
The Designer’s Guide Community downloaded from designers-guide.org

Noise in Mixers, Oscillators, Samplers, and Logic

An Introduction to Cyclostationary Noise

Joel Phillips and Ken Kundert
Version 1a, May 2000 The proliferation of wireless and mobile products has dramatically increased the num-
ber and variety of low power, high performance electronic systems being designed. 
Noise is an important limiting factor in these systems. The noise generated is often 
cyclostationary. This type of noise cannot be predicted using SPICE, nor is it well han-
dled by traditional test equipment such as spectrum analyzers or noise figure meters, but 
it is available from the new RF simulators. 

The origins and characteristics of cyclostationary noise are described in a way that 
allows designers to understand the impact of cyclostationarity on their circuits. In par-
ticular, cyclostationary noise in time-varying systems (mixers), sampling systems 
(switched filters and sample/holds), thresholding systems (logic circuitry), and autono-
mous systems (oscillators) is discussed.

Search Terms Oscillator phase noise, jitter, noise folding, modulated noise, time-varying noise, cyclo-
stationary noise.

Published in the Proceedings of the IEEE Custom Integrated Circuits Conference, May 2000. A 
companion document that contains the slides and spearker notes for the associated presentation is 
also available from designers-guide.org/theory.

Last updated on March 10, 2019. You can find the most recent version at designers-guide.org. 
Contact the author via e-mail at ken@designers-guide.com.

Permission to make copies, either paper or electronic, of this work for personal or classroom use 
is granted without fee provided that the copies are not made or distributed for profit or commer-
cial advantage and that the copies are complete and unmodified. To distribute otherwise, to pub-
lish, to post on servers, or to distribute to lists, requires prior written permission.
Copyright  2019, Kenneth S. Kundert – All Rights Reserved 1 of 17

https://designers-guide.org/theory
https://designers-guide.org/theory
https://www.designers-guide.org
https://www.designers-guide.org
mailto:ken@designers-guide.com
https://designers-guide.org
https://designers-guide.org


An Introduction to Cyclostationary Noise Introduction
1.0 Introduction

SPICE noise analysis is not able to compute valid noise results for many common classes 
of circuit for which noise is of interest. Circuits such as mixers, oscillators, samplers, 
and logic gates either produce noise at their output whose power varies significantly 
with time, or whose sensitivity to noise varies significantly with time, or both. New sim-
ulation algorithms have recently become available that can be used to predict the noise 
performance of these types of circuits [9,12,14]. However, noise of this type is unfamil-
iar to most designers. This paper introduces the ideas needed to understand and model 
noise in these types of circuits using terminology and concepts familiar to circuit 
designers.

1.1 Ensemble Averages

Noise free systems are deterministic, meaning that repeating the same experiment pro-
duces the same result. Noisy systems are stochastic — repeating the same experiment 
produces slightly different results each time. An experiment is referred to as a trial and a 
group of experiments is referred to as an ensemble of trials, or simply an ensemble. 
Noise can be characterized by using averages over the ensemble, called expectations, 
and denoted by the operator E{·}. The expectation is the limit of the ensemble average 
as the number of trial approaches infinity.

Let vn be a noisy signal. It can be separated into a purely noise free, or deterministic, 
signal v, and a stochastic signal that is pure noise, n, where

vn(t) = v(t) + n(t). (1)

The mean of the noisy signal is the noise free signal, E{vn(t)} = v(t), and the mean of the 
noise is zero, E{n(t)} = 0. The variance of n(t), var(n(t)) = E{n(t)2}, is a measure of the 
power in the noise at a specific time. A more general power-like quantity is the autocor-
relation, Rn(t,τ) = E{n(t) n(t−τ)}, a measure of how points on the same signal separated 
by τ seconds are correlated. The autocorrelation is related to the variance by var(n(t)) = 
Rn(t,0). By performing the Fourier transform of the autocorrelation function with 
respect to the variable τ and then averaging over t, we obtain the time-averaged power 
spectral density, or PSD, that is measured by spectrum analyzers. 

1.2 Colored or Time-Correlated Noise

Noise that is completely uncorrelated versus time is known as white noise. For white 
noise the PSD is a constant and the autocorrelation function is an impulse function cen-
tered at 0, Rn(t, τ) = R(t)δ(τ).

If the noise passes through a circuit that contains energy storage elements, such as 
capacitors and inductors, the PSD of the resulting signal will be shaped by the transfer 
function of the circuit. This shaping of the noise versus frequency is referred to as color-
ing the noise.

Energy storage elements also cause the noise to be correlated versus time. This occurs 
simply because noise produced at one point in time is stored in the energy storage ele-
ment, and comes out some time later. This results in the autocorrelation function having 
nonzero width in τ.
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Introduction An Introduction to Cyclostationary Noise
The energy-storage elements cause the noise spectrum to be shaped and the noise to be 
time-correlated. This is a general property. If the noise has shape in the frequency 
domain then the noise is correlated in time, and vice versa.

1.3 Cyclostationary or Frequency-Correlated Noise

Circuits with time-varying operating points can cause the ensemble averages that 
describe noise to vary with time t. If they vary in a periodic fashion, the noise is said to 
have cyclostationary properties, and the ensemble averages referred to as being cyclo-
stationary [3,4,5]. If they vary in a quasiperiodic fashion, they are referred to as polycy-
clostationary, though in this paper there will be no distinction made between 
cyclostationary and polycyclostationary processes.

Cyclostationarity occurs when the time-varying operating point modulates the noise 
generated by bias-dependent noise sources or when the time-varying circuit modulates 
the transfer function from the noise source to the output. As suggested by the name, 
modulated noise sources can be modeled by modulating the output of stationary noise 
sources.

Figure 1 shows a simple example of cyclostationary noise. A periodically operating 
switch between the noise source (the resistor generating white thermal noise) and the 
observer causes the output noise to have periodically varying statistics.

Noise is transmitted from the resistor to the observer only when the switch is closed. It 
can be said that cyclostationary noise is “shaped in time t”. However, with no energy 
storage elements the noise is completely uncorrelated versus time τ (noise at a particular 
time is uncorrelated with the noise at any previous time) and therefore is white, even 
though it is cyclostationary. One cannot tell that noise is cyclostationary by just observ-
ing the time-average PSD.

In the example shown in Figure 2, stationary noise with an arbitrary PSD is modulated 
by a periodic signal. This is representative of both ways in which cyclostationary noise 
is generated (modulated noise sources and modulated signal paths). It is also representa-
tive of how noise is modulated in many types of circuits. In a mixer, the noise is modu-
lated by the LO. In a sampler, it is modulated by the clock. In a digital logic, the noise is 
modulated by the logic signals. And in an oscillator, it is modulated by the oscillation 
signal itself.

Modulation can be interpreted as multiplication in the time domain or convolution in the 
frequency domain. Thus, the modulation by a periodic signal causes the noise to mix up 
and down in multiples of the modulation frequency in a process that is often referred to 
as noise folding.

FIGURE 1. The resistor generates white thermal noise. The switch opens and closes periodically, so the noise 
at the output is cyclostationary.

n
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An Introduction to Cyclostationary Noise Introduction
Noise from the source at a particular frequency f is replicated and copies appear at f ± 
kf0, where k is an integer and f0 is the fundamental frequency of the periodic signal. 
Conversely, noise at the output at a particular frequency f has contributions from noise 
from the sources at frequencies f ± kf0. 

Because of the translation of replicated copies of the same noise source, noise separated 
by kf0 is generally correlated. Remember that noise folds across DC, so noise in upper 
and lower sidebands will be correlated. Consider the top of Figure 3 where noise is 

FIGURE 2. How noise is moved around by a mixer. The noise is replicated and translated by each harmonic 
of the LO, resulting in correlations at frequencies separated by kfLO.

FIGURE 3. With a complex phasor representation of noise, noise at frequencies separated by kω0 is 
correlated. When converted to real signals, the complex conjugate of the noise at negative 
frequencies is mapped to positive frequencies. As a result, the upper and lower sidebands contain 
correlated noise. 
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Calculating Noise An Introduction to Cyclostationary Noise
shown at both negative and positive frequencies. This implies a complex phasor repre-
sentation is being used. When this complex signal is converted to a real signal, the com-
plex conjugate of signals at negative frequencies is mapped to positive frequencies. In 
this way, the signal at frequencies Δω above and below a harmonic are correlated. These 
frequencies are referred to as upper and lower sidebands of the harmonic.

Recall from the previous section that

shape in frequency ⇔ correlation in time

Now from this section also see that

shape in time ⇔ correlation in frequency

This is the duality of shape and correlation. If one is known, the other can be recovered. 
This is important because it allows us to choose either the time or frequency domain to 
describe noise in any particular system by simply noting whether the dominant statisti-
cal effects are more easily described by the shape or the correlation.

2.0 Calculating Noise

Noise is generally so small that it does not cause the circuit to behave nonlinearly (one 
exception is with oscillators, which is discussed later). Therefore noise is calculating 
using perturbation techniques, that is, by splitting the noisy signal into large and small 
components. The large signal component (the operating point) is periodic and the small 
component (the noise) is stochastic. First we set the small stochastic portion of the stim-
ulus to zero by disabling all of the noise sources and solve for the large-signal periodic 
steady-state solution that determines the circuit operating point. We then linearize the 
circuit about the periodic large signal operating point and apply the small stochastic sig-
nal to this linearized system. The linearized system is time-varying and unlike linear 
time-invariant systems, can model frequency conversion effects that create cyclostation-
arity. The linear time-varying system is solved numerically. These linear time-varying 
systems generally are quite large and require special numerical techniques to be practi-
cal. The reader is referred to [12,14] for details of numerical implementations. 

3.0 Characterizing Cyclostationary Noise

There are three common methods of characterizing cyclostationary noise.

The time-average power spectral density is similar to what would be measured with a 
conventional spectrum analyzer. Since the analyzer has a very small effective input 
bandwidth, it ignores correlations in the noise and so ignores the cyclostationary nature 
of the noise (assuming that the frequency of the cyclostationarity is much higher than 
the bandwidth of the analyzer). 

The second method is to use the spectrum along with information about the correlations 
in the noise between sidebands. This is a complete description of the cyclostationarity in 
the noise. It is used when considering the impact of cyclostationary noise from one stage 
on a subsequent synchronous stage. Two stages would be synchronous if they were 
driven by the same LO or clock, or if the output of one stage caused the subsequent 
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An Introduction to Cyclostationary Noise Characterizing Cyclostationary Noise
stage to behave nonlinearly. From this form it is relatively easy to determine the amount 
of power in the AM or PM components of the noise.

The third method is to track the noise at a point in phase, or noise versus phase. The 
noise at a point in phase is defined as the noise in the sequence of values obtained if a 
noisy periodic signal1 is repeatedly sampled at the same point in phase during each 
period. It is useful in determining the noise that results when converting a continuous-
time signal to a discrete-time signal. It is also useful when determining the jitter associ-
ated with a noisy signal crossing a threshold. 

3.1 Time-Average Power Spectral Density

If a stage that generates cyclostationary noise is followed by a filter whose passband is 
constrained to a single sideband (the passband does not contain a harmonic and has a 
bandwidth of less than f0/2, where f0 is the fundamental frequency of the cyclostationar-
ity), then the output of the filter will be stationary. This is true because noise at any fre-
quency f1 is uncorrelated with noise at any other frequency f2 as long as both f1 and f2 
are within the passband. 

Consider a stage that generates cyclostationary noise with modulation frequency f1 that 
is followed by a stage whose transfer characteristics vary periodically at a frequency of 
f2 (such as a mixer, sampler, etc.). Assume that f1 and f2 are non commensurate (there is 
no f0 such that f1 = n f0 and f2 = m f0 with n and m both integers). Then there is no way 
to shift f1 by a multiple of f2 and have it fall on a correlated copy of itself. As a result, 
the cyclostationary nature of the noise at the output of the first stage can be ignored. 
With regard to its effect on the subsequent stage, the noise from the first stage can be 
treated as being stationary and we can characterize it using the time-average power 
spectral density [8,13].

If f1 and f2 are commensurate, but m and n are both large with no common factors, then 
many periods of f1 and f2 are averaged before the exact phasing between the two 
repeats. In this case, the cyclostationary nature of the noise at the output of the first 
stage can often be ignored.

The time-averaged power spectral density (PSD) can be used as the basis of a noise 
model when the subsequent stages eliminate or ignore the cyclostationary nature of the 
noise. Filtering eliminates the cyclostationary nature of noise, converting it to stationary 
noise, if the filter is a single-sideband filter with bandwidth less that f0/2. The cyclosta-
tionary nature of the noise is ignored if the subsequent stage is not synchronous with the 
noise, or if it is synchronous but running at a sufficiently different frequency so that 
averaging serves to eliminate the cyclostationarity.

When a stage producing cyclostationary noise drives a subsequent stage that has a time-
varying transfer function that is synchronous with the first, then ignoring the cyclosta-
tionary nature of the noise from the first stage (say by using the time-average PSD) gen-
erates incorrect results. One common situation where this occurs is when a switched-
capacitor filter is followed by a sample-and-hold, and both are clocked at the same rate 
(or a multiple of the same rate). Another common situation is when the first stage pro-
duces a periodic signal that is large enough to drive the subsequent stage to behave non-

1. By noisy periodic signal we mean a signal of the form vn(t) = v(t) + n(t) where v(t) is T-peri-
odic and n(t) is T-cyclostationary but is not periodic. 
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Oscillator Phase Noise An Introduction to Cyclostationary Noise
linearly. In this case, the large periodic output signal will modulate the gain of the 
subsequent stage synchronously with the cyclostationary noise produced by the first 
stage. This occurs when an oscillator drives the LO port of a mixer or sampler, when 
one logic gate drives another, or when a large interfering signal drives two successive 
stages into compression.

In these situations, the cyclostationary nature of the noise produced in the first stage 
must be considered when determining the overall noise performance of the stages 
together.

3.2 AM & PM Noise

One can separate noise near the carrier into AM and PM components [8,11]. Consider 
the noise at sidebands at frequencies Δω from the carrier. Treat both these sidebands and 
the carrier as phasors. Individually add the sideband phasors to the carrier phasor. The 
sideband phasors are at a different frequency from the carrier, and so rotate relative to it. 
One sideband will rotate at Δω, and the other at −Δω. If the noise is not cyclostationary, 
then the two sidebands will be uncorrelated, meaning that their amplitude and phase will 
vary randomly relative to each other. Combined, the two sideband phasors will trace out 
an ellipse whose size, shape, and orientation will shift randomly. However, if the noise 
is cyclostationary, then the sidebands are correlated. This reduces the random shifting in 
the shape and orientation of the ellipse traced out by the phasors. If the noise is perfectly 
correlated, then the shape and orientation will remain unchanged, though its size still 
shifts randomly.

The shape and orientation of the ellipse is determined by the relative size of the AM and 
PM components in the noise. This is demonstrated in Figure 4. For example, oscillators 
almost exclusively generate PM noise near the carrier whereas noise on the control 
input to a variable gain amplifier results almost completely in AM noise at the output of 
the amplifier. Having one component of noise dominate over the other is a characteristic 
of cyclostationary noise. Stationary noise can also be decomposed into AM and PM 
components, but there will always be equal amounts of both.

It is a general rule that combining stationary noise with a large periodic or quasiperiodic 
signal and is passing it through a stage undergoing compression or saturation results pri-
marily in phase noise at the output. Stationary noise contains equal amounts of ampli-
tude and phase noise. Passing it through a stage undergoing compression causes the 
amplitude noise to be suppressed, leaving mainly the noise in phase.

4.0 Oscillator Phase Noise

It is the nature of all autonomous systems, such as oscillators that they produce rela-
tively high levels of noise at frequencies close to the oscillation frequency. Because the 
noise is close to the oscillation frequency, it cannot be removed with filtering without 
also removing the oscillation signal. It is also the nature of nonlinear oscillators that the 
noise be predominantly in the phase of the oscillation. Thus, the noise cannot be 
removed by passing the signal through a limiter. This noise is referred to as oscillator 
phase noise.

In a receiver, the phase noise of the LO can mix with a large interfering signal from a 
neighboring channel and swamp out the signal from the desired channel even though 
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An Introduction to Cyclostationary Noise Oscillator Phase Noise
most of the power in the interfering IF is removed by the IF filter. This is referred to as 
reciprocal mixing and is illustrated in Figure 5.

Similarly, phase noise in the signal produced by a nearby transmitter can interfere with 
the reception of a desired signal at a different frequency produced by a distant transmit-
ter. 

FIGURE 4. How the amplitude and phase relationship between sidebands cause AM and PM variations in a 
carrier. The phasors with the hollow tips represents the carrier, the phasors with the solid tips 
represent the sidebands. The upper sideband rotates in the clockwise direction and the lower in 
the counterclockwise direction. The composite trajectory is shown below the individual 
components. (a) Single-sideband modulation (only upper sideband). (b) Arbitrary double-
sideband modulation where there is no special relationship between the sidebands. (c) Amplitude 
modulation (identical magnitudes and phase such that phasors point in same direction when 
parallel to carrier). (d) Phase modulation (identical magnitudes and phase such that phasors 
point in same direction when perpendicular to carrier).

FIGURE 5. In a receiver, the phase noise of the LO can mix with a large interfering signal from a neighboring 
channel and swamp out the signal from the desired channel even though most of the power in the 
interfering IF is removed by the IF filter. This process is referred to as reciprocal mixing.
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Oscillator Phase Noise An Introduction to Cyclostationary Noise
4.1 Feedback Oscillators

Consider a feedback oscillator with a loop gain of H( f ). X( f ) is taken to represent 
some perturbation stimulus and Y( f ) is the response of the oscillator to X. The Barkhau-
sen condition for oscillation states that the effective loop gain equals unity and the loop 
phase shift equals 360 degrees at the oscillation frequency fo. The gain from the pertur-
bation stimulus to the output is Y( f )/X( f ) = H( f )/H( f )–1, which goes to infinity at the 
oscillation frequency fo. 

The amplification near the oscillation frequency is quantified by assuming the loop gain 
varies smoothly as a function of frequency in this region [10]. If f = fo + Δf, then H( f ) ≈ 
H( fo) + dH/df Δf and the transfer function becomes

. (2)

Since H( fo) = 1 and dH/df Δf « 1 in most practical situations, the transfer function 
reduces to

. (3)

Thus, for circuits that contain only white noise sources, the noise voltage (or current) is 
inversely proportional to Δf, while the noise power spectral density is proportional 1/
Δf 2 near the oscillation frequency.

So far we have assumed that the oscillator is linear time-invariant (LTI). This has 
allowed us to see that the amplification of noise near the carrier frequency is created by 
an LTI phenomenon that is a natural consequence of the oscillator’s complex pole pair 
on the imaginary axis of the s-plane at fo. However, the LTI model does not explain why 
the noise is predominantly in the phase of the oscillation. Nor is it a good foundation for 
further analysis. It is easy to be misled by this model because it does not include effects 
that are fundamentally important to the behavior of the oscillator. To include these 
effects would require modeling the periodically time-varying nature of the transfer func-
tions [15], which is beyond the scope of this paper. Instead, this model will be ‘fixed-
up’ to explain phase noise with qualitative arguments and the next section presents a 
more solid and general model.

The Barkhausen criterion for oscillation in a feedback oscillator states that the effective 
gain around the loop must be unity for stable oscillation (loop gain magnitude equals 1 
and loop phase shift equals 360°). To assure the oscillator starts, the initial loop gain is 
designed to be greater than one, which causes the oscillation amplitude to grow until the 
amplifier goes into compression far enough so that the effective loop gain reduces to 1. 
If, for some reason the amplitude of the oscillation decreases, the amount of compres-
sion reduces, causing the loop gain to go above 1, which causes the oscillation ampli-
tude to increase. Similarly, if the oscillation amplitude increases, the amplifier goes 
further into compression, causing the loop gain to go below 1, which causes the ampli-
tude to decrease. Thus, the nonlinearity of the amplifier is fundamental to providing a 
stable oscillation amplitude, and also causes amplitude variations to be suppressed. As 
shown in Figure 6, any amplitude variations that result from noise are also suppressed, 
leaving only phase variations. As a result, the noise at the output of an oscillator is gen-
erally referred to as oscillator phase noise.

Y f Δf+( )
X f Δf+( )
----------------------

H f( ) dH dfΔf⁄+
H f( ) dH dfΔf 1–⁄+
-------------------------------------------------≈

Y f Δf+( )
X f Δf+( )
----------------------

1
dH dfΔf⁄
----------------------≈
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4.2 Oscillator Limit Cycle

The above explanation only addresses feedback oscillators. In this section, an alterna-
tive approach is taken that only assumes that the oscillator has a stable limit cycle and so 
applies to oscillators of all kinds. 

Consider plotting two state variables for an oscillator against each other, as shown in 
Figure 7. In steady state, the trajectory is a stable limit cycle, v. Now consider perturbing 
the oscillator with an impulse and assume that the response to the perturbation is Δv. 
Separate Δv into amplitude and phase variations,

Δv(t) = (1 + α(t))v(t + φ(t)/2π fo) − v(t). (4)

where v(t) represents the unperturbed output voltage of the oscillator, α(t) represents the 
variation in amplitude, φ(t) is the variation in phase, and fo is the oscillation frequency.

Since the oscillation is stable and the duration of the disturbance is finite, the deviation 
in amplitude eventually decays away and the oscillator returns to its stable orbit (α(t) → 
0 as t → ∞). In effect, there is a restoring force that tends to act against amplitude noise. 

FIGURE 6. A linear oscillator along with its response to noise (left) and a nonlinear oscillator with its 
response to noise (right). For the nonlinear oscillator to have a stable amplitude, the average 
conductance exhibited by the nonlinear resistor must be negative below, positive above, and zero 
at the desired amplitude. The open-tipped arrows are phasors that represents the unperturbed 
oscillator output, the carriers, and the circles represent the response to perturbations in the form 
of noise. With a linear oscillator the noise simply adds to the carrier. In a nonlinear oscillator, the 
nonlinearities act to control the amplitude of the oscillator and so to suppress variations in 
amplitude, thereby radially compressing the noise ball and converting it into predominantly a 
variation in phase.

FIGURE 7. The trajectory of an oscillator shown in state space with and without a perturbation Δv. By 
observing the time stamps (t0,..., t6) one can see that the deviation in amplitude dissipates while 
the deviation in phase does not.
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This restoring force is a natural consequence of the nonlinear nature of the oscillator and 
at least partially suppresses amplitude variations.

The oscillator is autonomous, and so any time-shifted version of the solution is also a 
solution. Once the phase has shifted due to a perturbation, the oscillator continues on as 
if never disturbed except for the shift in the phase of the oscillation. There is no restor-
ing force on the phase and so phase deviations accumulate. A single perturbation causes 
the phase to permanently shift (φ(t) → Δφ as t → ∞). If we neglect any short term time 
constants, it can be inferred that the impulse response of the phase deviation φ(t) can be 
approximated with a unit step s(t). The phase shift over time for an arbitrary input dis-
turbance u is 

, (5)

or the power spectral density (PSD) of the phase is

(6)

This shows that in all oscillators the response to any form of perturbation, including 
noise, is amplified and appears mainly in the phase. The amplification increases as the 
frequency of the perturbation approaches the frequency of oscillation. Various 
approaches are available to improve the relative noise performance of the oscillator, 
such as using a resonator with a higher Q, increasing the output signal level relative to 
the noise (increases power dissipation), or using cleaner devices. However the 1/Δf 2 
amplification of noise that occurs in oscillators can only be removed by constraining the 
phase of the oscillator. This is accomplished by entraining the oscillator to another, 
cleaner signal, either by injection locking it to that signal, or by embedding it in a phase-
locked loop for which that signal is the reference.

4.3 Oscillator Voltage Noise and Phase Noise Spectra

There are two different ways commonly used to characterize noise in an oscillator. Sφ is 
the spectral density of the phase and Sv is the spectral density of the voltage. Sv contains 
both amplitude and phase noise components, but with oscillators the phase noise domi-
nates except at frequencies far from the carrier and its harmonics. Sv is directly observ-
able on a spectrum analyzer, whereas Sφ is only observable if the signal is first passed 
through a phase detector. Another measure of oscillator noise is L, which is simply Sv 
normalized to the power in the fundamental.

As t → ∞ the phase of the oscillator drifts without bound, and so Sφ( Δf ) → ∞ as Δf → 
0. However, even as the phase drifts without bound, the excursion in the voltage is lim-
ited by the diameter of the limit cycle of the oscillator. Therefore, as Δf → 0 the PSD of 
v flattens out, as shown in Figure 8. The more phase noise, broader the linewidth (the 
higher the corner frequency), and the lower signal amplitude within the linewidth. This 
happens because the phase noise does not affect the total power in the signal, it only 
affects its distribution. Without noise, Sv( f ) is a series of impulse functions at the har-
monics of the oscillation frequency. With noise, the impulse functions spread, becoming 
fatter and shorter but retaining the same total power.

φ t( ) s t τ–( )u τ( ) τd

∞–

∞

∼ u τ( ) τd

∞–

t

=

Sφ Δf( )
Su Δf( )
2πΔf( )2

-------------------∼
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An Introduction to Cyclostationary Noise Oscillator Phase Noise
The voltage noise Sv is considered to be a small signal outside the linewidth and thus 
can be accurately predicted using small-signal analyses. Conversely, the voltage noise 
within the linewidth is a large signal (it is large enough to cause the circuit to behave 
nonlinearly) and cannot be predicted with small-signal analyses. Thus, small-signal 
noise analysis, such as is available from RF simulators, is valid only up to the corner 
frequency (it does not model the corner itself).

4.4 Oscillators and Frequency Correlation

With driven cyclostationary systems that have a stable time reference, the correlation in 
frequency is a series of impulse functions separated by fo = 1/T. Thus, noise at f1 is cor-
related with f2 if f2 = f1 + kfo, where k is an integer, and not otherwise. However, the 
phase produced by oscillators that exhibit phase noise is not stable. And while the noise 
produced by oscillators is correlated across frequency, the correlation is not a set of 
equally spaced impulses as it is with driven systems [3]. Instead, the correlation is a set 
of smeared impulses. That is, noise at f1 is correlated with f2 if f2 = f1 + kfo, where k is 
close to being integer.

Technically, the noise produced by oscillators is not cyclostationary [1]. This distinction 
only becomes significant when the output of an oscillator is compared to its own output 
from the distant past. This might occur, for example, in a radar system where the current 
output of an oscillator might be mixed with the previous output after it was delayed by 
traveling to and from a distant object. It occurs because the phase of the oscillator has 
drifted randomly during the time-of-flight. If the time-of-flight is long enough, the 
phase difference between the two becomes completely randomized and the two signals 
can be treated as if they are non-synchronous (see Section 3.1 on page 6). Thus, the 
noise in the return signal can be taken as being stationary because it is ‘non-synchro-
nous’ with the LO, even though the return signal and the LO are derived from the same 
oscillator. If the time-of-flight is very short, then there is no time for the phase differ-
ence between the two to become randomized and the noise is treated as if it is simply 
cyclostationary. Finally, if the time-of-flight significant but less than the time it takes the 
oscillator’s phase to become completely randomized, then the phase is only partially 
randomized. In this case, one must be careful to take into account the smearing in the 
correlation spectrum that occurs with oscillators. Because of these difficulties in inter-
preting the oscillator frequency spectrum, it is wise to refer to the time-domain model 
implied in (4) when interpreting noise from autonomous oscillators.

FIGURE 8. Two different ways of characterizing noise in the same oscillator. Sφ is the spectral density of the 
phase and Sv is the spectral density of the voltage. Sv contains both amplitude and phase noise 
components, but with oscillators the phase noise dominates except at frequencies far from the 
carrier and its harmonics. Sv is directly observable on a spectrum analyzer, whereas Sφ is only 
observable if the signal is first passed through a phase detector. 
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4.5 Phase Noise Calculations 

To see how oscillator phase noise can be calculated, consider the effect of a small phase 
perturbation on the oscillator signal. With observation times that are short (in other 
words, if we do not attempt to resolve frequencies to within the linewidth of the oscilla-
tor), we can linearize (4) to obtain 

. (7)

This equation simply says that phase perturbations are those that align with tangential 
perturbations to the oscillator limit cycle. To analyze phase noise, we must determine 
how much each noise source contributes to perturbations in the oscillator state along the 
direction of the limit-cycle tangent. Because noise perturbations that contribute to tan-
gential movements are not, in the general case, strictly tangential, accurate oscillator 
noise analysis requires some rather involved linear algebraic calculations [15] that are 
derived from Floquet theory. 

5.0 Jitter

Jitter is an undesired fluctuation in the timing of events. One models jitter in a signal by 
starting with a noise-free signal v and displacing time with a stochastic process j. The 
noisy signal becomes

vj(t) = v(t + j(t)). (8)

Jitter is equivalent to phase noise in (4) where j = φ/2πfo. It is used in situations where it 
is more natural to think of the noise being in the timing of events rather than in the phase 
or in the signal level.

5.1 Sources of Jitter

In systems where signals are continuous valued, an event is usually defined as a signal 
crossing a threshold in a particular direction. The threshold crossings of a noiseless peri-
odic signal, v, are precisely evenly spaced. However, when noise is added to the signal,

vn(t) = v(t) + n(t), (9)

each threshold crossing is displaced slightly. Thus, a threshold converts additive noise 
to jitter. This is the way jitter is created in nonlinear circuits such as logic circuitry. 

The noise n and the jitter j can be related by expanding (8) into a Taylor series, setting 
vn(t) = vj(t), and dropping the high order terms, 

, (10)

. (11)

Then, the variance in the time of the threshold crossing is

Δv t( ) dv t( )
dt

------------
Δφ t( )
2πfo

--------------=

v t( ) n t( )+ v t j t( )+( ) v t( ) v t( )d
td

------------j t( ) …+ += =

n t( ) v t( )d
td

------------j t( )≅
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, (12)

where tc is the expected time of the threshold crossing.

Another important source of jitter is oscillator phase noise. To predict the jitter in an 
oscillator, assume that u in (5) is a white stationary process and define a such that

, (13)

where fo = 1/T is the oscillation or carrier frequency. Demir [1] shows that the variance 
of the length of a single period is aT. The variance of the length of each period is uncor-
related and so the variance in the length of k periods is simply k times the variance of 
one period. The jitter Jk is the standard deviation of the length of k periods, and so

. (14)

In the case where u represents flicker noise, Su( f ) is generally pink or proportional to 1/
f. Then Sφ( f ) would be proportional to 1/f 3 at low frequencies [6]. In this case, there are 
no explicit formulas for Jk.

5.2 Effect of Jitter

Jitter in the time at which a signal is sampled creates noise in the result if the signal is 
changing at the time when it is sampled. This is one way in which noise is generated 
when converting continuous-time signals to discrete-time signals. Using (11), the vari-
ance of the noise can be computed from the variance of the jitter at the time of the sam-
pling and the slewrate (or time derivative) of the input signal at the time of the 
sampling.

, (15)

If one samples a constant valued signal, jitter in the time at which the sampling occurs 
does not create noise in the output. Thus, during flat portions of waveforms, an uncer-
tainty in the sampling time creates no noise

6.0 Noise and Jitter in Logic Circuits

Logic circuits are thresholding circuits and so ignore noise at the input when the input 
signal is far from the threshold. As such, logic circuits are only sensitive to noise at an 
input when that input is undergoing a transition. Similarly, logic circuits produce their 
highest noise levels at the output when the output is transitioning. Because of the strong 
variability in both the level of noise produced at the output and the sensitivity to noise at 
the input, traditional approaches to describing noise, such as signal-to-noise ratio, are 
not very helpful when working with logic circuits. Instead, it is best to characterize the 
noise in terms of jitter. Once the jitter is known for the logic blocks that make up a sys-
tem, it is generally relatively straight-forward to compute the jitter of the system (the 
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variance of the jitter for a cascade of uncorrelated jitter sources is simply the sum of the 
variance of the jitter of each source individually). The difficulty, of course, is determin-
ing the jitter of the individual blocks.

6.1 Cyclostationary Noise from Logic Circuits

The noise produced by a logic circuit, such as the inverter shown in Figure 9, comes 
from different places depending on the phase of the output. When the output is high, the 
output is insensitive to small changes on the input. The transistor MP is on, however, 
and the noise at the output is predominantly due to the thermal noise from its channel. 
When the output is low, the situation is reversed and most of the output noise is due to 
the thermal noise from the channel of MN. When the output is transitioning, thermal 
noise from both MP and MN contribute to the output. In addition, the output is sensitive 
to small changes in the input. In fact, any noise at the input is amplified before reaching 
the output. Thus, noise from the input tends to dominate over the thermal noise from the 
channels of MP and MN in this region. Noise at the input includes noise from the previ-
ous stage and thermal noise from the gate resistance. In addition, with significant cur-
rent flowing in the transistors, flicker noise from the channel also contributes.

6.2 Characterizing the Jitter of a Logic Circuit

One can apply (12) to compute jitter of this circuit. To do so, one must drive the circuit 
with a representative periodic signal while accurately modeling the input source and 
output load, both of which are typically other logic circuits. Both the slewrate and the 
noise must be determined at the time of the threshold crossing. This last point is very 
important. The total output noise power of a logic circuit would be dominated by the 
thermal noise produced by the output devices if the circuit spends most of its time with 
an unchanging output. This noise is usually ignored by subsequent stages and does not 
contribute to jitter. Thus, using the time-averaged spectral density to characterize the 
noise in a logic circuit is misleading. Only the noise produced by a circuit at the point 
where its output crosses the threshold of the subsequent stage should be taken into 
account when characterizing the jitter of a logic circuit.

There are several different ways of determining the noise produced by a logic circuit at 
the time when its output crosses the threshold. All assume the availability of a circuit 
simulator that can perform a cyclostationary noise analysis. If the simulator can directly 
compute the noise level as a function of time, it is a simple matter to determine the time 
of the threshold crossing and use noise computed for that time. If the noise is output as a 
spectral density, it is necessary to integrate the noise over all frequencies to determine 
the total noise before applying (12). If the simulator can only compute the time-average 
noise, one can use a limiter or a sample-and-hold to isolate the noise at the threshold 

FIGURE 9. Schematic of a inverter.

MP

MN

OutIn
15 of 17The Designer’s Guide Community
designers-guide.org

https://designers-guide.org
https://designers-guide.org


An Introduction to Cyclostationary Noise If You Have Questions
crossing [7]. Each of these approaches make assumptions as to how sensitive a subse-
quent stage will be to noise produced away from the threshold. If the simulator is capa-
ble of producing a summary of noise contributions from each noise source, then an 
alternative approach would be to simulate both stages together and use the above tech-
niques to measure the jitter at the output of the subsequent stage. When applying (12), 
only include the output noise contributed by noise sources within the stage being char-
acterized. In this way both the loading and the noise sensitivity of the subsequent stage 
are accurately modeled. It is also possible and desirable to include a representative 
driver stage. Noise generated by the driver and load stages are ignored by this method.

7.0 If You Have Questions

If you have questions about what you have just read, feel free to post them on the Forum
section of The Designer’s Guide Community website. Do so by going to designers-
guide.org/forum.
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