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Abstract We consider the dynamics of systems with arbitrary friction and diffusion. These
include, as a special case, systems for which friction and diffusion are connected by Einstein
fluctuation-dissipation relation, e.g. Brownian motion. We study the limit where friction
effects dominate the inertia, i.e. where the mass goes to zero (Smoluchowski-Kramers limit).
Using the Itô stochastic integral convention, we show that the limiting effective Langevin
equations has different drift fields depending on the relation between friction and diffusion.
Alternatively, our results can be cast as different interpretations of stochastic integration
in the limiting equation, which can be parametrized by α ∈ R. Interestingly, in addition to
the classical Itô (α = 0), Stratonovich (α = 0.5) and anti-Itô (α = 1) integrals, we show
that position-dependent α = α(x), and even stochastic integrals with α /∈ [0,1] arise. Our
findings are supported by numerical simulations.
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1 Introduction

Most physical, chemical, biological and economic phenomena present an intrinsic degree of
randomness. These are typically modelled by stochastic differential equations (SDEs) [1].
SDEs were introduced at the beginning of the XX century to describe Brownian motion by
adding a random driving function to an ordinary differential equation (ODE); since then,
SDEs have come into widespread use in, e.g., physics, biology, and economics. However,
SDEs involving multiplicative noise terms can be integrated according to various definitions
leading to different solutions [2], e.g. the Itô integral and the Stratonovich integral. From
the modeling point of view it is, therefore, key to know what definition to use in any given
situation [3, 4]. From the mathematical point of view the simplest approach is to write all
equations according to, e.g., the Itô definition of the stochastic integral; the different inter-
pretations mentioned above then reappear as additional drift terms, which are often referred
to in the literature as “spurious drifts.”

In order to understand the origin of the difficulty, we consider a simple case. The SDE
dxt = σ(xt ) dWt , where Wt is a Wiener process, can be solved by integration, i.e. xt = x0 +
∫ t

0 σ(xs) dWs , where we define
∫ t

0 σ(xs) ◦α dWs = limN→∞
∑N

0 σ(xtαn )�Wtn with �Wtn =
Wtn+1 − Wtn , tn = nt

N
and tαn = n+α

N
t and, typically, α ∈ [0,1]. Since Wt is a function of

unbounded variation, differently from ordinary Riemann-Stieltjes integrals, the limit of these
partial summations generally leads to different values of the integral depending on the choice
of α. In particular, α = 0 leads to the Itô integral, α = 0.5 leads to the Stratonovich integral,
and α = 1 leads to the anti-Itô (or isothermal) integral. This is the reason why it is necessary
to give both a SDE and the respective α with which to solve it in order to have a fully
determined model [3, 4].

Various preferences regarding the appropriate choice of α have emerged in the numerous
fields where SDEs have been applied [1]. For example, the martingale property, i.e. the spe-
cific feature of the Itô integral of “not looking into the future,” meaning that, when the inte-
gral is approximated by a summation, the leftmost point of each interval is used, is the main
reason of its popularity in economics [1] and biology [5, 6]. In general, the Stratonovich
integral emerges naturally when the Wiener process is replaced by a sequence of approxi-
mating deterministic processes and has the advantage of leading to ordinary chain rule for-
mulas under a change of variable [7]. However, the fact that Stratonovich integrals are not
martingales gives the Itô integral an important computational advantage [8, 9]. Finally, the
anti-Itô integral has been shown to be the most appropriate to describe physical phenomena
that are in equilibrium with a heat-bath for which Einstein fluctuation-dissipation relation
holds [10–14]. In particular, equations that satisfy the fluctuation-dissipation relation occur
in molecular dynamics. Here, the limiting equation is constrained to be the anti-Itô type to
correct the invariant distribution to model the Gibbs distribution.

A classical example of a phenomenon in equilibrium with a heat bath is the motion of a
mesoscopic particle of mass m immersed in a fluid, i.e. Brownian motion. If we assume that
the particle moves in one dimension under the action of a continuous force F(x), its position
being xm

t ∈ R at all times t ≥ 0 in a finite interval, the corresponding Newton equation is:

{
dxm

t = vm
t dt

mdvm
t = F(xm

t ) − γ (xm
t )vm

t dt + σ(xm
t ) dWt

(1)

with the initial conditions vm
0 = νm and xm

0 = χm. The friction coefficient γ (x) > 0 and the
intensity (standard deviation) of the noise σ(x) > 0 are, in general, position-dependent; we
also assume that F , γ , and σ are differentiable functions of x smooth enough so that the
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Fig. 1 Color online. (a) For a Brownian particle γ (x) (dark line) and σ(x) (grey line) are related by the
Einstein fluctuation-dissipation relation [see (3)]; in this case, γ (x) = (1 + x/100). (b) The solution of the
Newton equations [see (1)] for m → 0 (dashed lines) converge to the solution of the SK approximation [see
(2)] for α = 1, i.e. anti-Itô integral (black solid line); also the solution for α = 0, i.e. Itô integral (grey solid

line) is given for comparison. All solutions are obtained for the same Wiener process

process (xt , vt ) exists for all t on a finite interval. It is well known that, since the derivative
of xt , i.e. ẋm

t = vm
t , exists, the stochastic integral in (1) is equivalent under all interpretations

[1, 2, 7].
The limit of (1) as m → 0 has to be studied with care, requiring a nontrivial computation.

In general, similar limits involve additional drift terms, i.e. “spurious drifts.” A statement
of our results in terms of different definitions of stochastic integral is also possible and, in
some cases, straightforward. By naively setting m = 0 in (1), we obtain a SDE for x0

t = xt :

dxt = F(xt )

γ (xt )
dt

︸ ︷︷ ︸

deterministic

+ σ(xt )

γ (xt )
dWt

︸ ︷︷ ︸

stochastic

, (2)

with initial condition x0 = χ0. Equation (2) is called the Smoluchowski-Kramers (SK) ap-
proximation to (1). Differently from the solution of (1), the solution of (2) depends on the
interpretation of the stochastic term, i.e. on the choice of α. In the following we identify the
value of α that introduces the correct additional drift; we emphasize that this is just another
way of expressing additional drift terms within the Itô formalism.

We can gain some insight into this zero-mass limit procedure considering numerical so-
lutions of (1) for various decreasing values of m, but for the same Wiener process [Fig. 1].
For a Brownian particle the Einstein fluctuation-dissipation relation holds:

γ (x) ∝ σ(x)2. (3)
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In Fig. 1(a), γ (x) (dark line) and σ(x) (grey line) are presented. The dashed lines in Fig. 1(b)
represent some solutions of (1) for decreasing m: they become rougher and rougher as m

decreases. They converge towards the anti-Itô (α = 1) solution of (2) (black solid line); this
is in agreement with the recent experimental demonstration [13, 14] and mathematical proof
[15] that for a Brownian particle the most natural interpretation is the anti-Itô integral. We
remark that the Itô (α = 0) solution of (2) (grey solid line) presents clear deviations from
the correct one, especially for large t .

In this article, we study the zero-mass limiting behavior of a larger class of equations
that have the form of (1), but for which γ (x) and σ(x) are allowed to vary independently
from each other. This can be the case, e.g., in the description of the evolution of complex
systems [16]. We study this general class of equations from the point of view of the conver-
gence of the infinitesimal operators of the corresponding diffusion processes, i.e. backward
Kolmogorov equations, thus following the well-known methods from homogenization the-
ory [17–19]. The main result of this paper identifies for given γ (x) and σ(x) the drift term
and hence the corresponding α [see (19)]: we find that in general it can be a function of x.
We remark that the spurious drifts are defined assuming the Itô stochastic calculus conven-
tion, while the values of α are defined with reference to SDE (2); we introduce the notation
◦α(x)dWt to indicate the presence of such extra drift. Interestingly, we find that when a gen-
eralized fluctuation-dissipation relation holds, i.e.

γ (x) ∝ σ(x)λ, (4)

α is only a function of the exponent λ and independent from x [see (22)]. In particular, for
λ = 0 we retrieve the Itô interpretation and for λ = 2 the anti-Itô interpretation, while the
Stratonovich interpretation is only retrieved asymptotically for λ → ∞. Interestingly, also
values of α /∈ [0,1] occur for λ ∈ (0,2). Although in this article we always consider the
variable x to be one dimensional, the general multi-dimensional case can be studied using
similar methods [18].

In Sect. 2, we give further details on the ansatz we will use. In Sect. 3, we introduce a
relation [see (5) and (6)] that permits one to express any stochastic integral as an Itô integral
with a modified drift term. In Sect. 4, we analyze an asymptotic expansion of the solution
of the Kolmogorov equation in order to derive the effective SK-approximation [see (18)].
In Sect. 5, we derive a formula for the value of α(x) as a function of γ (x) and σ(x) [see
(19)] and we study various important special cases: the case of constant γ (x) [Sect. 5.1]; the
case of a Brownian particle for which (3) holds [Sect. 5.2]; the cases for which (4) holds,
which are all the cases where α is position-independent [Sect. 5.3]; and the singular case for
which γ (x) ∝ σ(x), which leads to a SDE without ambiguity, but with an additional drift
nevertheless [Sect. 5.4].

2 The Ansatz

Our ansatz is to study the zero-mass limit of a diffusion process defined by (1) with arbitrary
γ (x) and σ(x), analyzing the behavior of its infinitesimal generator, i.e. the Kolmogorov
equation. We perform an asymptotic analysis of the Kolmogorov equation, expanding its
solution in powers of a small parameter, i.e.

√
m. The result is a drift term in the effective

SDE, which can be translated into the correct interpretation of the stochastic integral. In
order to clearly present the results in a technicality-free style, the approach is not fully
rigorous. Similar convergence results have been studied [20–22].
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The problem of taking the mass to zero, justifying the limiting equation, has been ad-
dressed by various authors at different levels of generality and mathematical rigor, starting
with M. Smoluchowski [23] and H. Kramers [24]. E. Nelson studied the F = 0 case in which
γ and σ were constant and proved that the solution of (1) converges to the solution of (2),
which in this case was unambiguous since σ was constant [25]. The case with constant σ

but including an external force was also treated (see Ref. [19] and references therein) with a
similar result but by entirely different methods. The case where σ depended on the position,
but γ was constant, was first studied by M. Freidlin in [26], showing that the limiting equa-
tion should be interpreted with α = 0 and that, in the presence of the colored noise, in some
cases the limiting α equals 1

2 . Subsequently, R. Kupferman et al. showed that all values of
α between 0 and 1

2 could be obtained by taking the correlation of the noise and the mass of
the particle to zero in an appropriate way [27].

3 Stochastic Integrals as Modified Itô Integrals

A stochastic integral with a given α(x) can be expressed as an Itô integral, i.e. α = 0, with
an additional noise-induced drift, i.e. a “spurious drift.” To justify this claim, we consider an
arbitrary process

dxt = b(xt ) dt + σ(xt ) ◦α(x) dWt ,

where the SDE is defined by α(x) and the solution xt , is real valued and one dimensional.
The integrated equation is

xt = x0 +
∫ t

0
b(xs) ds + lim

N→∞

N
∑

n=0

σ(xtαn )�Wtn ,

with tαn = n+α(xtn )

N
t . By expanding σ(xt ), we see that this corresponds to

xt = x0 +
∫ t

0
b(xs) ds +

∫ t

0
α(xs)σ (xs)

dσ (xs)

dxs

ds + lim
N→∞

N
∑

n=0

σ(xtn)�Wtn ,

with tn = n
N

t . And this can be interpreted as the Itô (α ≡ 0) equation

dxt = b(xt ) dt + α(xt )σ (xt )
dσ (xt )

dxt

+ σ(xt ) dWt , (5)

where we omit the ◦0 for all further Itô integrals. In particular, (2) interpreted with any α(x)

corresponds to the Itô equation:

dxt =
[

F(xt )

γ (xt )
+ α(xt )

σ (xt )

γ (xt )

d

dxt

(
σ(xt )

γ (xt )

)]

dt + σ(xt )

γ (xt )
dWt , (6)

with initial condition x0 = χ0.
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4 Smoluchowski-Kramers Approximation

In order to simplify further analysis, we substitute um
t = √

mvm
t in (1) obtaining the follow-

ing two-dimensional SDE:
⎧

⎨

⎩

dxm
t = 1√

m
um

t dt

dum
t =

[
F(xm

t )√
m

− γ (xm
t )

m
ut

]

dt + σ(xm
t )√
m

dWt

(7)

with initial conditions xm
0 = χm and um

0 = √
mνm.

To determine α we use a multiscale analysis of the backward Kolmogorov equation of the
SDE (7). Let g(x ′, u′, t ′|x,u, t) be the probability density of the distribution of the position
and (rescaled) velocity (x ′, u′) of the particle at time t ′ given their values (x,u) at a time
t < t ′. Then the backward Kolmogorov equation for the SDE (7) is

∂g(x ′, u′, t ′|x,u, t)

∂t
= σ(x)2

2m

∂2g(x ′, u′, t ′|x,u, t)

∂u2
+ u√

m

∂g(x ′, u′, t ′|x,u, t)

∂x

+ F(x)√
m

∂g(x ′, u′, t ′|x,u, t)

∂u
− γ (x)u

m

∂g(x ′, u′, t ′|x,u, t)

∂u
. (8)

Since the equation involves derivatives with respect to the x,u, and t variables we write
g(x ′, u′, t ′|x,u, t) = g(x,u, t), to shorten notation. Equation (8) can be rewritten as

∂g

∂t
=

(
1

m
L1 + 1√

m
L2

)

g

with

L1 = σ(x)2

2

∂2

∂u2
− γ (x)u

∂

∂u
,

L2 = u
∂

∂x
+ F(x)

∂

∂u
.

Notice that the operator L1 is the generator for an Ornstein-Uhlenbeck (OU) process with
coefficients dependent on x. We denote this process as ũ, and write the stochastic differential
equation

dũt = −γ (x)ũt dt + σ(x)dWt . (9)

The invariant density for ũt is

g∗(ũ) = C(x) exp

(−γ (x)ũ2

σ(x)2

)

, (10)

where C(x) is a normalizing constant.
We postulate that the solution of the Kolmogorov equation has an asymptotic expan-

sion g = g0 + √
mg1 + mg2 + . . . [17–19]. We match powers of m to obtain the following

equations,

L1g0 = 0, (11)

L1g1 = −L2g0, (12)
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∂g0

∂t
= L1g2 + L2g1, (13)

where L1,L2 are differential operators. Solving (11) results in

g0(x,u, t) = C1(x, t)

∫ u

−∞
e

γ (x)û2

σ(x)2 dû + C2(x, t).

Since the first term is not integrable in u, C1 must be zero and thus g0 = g0(x, t), indepen-
dent of u. By the Fredholm alternative, the solvability condition for (12) is given as

∫ ∞

−∞
g∗L2g0 du = 0,

for all g∗ such that L∗
1g

∗ = 0 [28, 29]. Here L∗
1 is the adjoint of L1:

L∗
1 = σ(x)2

2

∂2

∂u2
+ γ (x)

∂

∂u
(u·) .

The relevant (integrable) solution is a mean-zero Gaussian given in (10), which satisfies
g∗(u) = g∗(−u), thus

∫ ∞

−∞
g∗L2g0 du = ∂g0

∂x

∫ ∞

−∞
ug∗(u) du = 0.

Next the solvability condition for (13) is

∫ ∞

−∞

{

−L2L
−1
1 L2g0 + ∂g0

∂t

}

g∗ du = 0. (14)

First we set

V = L−1
1 L2g0,

which by the previous solvability condition is well defined. Thus L1V = L2g0, or

σ(x)2

2

∂2V

∂u2
− γ (x)u

∂V

∂u
= u

∂g0

∂x
. (15)

Notice that the function

V = − u

γ (x)

∂g0

∂x

is a particular solution of (15). From (14) we must have

∫ ∞

−∞
g∗

(
u2

−γ (x)

∂2g0

∂x2
+ u2

γ (x)2

dγ (x)

dx

∂g0

∂x
− F(x)

γ (x)

∂g0

∂x

)

du = −∂g0

∂t
, (16)

for any g∗ satisfying L∗
1g

∗ = 0, in particular for the invariant density of the OU process ũt .
After Gaussian integration over u (16) becomes

σ(x)2

2γ (x)2

∂2g0

∂x2
+

(
F(x)

γ (x)
− σ(x)2

2γ (x)3

dγ (x)

dx

)
∂g0

∂x
= ∂g0

∂t
. (17)
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This gives the SK approximation to the backward Kolmogorov equation. The corresponding
(Itô) SDE is

dxt =
(

F(xt )

γ (xt )
− σ(xt )

2

2γ (xt )3

dγ (xt )

dx

)

dt + σ(xt )

γ (xt )
dWt . (18)

Since we derived this equation from the convergence of the infinitesimal operators, rather
than directly studying the limit of the SDE (7), the convergence is in law.

5 An Equation for α(x)

We derive an equation for α(x) depending on the friction γ (x) and diffusion σ(x) com-
paring the backward Kolmogorov equation of the SDE [see (6)] and (18) and solving for
α(x):

α(x) = γ ′(x)σ (x)

2(γ ′(x)σ (x) − γ (x)σ ′(x))
, (19)

where γ ′(x) = dγ (x)

dx
and σ ′(x) = dσ(x)

dx
. This equation shows that in general, α varies with

position and can even take values outside the interval [0,1]. Interestingly, α never takes the
value 1

2 , i.e. we never obtain a Stratonovich correction.

5.1 γ (x) ≡ γ0: Constant Friction

The case in which γ (x) ≡ γ0, while σ(x) is allowed to vary [Fig. 2(a)], has often been the
object of mathematical studies. For example, Freidlin [26] and later Pavliotis and Stuart [30]
proved that the limiting equation has a stochastic term with α = 0; this result is rederived
here. Physically, an example of this system is in the framework of the Maxey-Riley model of
inertial particles in a Gaussian field [31] with correlation time assumed to be very short. In
Fig. 2(b), we show how the numerical solutions for m → 0 converge towards the Itô (α = 0)
solution of (2).

5.2 γ (x) ∝ σ(x)2: Brownian Motion

The particular case when Einstein fluctuation-dissipation relation is satisfied in its standard
form [see (3)] is particularly important because it describes the diffusion of Brownian par-
ticles. If D(x) denotes the hydrodynamic diffusion coefficient and kBT the thermal energy,
then

γ (x) = kBT

D(x)
(20)

and

σ(x) = kBT
√

2√
D(x)

. (21)

This case was studied experimentally in [13, 14], showing that the correct value of α for
m → 0 is α = 1. It was subsequently proven by a mathematical argument [15] that in this
case the processes xm

t converge to the solution of the limiting equation with α = 1 in the L2

sense; this result is rederived here, but only in a weaker sense.
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Fig. 2 Color online. (a) σ(x) (grey line) and γ (x) = σ(x)0 = constant (dark line). (b) The solutions of
the Newton equations [see (1)] for m → 0 (dashed lines) converge to the solution of the SK approximation
[see (2)] for α = 0, i.e. Itô integral (grey solid line); also the solution for α = 1, i.e. anti-Itô integral (black

solid line) is given for comparison. All solutions are obtained for the same Wiener process

5.3 γ (x) ∝ σ(x)λ: Constant α

All the cases for which α(x) ≡ α, can be obtained equating the right-hand side of (19) to a
constant, different from 1

2 . After a simple calculation, we obtain γ (x) = cσ (x)λ, where c is
a constant, i.e. (4). It follows that

α = λ

2(λ − 1)
. (22)

The value of α depends on the exponent λ as shown in Fig. 3. This result includes as par-
ticular cases γ (x) ≡ γ , for which α = 0 [Sect. 5.1], and γ (x) = cσ (x)2, for which α = 1
[Sect. 5.2]. However, we remark that the value α = 1

2 is only obtained asymptotically for
λ → ∞.

Interestingly, values of α outside the interval [0,1] can be achieved for certain friction–
diffusion relations. For example, the relation γ (x) = σ(x)4/3 gives α = 2 by the formula [see
(22)]. Figure 4 gives insight to the zero mass limit. Different constructions of the stochastic
integral are given for Itô (grey solid line), anti-Itô (black solid line), and for α = 2 (dark
grey solid line), for the same Wiener process.

5.4 γ (x) ∝ σ(x): A Singular Case

When γ (x) ∝ σ(x) [Fig. 5(a)], the stochastic term in (2) gets multiplied by a constant factor,
i.e. σ(xt )

γ (xt )
= constant, and thus there is no ambiguity in its solution. However, the zero-mass
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Fig. 3 Color online. α as a
function of λ for the case when
γ (x) ∝ σ(x)λ [Sect. 5.3]. For
λ → 1, α diverges asymptotically
(dashed line) leading to the
singular case discussed in
Sect. 5.4. The Itô integral (α = 0)
is obtained for λ = 0 (square)
and the anti-Itô (α = 1) for λ = 2
(diamond); the Stratonovich
integral (α = 0.5) is only
obtained asymptotically (dotted

line) for λ → ∞

Fig. 4 Color online. (a) σ(x) (grey line) and γ (x) = σ(x)4/3 (dark line). (b) The solutions of the Newton
equations [see (1)] for m → 0 (dashed lines) converge to the solution of the SK approximation [see (2)] for
α = 2 (dark grey solid line); also the solution for α = 0, i.e. Itô integral (grey solid line), and α = 1, i.e.
anti-Itô integral (black solid line) is given for comparison. All solutions are obtained for the same Wiener
process. The inset is a blow-up of the final part of the trajectories (dashed square)
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Fig. 5 Color online. (a) γ (x) = cσ (x). (b) For m → 0, the solutions of (7) (dashed lines) converge to the
limiting (24) (dark solid line). The grey solid line represents the solution of (2) disregarding the noise-induced
drift. All solutions are obtained for the same Wiener process

limit of (1) does not converge to this solution. This can be seen by setting γ (x) = cσ (x) and
using (17) directly; the limiting equation is

∂g0

∂t
= 1

2c2

∂2g0

∂x2
+

(
F(x)

cσ (x)
− σ ′(x)

2c2σ(x)

)
∂g0

∂x
. (23)

This gives the Smoluchowski-Kramers limiting SDE as

dxt =
(

F(xt )

cσ (xt )
− σ ′(xt )

2c2σ(xt )

)

dt + 1

c
dW̃t . (24)

Here we see that there is a correction to the drift term. In Fig. 5(b), we show how the nu-
merical solutions for m → 0 (dashed lines) converge towards the solution of the SK approx-
imation (black solid line), while the solution (2) without the correction to the drift clearly
diverges (grey solid line).

6 Conclusion and Future Research

We have performed a systematic study of the Smoluchowski-Kramers limit for a class of
SDEs with arbitrary friction and diffusion. We have identified the Itô form of the limiting
Langevin equation and discussed its equivalent interpretation in terms of other definitions
of stochastic integrals. We introduced the notation ◦α(x)dWt , that is interpreted as an Itô
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integral with an additional well-defined drift term. However, we have not given a rigorous
mathematical construction of this integral, which is nevertheless of interest. In a future work,
we will study the analogous problem for some physically relevant systems driven by colored
noise.
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