proved that the resulting periodogram has 
exactly the same exponential probability distribution as for 
evenly spaced data. Windowing techniques can also be applied. 

While this expression can be evaluated at any frequency, it is 
typically evaluated only at a set of evenly spaced frequencies 

similar to the Fourier spectrum, defined by 

f,, =n/T n = 1,2 .... (11) 

where T is the fundamental period. However, the orthogonality 

of the periodogram at these frequencies is lost for unevenly 

spaced data. It can be shown by numerical test or derivation that 

the Fourier spectrum and least squares method are equivalent 
when both are applied on the same evenly spaced data [Scargle, 

1982]. 

To verify the performance of the least squares algorithm in the 

presence of data gaps, we tested it with two kinds of missing 
data: small amounts of missing data randomly distributed 

through the time series, and a single large gap. For the first test 

we randomly removed 30% of the data from an evenly spaced 
time series and found that there is essentially no bias in the re- 

sulting spectral profile, compared with the spectrum estimated 

from the original time series (Figure 2). 

To test the effect of large gaps in the data, we generated 20 
synthetic time series of 1000 points each, with noise characteris- 

tics similar to our GPS time series (spectral indices 0.80-1.60), 

removing 10, 20, and 30% of the data from each time series near 

the beginning (100 points in) to simulate a large gap. Effects on 
the estimated spectral indices for individual time series were 

always less than 0.4:+0.24 to -0.20 for 10% data removal; and 
+0.27 to -0.39 for 20% data removal; +0.37 to -0.34 for 30% 

data removal. Effects on the mean spectral index were negligi- 
ble: +0.002 for 10% data removal; -0.06 for 20% data removal; 
and +0.01 for 30% data removal. We conclude that our tech- 

nique for estimation of the spectral indices of time series is ro- 

bust in the presence of data gaps. 

For relatively short time series the spectral index can be un- 
derestimated. We have investigated our sensitivity to this effect 

in two ways. First, the nonlinear least squares estimation method 

was tested on theoretical power-law spectra with different lowest 

frequency. Spectral indices of 2 and 1 were tested. Nonlinear 

least squares can estimate the spectral index reliably when the 

length of the time series is 1.8 times the crossover period for both 
index values. 

We further tested both the Fourier method and least squares 
method on mixed noise synthetic time series, mixing white noise 
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Figure 2. Power spectrum computed from complete time series (solid line) compared with spectrum computed with 
30% of data randomly removed. Data are 73 years of monthly mean tide gauge data from Boston. An annual and 

semiannual term stand out above the noise. Frequency is in cycles per year. 

with either flicker noise or random walk noise, with similar am- 

plitudes to current GPS time series (Table 2). In test case one, 
time series were simulated with 4.0 mm of white noise and 5.0 

mm of flicker noise, and 30% of the points randomly removed. 

The crossover period of these time series is about 20 days. We 
found that the spectral indices can be estimated reliably for time 

series longer than 2 years, a criterion we meet for all our time 

series. Although the mean estimation is not biased for time se- 

ries equal to 1 year, many solutions failed to converge. We also 
found that it is more difficult to estimate the spectral index when 
we removed the annual term. In test case two we simulated GPS 

time series with 4.5 mm of white noise and 1.5 mm/x/yr of ran- 
dom walk noise, whose crossover period is about 1 year. The 

length of data required to characterize accurately the random 
walk component is usually taken to be 5 times the crossover pe- 
riod (5/35), in this case 5 years. However, in this simulation, even 

5 years was inadequate. Periodic signals and other noise make it 

more difficult to detect random walk noise, implying that it will 
be some time before GPS time series can be analyzed for accu- 
rate estimates of random walk noise, at least for data similar to 

the coordinate time series discussed here. For more precise 

baseline (relative position) data, random walk noise may be char- 

acterized in less time, depending on its amplitude (e.g., Dixon et 

al., 1997). Spectral index results are summarized in Table 3. 

3.2. Maximum Likelihood Estimation 

Assuming the observed time series X={ x./, t• (j=l, N) } is 

composed of only white noise with variance c•,•, flicker noise 

with variance • (its scale will be defined later), and random- 
walk noise c•,•z,, (variance over specific time, e.g., 1 year), the 
covariance matrix of observations can be written as 

2 2 

Qxx = o'. 2,1 + O'r.'Rrw + o'fRr (12) 

where I is the N x N identity matrix, and R.,• and Rr are the 

matrices representing the covariance of random walk noise and 
flicker noise, respectively. 

A random walk process is derived by integrating white noise. 
As we do not have any information about the random walk proc- 
ess before the observations start, we assume that random walk 

noise at time to is equal to zero. With this assumption the ob- 
served time series over a fixed time T is stationary (even though 

the process itself is not) and easily characterized statistically 
[Brockwell and Davis, 1996]. The matrix R,, can be expressed 
as the following equation [Johnson and Wyatt, 1994]: 

At I At I --- At] 

At! At 2 ... At 2 Rrw = . . ... . (13) 

•,Atl At2 .-- At n 

where A 5 = 5- to. 

For flicker noise (o• = 1 ) the elements of matrix Rœ can be 
approximated by [Zhang et al., 1997] 

x 2- . t, ½: t s 
12 

(14) 

for most space geodetic time series (]ti- t./I << 222). The first sev- 
eral elements look like 
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Table 2. Test Results of Spectral Analysis on Synthetic Time Series 

Length of Time Series 

1 year 2 years 3 years 5 years 8 years 15 years 

Test Case One: White Plus Flicker Noise 

Mean + standard deviation 1.22+0.50 1.12+0.40 1.15+0.32 1.08+0.25 1.07+0.15 1.10+0.11 

Converged solutions 29 40 40 40 40 40 

Test Case One With Annual Term Removed 

Mean _+ standard deviation 0.77+0.27 0.67+0.25 0.82+0.31 0.83+0.17 0.92+0.17 1.02+0.00 

Converged solutions 15 31 36 40 40 40 

Test Case Two: White Noise Plus Random Walk Noise 

Mean +_' standard deviation 0.91+0.63 1.42+ 1.23 1.81 + 1.41 1.48+0.63 1.68+0.62 1.99+0.42 

Converged solutions 9 16 30 34 40 40 

Test Case Two With Annual Term Removed 

Mean +_ standard deviation - 0.13+0.11 1.55+2.09 1.52+ 1.22 2.20+ 1.02 2.30+0.52 

Converged solutions 0 3 6 13 29 39 

A total of 40 simulations are tested for each solution. In test case one, time series are simulated with 4.0 mm of white noise and 5.0 mm of 

flicker noise; 30% of the points are randomly taken away. The crossover period of such a time series is about 19 days. In test case two we 
simulate GPS time series with 4.5 mm of white noise and 1.5mm/•/yr of random walk noise, whose crossover period is about 1 year. 

1.125 1.031 0.984 .. 
1.031 1.125 1.031 

Rf=/0.9.84 1.031 1.125 (15) ß 

ß 

The constants in (14) are chosen such that flicker noise and ran- 

dom walk noise, with equal variance and a sampling interval of 1 
day, have equivalent power levels over a period of 1 year. The 
scale of flicker noise is also defined by (14). 

The •,,, or,., ..... and o? can be estimated by finding those values 
that maximize the following likelihood function, which is the 

joint probability of the data set [Langbein and Johnson, 1997]: 

, I -•/2 ( 1 X(ItlxX) (16) L(X, cr w Crrw,Cr/- ) = (2Zr)-N/2[(lXX exp -• 

Applying natural logarithms to both sides, we obtain 

At I lnl I- 7) lnL(X,C•w,r;,=,r;/. ) = --•-ln(2zr) -• xx 

For most available time series, only one of O;.w and • can be 
estimated along with or,,. We can use the preceding spectral 
analysis as a guide to an appropriate noise model. Alternately, 
we can use MLE to test several noise models (e.g., white plus 
flicker, white plus random walk), and choose the optimum model 
on the basis of the maximum likelihood value [Langbein and 
Johnson, 1997; Zhang et al., 1997]. We used both approches. 

The maximum likelihood problem can be solved in several ways 
[e.g., Koch, 1986; Press et al., 1992]. We selected the downhill 

simplex method developed by Nelder and Mead [Press et al., 

1992]. The method requires only function evaluations, not de- 

rivatives, although it is not very efficient in terms of the number 

of ihnction evaluations required. The algorithm starts with an 

initial guess of an N vector of independent parameters, then 

moves down through the complexity of an N-dimensional topog- 
raphy until reaching a minimum. Each step, called a reflection, 

moves the point of the simplex, where the function is largest or 
highest, through the opposite face of the simplex to a lower 
point. 

Langbein and Johnson [1997] tested the MLE technique de- 
scribed here with synthetic time series with known amounts of 
white and random walk noise and showed that MLE recovers 

reasonable estimates of the magnitude of white and random walk 

noise and uncertainties. With slight modification their algorithm 
can also recover flicker noise magnitude and uncertainty. Table 
4 shows the results of simulations for 10 time series, each with 5 
mm of white noise and 5 mm of flicker noise. It is clear that the 

algorithm is able to recover reasonable estimates of white and 

flicker noise as well as reasonable uncertainty estimates. 

4. Results and Discussion 

4.1. Spectral Index and Noise Amplitude 

The GPS position time series for all three components of the 
23 stations are illustrated in Figure 3. Time series were de- 
trended before spectral analysis and Maximum Likelihood Esti- 

mation. Data points with residuals larger than 3 times the stan- 
dard error are treated as outliers and removed in the linear re- 

gression. Figure 4 shows the power spectra of the same time 

series. Most of the spectra can be described as white (constant 
power) at short periods (high frequency), and red (more power) 
at longer periods (low frequency) (e.g., ALGO east). Most of the 

spectra are white for periods shorter than about 15-30 days 
(Figure 4). However, a few of the spectra can equally well be 
described as "fractal white" with power rising uniformly on these 
log-log plots toward higher values at longer periods (e.g., CMBB 
east). The best fitting white plus colored noise spectrum is 
shown on each plot if convergence was achieved. The value of 
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Table 3. Station Time Series: Length and Spectral Index Estimates 

ID Span, years Points North, • ct East, • ct 

1.38+0.56 1.63+0.70 

- 1.66+0.50 

1.22+0.56 0.70+0.19 

0.71+0.55 - 

0.54+0.38 - 

0.93+0.45 0.95+0.62 

- 1.06+0.45 

_ 

0.91+0.18 1.04+0.57 

0.86+0.20 0.79+0.47 

1.30+0.56 0.53+0.22 

- 0.75+0.42 

1.13+0.23 0.51 +0.34 

1.47+0.62 0.55+0.31 

1.14+0.40 0.91+0.32 

- 0.75+0.40 

1.47+0.66 1.23+0.44 

- 0.52+0.59 

0.56+0.48 0.61+0.42 

0.81+0.44 - 

1.41+0.50 0.74+0.43 

- 0.64+0.35 

- 0.68+0.28 

0.97+0.24 0.74+0.26 

ALGO 3.4 864 

BRMU 3.6 803 

CASA 3.4 801 

CMBB 3.3 498 

FAIR 3.4 381 

FORT 3.8 589 

GOLD 3.6 487 

GUAM 2.8 681 

KERG 2.6 762 

KIT3 2.7 620 

KOKB 3.4 824 

KOUR 3.6 627 

KRAK 2.9 627 

MAS1 3.0 581 

ONSA 3.2 524 

PIE1 3.6 606 

QU1N 3.4 818 

RCM5 2.7 554 

SANT 3.6 568 

SHAO 2.8 764 

TIDB 3.4 853 

YAR1 3.4 833 

YELL 3.4 538 

Weighted mean 2 

•No entry indicates failure to converge. 
2 Uncertainty is weighted rms scatter about weighted mean. 

Vertical, 1 ct 

0.69+0.21 

2.17+0.80 

0.87+0.48 

1.17+0.43 

1.10+0.81 

0.61+0.55 

1.06+0.54 

- 

1.91+1.50 

1.03+0.46 

1.39+0.41 

0.74+0.32 

0.83+0.28 

1.04+0.25 

1.13+0.45 

1.24+0.59 

0.83+0.42 

1.34+0.64 

1.56+0.73 

1.49+0.63 

1.15+0.47 

0.63+0.67 

0.93+0.64 

0.97+0.29 

Table 4. Results of Tests of MLE Algorithm on Synthetic Time Series 

Containing 5 mm of White Noise and 5 mm of Flicker Noise 

Run White Noise, mm Flicker Noise, mm 

1 5.03+.22 5.69+.69 

2 5.10+.20 4.47+.52 

3 4.97+.21 5.27+.76 

4 5.32+.22 4.37+.85 

5 5.05+.20 3.68+.47 

6 4.99+.20 4.32+. 76 

7 5.05+.22 5.72+.79 

8 5.21 +.21 3.98+.66 

9 5.26+.22 4.97+.64 

10 4.85+.22 6.17+.63 

Uncertmnt•es are 1 standard error. MLI5, Maximum L•kel•hood 

Estimation. 

the spectral index, {x, and its standard error are also shown. Ta- 

ble 3 shows the spectral index estimates for the north, east, and 

vertical components. The spectral indices range from 0.51 to 
2.17. By individual components, the weighted means are 

0.97+0.24 (north), 0.74+0.26 (east), and 0.97+0.29 (vertical). 
Thus there is no significant difference in the spectral character of 
noise for north, east and vertical components. The weighted 
mean for all three components is 0.89+0.28, and the unweighted 
mean of all components is 1.02+0.37. The most reliable esti- 

mates for spectral index (uncertainty less than or equal to 0.50) 
lie in the range of 0.51 - 1.66. Since the mean spectral index is 
close to 1.0 regardless of component or weighting, we suggest 
that flicker noise is an adequate model for time-correlated noise 

in these time series. However, we cannot preclude the possibility 
that a < 1.0 or a > 1.0 (fractal white noise or fractal random 

walk noise), given the uncertainties. 

To check the reliability of our spectral index estimates, we 
calculated the indices in several different ways. The mean values 
quoted above are based on nonwindowed data, with no value 
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Figure 3. PS coordinate time series used in this study. Horizontal axes are for the years of about 1994-1998. Ver- 

tical axes are north, east, and vertical components in mm, offset by a nominal value. 
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Figure 3. (continued) 

computed for time series that failed to converge (13 out of 69 window gives a mean spectral index of 0.95+0.46, while use of 
estimates; Table 3). It is possible to approximate the spectra for the Welch window gives 0.90+0.41. 
these divergent series by fitting a straight line. Employing this We tested solutions with and without an annual term removed. 
approach, again with non-windowed data, yields a mean spectral For most solutions the results are equivalent within errors. How- 
index of 0.98+0.42. We also computed spectra using several ever, when the annual term is removed, a larger number of solu- 
windowing techniques [Press et al., 1992]. Use of the Hanning tions failed to converge. For the spectral index results discussed 
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here, we therefore retained the annual signature. However, for 
all other results (e.g., MLE) the annual term has been removed to 

avoid contaminating the low-frequency part of the power spec- 
trum with a known signal, as the main focus of this study is to 
characterize random noise correlated over a long time span. 
Note that power at the annual period is clearly present in some of 
the spectra (e.g., vertical component of FORT and KRAK) but 
not in others (e.g., vertical component of BRMU, north compo- 

nent of ONSA). A few spectra (e.g., vertical component of 
MAS 1) have peaks at the semiannual period. 

Our mean spectral indices range from 0.74 to 1.02, depending 
on component, windowing technique, and whether the mean is 

weighted or unweighted. These values are bigger than the mean 

value 0.4+0.1 (one standard error) estimated by Zhang et al. 
[1997]. This difference may reflect one or more differences be- 
tween the two analyses. First, Zhang et al. removed a common- 



2810 MAO ET AL.: NOISE IN GPS TIME SERIES 

Table 5. Log Maximum Likelihood for Three Noise Models 

North East Vertical 

ID W+F W+RW W+F W+RW W+F W+RW 

ALGO 121 92 45 32 73 48 

BRMU 36 12 46 38 41 35 

CASA 74 51 49 37 38 24 

CMBB 56 47 27 16 78 58 

FAIR 23 18 23 7 52 46 

FORT 36 25 23 16 14 10 

GOLD 13 3 34 27 73 65 

GUAM 49 26 32 15 7 -1 

KERG 100 83 22 18 27 12 

KIT3 96 84 38 26 54 39 

KOKB 59 39 37 21 97 89 

KOUR 64 51 20 15 21 14 

KRAK 79 70 15 7 21 12 

MAS 1 32 23 30 21 54 41 

ONSA 76 74 59 47 67 54 

PIE1 50 37 37 22 62 48 

QUIN 53 38 51 42 63 45 

RCM5 20 8 16 14 28 22 

SANT 8 2 15 9 33 -12 

SHAO 64 49 58 39 16 7 

TIDB 113 97 88 67 125 107 

YAR1 69 52 72 60 50 37 

YELL 72 60 38 31 57 28 

W+F, white noise plus flicker noise; W+RW, white noise plus 
random walk noise. Largest value gives preferred model. Values 
are normalized such that pure white noise model has likelihood=0. 

walk noise is not present in our time series. Rather, with the 

current data time span (3 years), current levels of white and 

flicker noise, and likely levels of random walk noise (1-3 mm/•/yr 
assuming monument noise of the type described by Langbein 
and ,1ohnson [1997]), we are not able to detect it. Below, we 

discuss the time required to detect this level of random walk 

noise in time series of the quality currently available. In sum- 

mary, both the spectral analysis and Maximum Likelihood Esti- 

mation are consistent with a white plus flicker noise model, and 

we adopt this noise model in the remaining discussion. 

Table 6 lists the noise magnitude and standard deviation of 
white noise and flicker noise for the various time series. The 

annual signal is removed before estimating the noise compo- 
nents. Overall, noise in the east component is slightly higher 

than the north component, except ALGO and KIT3. The vertical 

component always has the largest white noise and flicker noise 

magnitude. The vertical component of CMBB has the largest 
flicker noise, which may be related to its older antenna and non- 

spherical radome (used at this site until August, 1997; Table 1) 

and/or possibly higher sensitivity to multipath due to antenna 
environment. Independent analyses have also indicated higher 

noise at this site [Bar-Sever et al., 1998]. For individual compo- 
nents, there is no significant correlation between the magnitudes 

of white and flicker noise, but when all three components are 

plotted together, there is a good overall correlation (Figure 5). 
The mean white noise amplitudes are 3.3, 5.9, and 10.3 mm for 
the north, east, and vertical components. The corresponding 
flicker noise values are 5.7, 7.8, and 14.7 mm. 

In order to test the possibility that our results are biased be- 

cause our time series are too short, we applied our analysis to 

some GPS time series that are over 6.0 years in length analyzed 

in a similar way [M.Heflin, personal communication, 1997]. We 
found that the two results are very close for most of the sites 

(Figure 6), which suggests that our 3 year results adequately 

characterize the noise. However, higher (5-10%) amplitude 
flicker noise is observed in some of the longer (6.0 years) time 

series, perhaps indicating that longer time series are more sensi- 
tive to long period time-correlated errors. An alternate explana- 

tion is that the longer time series necessarily includes 1992 and 
1993 data, which tend to be noisier than later data. 

mode error (due to orbits?) present in our data. Second, Zhang et 

al. were limited to 1.6 years of data; our longer time series may 
be more sensitive to long-term time-correlated noise. In the fu- 

ture, longer time series will undoubtedly enable more accurate 

estimates of time-correlated noise than those presented here. 

Third, Zhang et al. fit a straight line through the spectrum, while 
we fit a curve (equation (2)), allowing a better approximation to 
the low4¾equency part of the noise spectrum. Zhang et al. also 
noted that a white plus flicker noise model fit their data. 

Table 5 lists the difference of the log maximum likelihood 

among three models: white noise, white noise plus flicker noise, 
and white noise plus random walk noise. Larger values of the 
maximum likelihood indicate the preferred model [Langbein and 

Johnson, 1997; Zhang et al., 1997], in this case, the white noise 
plus flicker noise model. We have not attempted to establish the 
statistical significance of a given numerical score returned by the 
MLE algorithm, as it requires a large number of computer- 
intensive simulations. Nevertheless, the fact that in every case 

tested (total 69) the white plus flicker noise model scored higher 
than the pure white noise or white plus random walk noise mod- 
els argues strongly for the first model. Moreover, the same result 
is obtained from the spectral analysis. This is not to say random 

4.2. Regional Correlations 

Figure 7 plots the white and flicker noise amplitudes as a 
function of station latitude. In general, latitudinal effects are 

small. While there is a slight tendency for southern hemisphere 
stations to have larger noise amplitudes, the difference is small 

and not statistically significant. On the other hand, tropical sta- 

tions (between -23 ø and +23 ø latitude) clearly have higher levels 

of white noise in the vertical component compared to other sta- 

tions (Figure 7). The difference is statistically significant at 95% 
confidence. Four stations (FORT, GUAM, KOUR, and KOKB) 

are in this latitude band. Two of these (FORT and GUAM) are 

equipped with newer Turbo Rogue receivers, one (KOUR) is 
equipped with the older Rogue receiver and one (KOKB) experi- 
enced a receiver upgrade (Rogue to Turbo Rogue) midway 

through the time series studied here with no obvious effects 
(Table 1, Figure 3). Thus the difference is unlikely to be due to 
hardware differences. 

Inspection of time series t¾om other stations in our database 

not analyzed ibr this report suggests the effect is real and not an 
artifact of small sample size. The weighted rms scatter (WRMS) 

in the vertical component is a reasonable proxy for white noise. 
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Table 6. Noise Amplitude 

North East 

ID WRMS Crw ere WRMS Crw 

ALGO 3.4 1.8+0.1 4.9+0.2 4.4 

BRMU 3.6 2.6+0.1 4.2+0.3 6.6 

CASA 4.2 2.5+0.1 5.3+0.3 6.9 

CMBB 4.9 3.1+0.1 5.6+0.4 9.6 

FAIR 4.0 3.0+0.1 3.9+0.4 5.3 

FORT 5.9 4.2+0.2 5.9+0.5 9.2 

GOLD 3.7 3.0+0.1 3.6+0.3 7.5 

GUAM 7.0 4.4+0.2 9.2+0.6 12.3 

KERG 8.3 4.8+0.2 10.4+0.6 10.0 

KIT3 7.7 3.8+0.2 10.9+0.5 8.1 

KOKB 4.5 3.2+0.1 5.4+0.3 8.7 

KOUR 6.1 3.9+0.2 6.8+0.5 10.8 

KRAK 4.3 2.9+0.1 4.7+0.3 6.9 

MAS1 5.5 4.0+0.1 4.8+0.5 8.7 

ONSA 4.3 2.7+0.1 4.7+0.3 6.7 

PIE1 3.2 2.1+0.1 3.9+0.3 6.3 

QUIN 4.1 2.9+0.1 4.8+0.3 7.1 

RCM5 3.8 3.1+0.1 3.7+0.4 6.5 

SANT 5.9 5.0+0.2 4.0+0.5 9.4 

SHAO 7.8 5.1+0.2 8.4+0.6 10.7 

TIDB 5.0 3.2+0.1 5.6+0.3 7.9 

YAR1 4.5 3.0+0.1 5.8+0.3 7.2 

YELL 3.6 2.0+0.1 4.5+0.2 5.3 

Mean 5.0 3.3+0.9 5.7+2.1 7.9 

Noise amplitude is in mm. WRMS, Weighted rsms. 
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Figure 5. White noise versus flicker noise amplitude for the 23 GPS time series. 

3O 



2812 MAO ET AL.: NOISE IN GPS TIME SERIES 

2.0 

1.5 

1.o 

0.5 

0.0 

0.0 0.5 1.0 1.5 2.0 

UM 

15 ! 

E1o 
E 

o_ 5 

o 

o 

White Noise (Ow) / 

ß ' ' '' ' I ' ' ''' ' I ' ' ' ' 

5 10 

UM (mm) 

Figure 6. Comparison of spectral index (ct) and amplitude of 
white and flicker noise computed for 3 year time series (this 
study) and 6 year time series (M.Hefiin, personal communication, 
1997) for sites where both are available. The solid line has a 

slope of 1.00. One standard error bars are also shown. 

The four tropical stations in Table 6 have WRMS values in the 

vertical component of 19.4 mm, while the 18 nontropical stations 

(excluding CMBB) have mean vertical WRMS ranging from 10 

to 16 mm (mean = 13.2 mm). Eight other tropical stations in our 

database not used in this analysis and not affected by antenna 

changes have WRMS values ranging from 15 to 29 mm (mean = 

18.2 mm). 

Several explanations seem plausible. Perhaps the additional 

noise is related to tropospheric water vapor, which exhibits 

higher levels and higher variability in tropical regions [e.g., 
Dixon and Kornreich Wolf, 1990] and thus is more sensitive to 

mismodeling. Note that any atmospheric effects in our time se- 

ries are residual, representing the effects of atmospheric delay 
unmodeled in the estimation process. Another possibility is that 

the additional white noise in the vertical component is related to 
environmental effects near the antenna that are more common in 

the humid tropics. High moisture on the antenna housing or 

antenna element might promote elevation angle-dependent phase 
errors. Elevation angle-dependent errors tend to affect the verti- 

cal component more than the horizontal components. For exam- 

ple, we have observed mold growing on one side of a plastic 

antenna cover in one tropical station within one year of installa- 
tion. 

Table 7. Velocity Error Estimates for White and White Plus Flicker 
Noise Models 

North East Vertical 

ID W W+F W W+F W W+F 

ALGO 0.1 1.1 0.2 0.9 0.4 3.1 

BRMU 0.1 0.9 0.3 1.2 0.5 2.4 

CASA 0.2 1.2 0.3 1.5 0.5 2.8 

CMBB 0.3 1.4 0.5 2.4 1.1 5.7 

FAIR 0.2 0.9 0.3 1.3 0.8 3.5 

FORT 0.2 1.2 0.4 1.5 0.8 2.6 

GOLD 0.2 0.8 0.3 1.5 0.7 4.6 

GUAM 0.4 2.5 0.6 4.1 1.0 4.1 

KERG 0.4 3.0 0.5 2.3 0.8 4.6 

KIT3 0.4 3.0 0.5 2.4 0.8 5.0 

KOKB 0.2 1.2 0.3 2.0 0.7 3.9 

KOUR 0.3 1.5 0.5 1.8 1.0 3.8 

KRAK 0.2 1.2 0.4 1.7 0.7 3.4 

MAS1 0.4 1.4 0.6 2.4 1.0 5.2 

ONSA 0.3 1.2 0.4 2.0 0.6 3.0 

PIE1 0.1 0.8 0.3 1.4 0.5 2.7 

QUIN 0.2 1.1 0.3 1.5 0.5 3.0 

RCM5 0.2 1.1 0.4 1.6 0.8 3.5 

SANT 0.3 0.9 0.4 1.5 0.7 3.1 

SHAO 0.4 2.3 0.5 3.8 0.7 2.9 

TIDB 0.2 1.3 0.3 2.2 0.5 3.3 

YAR1 0.2 1.3 0.3 1.8 0.5 3.0 

YELL 0.2 1.0 0.3 1.2 0.5 2.8 

Velocity error estimates are in mm/yr. 
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Figure 7. White and flicker noise (Table 6) as a thnction of absolute latitude, Error bars for these data are of the 

order of the symbol size and are omitted for clarity. 

Inspection of Table 6 suggests another possible regional 
variation in noise. Stations in North America and western 

Europe tend to be less noisy than stations in other areas. While 

this might reflect tracking station density (influencing the quality 

of satellite ephemerides?), it could be an artitb. ct of our small 

sample size or may simply reflect greater resources available to 
maintain and replace older equipment. 

4.3. Effect of Time Correlated Noise 

on Velocity Error Estimates 

The standard error of a rate (Or) estimated in a linear regres- 

sion of evenly spaced measurements can be expressed for pure 

white noise as [Zhang et al., 1997] 

2•r•o,, _ 2•r•o',, 
(ø"),, = v"'r A"'r >> 

and for random walk noise as 

where T is the time span, f., is the sampling frequency, and 
and or,... are the standard deviations of white and random walk 

noise. There is no exact analytical expression for flicker noise; 

its eft•:ct on rate uncertainty has been calculated numerically. 
For pure white noise the rate error depends on time span as 

1/T •/2 , while for random walk noise the rate error goes as 1/T l/2 
and is not dependent on sampling frequency at all. For flicker 
noise the rate error depends on these parameters in an intermedi- 

ate way. For example, the time span dependence is or,. • ch4T. 
Figure 8a shows the eft•:cts of various combinations of white, 
flicker, and random walk noise on rate estimates based on linear 

regression for time series of difibrent lengths using typical white 
and flicker noise values derived from this study. The rate uncer- 
tainties decrease more slowly for time series containing signifi- 
cant time-correlated noise, especially for time series that are long 
compared to the crossover period (the point where the contribu- 

tions of white noise and time-correlated noise are equal). The 
velocity errors of GPS sites based on the model of white noise 

plus flicker noise are listed in Table 7. If only white noise is 
assumed, velocity errors are underestimated by factors of 5-11. 

An approximate expression tbr total rate error, valid for 

evenly spaced measurements, can be obtained by summing the 
variances (cy 2) from (18) and (19) and adding an expression for 
the variance contribution from flicker noise: 

(3'. _= + g•,T2 + gT • 
(20) 
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Or• = +2 mm/x/yr) on the basis of Table 6 and Langbein and Johnson [1997]. 

where g is the number of measurements per year, T is the total 

time span in years, o,,, and of are the magnitudes of white and 
flicker noise in mm, •,.,, is the random walk noise in mm/•/yr, and 
a and b are empirical constants. By comparison with the numeri- 

cal results shown in Figure 8, we obtain a • 1.78 and b * 0.22. 

For stations not analyzed in this report, an estimate of the total 
rate error can be made using (20), the regional average noise 

values compiled in Table 8, and values for random walk noise in 

the range 1-4 mm/x/yr [Langbein and Johnson, 1997]. 
Assuming that monument noise can be characterized as a ran- 

dom walk, and assuming that a typical magnitude for this process 

is 2.0 mm/x/yr [Langbein and Johnson, 1997], we can estimate 

the time required before the velocity estimates become sensitive 

to this source noise, i.e., the crossover period. For time series 

with relatively high levels of white and flicker noise (e.g., 10 and 

15 mm, respectively, in Figure 8a), more than 15 years is re- 

quired. For lower levels of white and flicker noise (e.g., 3 and 5 

mm, respectively, in Figure 8a) the velocity estimates are sensi- 

tive to random walk monument noise within about 4 years. For 

short baselines [e.g., Dixon et al., 1997] or dense networks where 

common-mode error reduction can be exploited [Wdowinski et 

al., 1997] the effects of monument noise may be manifested 
sooner than 4 years. 

An informal test of the noise model can be performed by fit- 
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Table 8. Mean and Standard Deviation for White and Flicker Noise by Region 

White, mm Flicker, mm 

Noah East Vertical North East Vertical 

Tropical 3.9+0.5 

Noah America, 2.6+0.4 

Western Europe a 

Other 4.1+0.9 

N, noah: E, east; V, vertical. 
aOmits CMBB. 

8.0+1.3 15.4+2.3 6.8+1.7 9.7+3.4 15.4+2.4 

4.6+0.8 8.6+1.9 4.4+0.6 6.3+1.1 13.5+2.9 

6.6+1.4 10.2+1.8 7.1+2.8 9.0+2.4 15.1+2.6 

ting the velocity data and modeled errors for sites on the stable 

interior of a plate to a rigid plate model. Assuming that the plate 
is perfectly rigid, the average velocity residual (observed velocity 
minus the velocity predicted by the best fit Euler vector) should 
approximately reflect the modeled noise, and the reduced chi- 

square statistic (chi-square per degree of freedom, a measure of 

goodness of fit) should be of order unity. Mao [1998] fit the 
velocity of 19 sites located on stable North America with at least 

1.6 years of data to a rigid plate model, obtaining a reduced chi- 
square of 28.9 (white noise model) and 1.28 (white plus flicker 
noise model). With a slightly different subset of data (16 sites on 
the stable plate interior, all with time series 2.0 years or longer) 
we obtain a reduced chi-square of 0.80 with the white plus 
flicker noise model. These tests confirm our expectation that a 
pure white noise model underestimates total velocity error, and 
suggests that our new noise model, accounting for time corre- 
lated noise, accurately estimates total velocity error for the cur- 
rent coordinate velocity data set. 

The effect of sampling interval is clear from Figure 8b and the 
form of (20). A high sampling rate reduces white noise and 
flicker noise, although it is less efficient for the latter, but has no 
effect in the case of random walk noise. Continuous measure- 

ments are nevertheless important, as they are the best way to 
measure, understand, and hopefully reduce time-correlated noise. 

5. Conclusions 

1. Spectral analysis of coordinate time series spanning 3 
years from globally distributed GPS sites suggests that the noise 
characteristics of all three components can be modeled by a 
combination of white plus flicker noise. 

2. Both white and flicker noise amplitudes increase in the 
order north, east, and vertical. 

3. The white noise part of the vertical component is higher 
for tropical (+23 ø latitude) stations than mid-latitude and high- 
latitude stations. 

4. Southern Hemisphere stations are not significantly nois- 
ier than Northern Hemisphere stations. 

5. The velocity error in coordinate time series may be un- 
derestimated by factors of 5-1 1 if a pure white noise model is 
assumed. 

6. Longer time series than those presented here will be re- 
quired to accurately assess random walk noise in GPS coordinate 
time series. 
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