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Whether common noise can induce complete synchronization in chaotic systems has been a topic of
great relevance and long-standing controversy. We first clarify the mechanism of this phenomenon and
show that the existence of a significant contraction region, where nearby trajectories converge, plays
a decisive role. Second, we demonstrate that, more generally, common noise can induce phase syn-
chronization in nonidentical chaotic systems. Such a noise-induced synchronization and synchronization
transitions are of special significance for understanding neuron encoding in neurobiology.
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The subject of this Letter is at the borderline of two basic
families of phenomena in nonlinear systems nowadays at-
tracting significant interest: noise-induced effects and syn-
chronization. Noise-induced order was first reported [1]
on the map which is directly connected to the Belousov-
Zhabotinsky chemical reaction [2]. There a small amount
of noise may change a chaotic trajectory of the system
into a state similar to a periodic orbit smeared with noise
[1], which makes the largest nonzero Lyapunov exponent
(LLE) negative, and leads to a slower decay of correlations
and an improvement of state predictability [3]. A negative
LLE means that in an ensemble of systems with identical
laws of motion and common noise, such as the motion of
floating particles on a surface of an incompressible fluid
[4], the states in the phase space shrink into a single point
[4,5]; i.e., noise induces complete synchronization (CS) in
chaotic systems.

Common noise is also of great relevance to biological
systems. In ecology, similar environmental shocks may
be responsible for synchronization of different populations
over a large geographical region [6,7]. In neural systems,
different neurons connected to another group of neurons
will receive a common input signal which often approaches
a Gaussian distribution as a result of integration of many
independent synaptic currents [8]. It is especially impor-
tant to emphasize experimental observations illustrating
the remarkable reliability of repetitive spike sequence in
neucortical neurons [8] in the response to repeated fluctu-
ating stimuli that resemble real synaptic currents, a feature
which is not observed in the response to constant input
currents. From the viewpoint of common noise, repeat-
able firing means common synaptic current induces CS
in neurons. This behavior is of great importance for the
information processing of neurons: (1) single neurons
may faithfully encode temporal information in the tim-
ing of successive spikes, (2) a group of neurons can re-
spond collectively to a common synaptic current due to
synchronization.

The effect of common noise on CS of identical chaotic
systems was reconsidered [9], which spurred a long-
standing dispute on the general conclusion that strong
enough noise is able to synchronize chaotic systems.
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Some authors [10,11] found that synchronization of the
logistic maps in Ref. [9] is an artifact due to finite preci-
sion in numerical simulations. Others claimed that it is the
nonzero mean of the applied noise that plays a decisive
role and an unbiased noise cannot lead to synchronization
[12]. This claim, however, has been disproved by recent
examples where unbiased noise indeed induces CS [13].
In fact, nonzero mean of noise can be viewed as an
additional parameter which may move the system into
another dynamical regime. So far, the mechanism of CS
of chaotic systems induced by common (unbiased) noise
is not clear and will be addressed in this Letter.

Moreover, real systems are typically nonidentical, and
exact CS cannot be observed. It has not been explored
whether noise can at least induce a weaker degree of syn-
chronization in nonidentical systems. A typical weaker de-
gree of synchronization in coupled nonidentical systems is
generalized synchronization [14] and phase synchroniza-
tion (PS) [15]. It has been recently found for coupled
chaotic systems that before the transition to CS [16], there
is the regime of PS associated with the transition of a zero
Lyapunov exponent to negative values [15,17].

In this Letter, we study synchronization of two chaotic
systems subjected to a common additive noise, i.e.,
�x � f�x� 1 j and �y � f� y� 1 j� f : Rn ! Rn� by
examining both the LLE �l1� and the zero Lyapunov expo-
nents �l2�. A small initial difference dx � y 2 x evolves
approximately according to d �x � Df�x�dx. Note that
the same Jacobian matrix Df�x� governs the linearized
dynamics in the noise-free case, but the trajectories in the
phase space are different from the noisy case. This prop-
erty is different from CS of coupled systems where Df�x�
is modified by coupling so that the synchronization mani-
fold, which is the same as in the noncoupled system,
becomes transversely stable [16]. Based on the linearized
dynamics, Lyapunov exponents are well defined [18]
similar to the deterministic case. Without noise, l1 . 0,
because the autonomous system is chaotic, and l1 may
become negative and synchronization occurs when the
noise modifies considerably the dynamical structure in
the phase space. Thus noise-induced CS should be under-
stood from the inherent structure of Df�x�. Furthermore,
© 2002 The American Physical Society 230602-1
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FIG. 1. Comparison between the velocity f�x� and noise. Re-
sults are from the y component of the Lorenz system [Eq. (2)]
with noise intensity D. For rather weak noise �D � 5� (a), the
dynamical velocity fy � rx 2 y 2 xz (dotted line) is much
larger in magnitude than noise most of the time. Even for rather
large noise D � 40 (b), still there are long periods during which
the noise is negligible.

without noise, there is l2 � 0 associated with the pertur-
bation dx along the trajectory; in phase coherent chaotic
systems dx can be uniquely transformed to a relative
phase df [15], which is marginally stable, so that a
uniform distribution of initial phases in an ensemble of
oscillators will remain uniform. For weak noise, most
of the time it is jf�x�j ¿ jjj (see Fig. 1a), and we can
also roughly speak of a motion along the trajectory and
connect the original zero Lyapunov exponent to it and
link it to the phase dynamics which often can be defined
practically similar to the noise-free case. l2 , 0 means
a preferred phase in an ensemble of oscillators; however,
due to the stochastic character of the systems, a coherent
phase corresponding to l2 cannot be rigorously defined,
and we can expect only PS in a statistical sense. Defined
in the above, the Lyapunov exponents of stochastic
systems measure the sensitivity to perturbations of the
initial condition, but not that to the driving noise [17];
as a result, they are generally no longer connected to the
complexity of the systems [19].

We present our findings on the Rössler system

�x � 2vy 2 z, �y � vx 1 0.15y 1 Dj,

�z � 0.4 1 z�x 2 8.5� ,
(1)

with v � 0.97, and the Lorenz system

�x � s� y 2 x�, �y � rx 2 y 2 xz 1 Dj,

�z � 2bz 1 xy ,
(2)

with parameters s � 10, r � 28, and b � 8�3. The
noise j is a Gaussian one with �j�t�j�t 2 t�� � d�t�.

I. Complete synchronization of identical systems with
common noise.—As seen in Figs. 2(a) and 2(c), in the
Rössler system, l1 keeps positive till the systems become
unstable for D . 4, and the synchronization error is well
above zero. However, in the Lorenz system, l1 becomes
negative at rather strong noise �Dc � 33.3�, and the syn-
chronization error vanishes after Dc.

It is important to note that, in the Lorenz system, even
for rather strong noise, the basic “butterfly” structure is
preserved (Fig. 3). The systems explore a larger region of
the phase space with increasing D. In the CS regime D .
Dc, the trajectory is much more complex than a smeared
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FIG. 2. The largest Lyapunov exponents l1 and average syn-
chronization error jx1 2 x2j via noise intensity D. (a), (c) The
Rössler system. (b), (d) The Lorenz system.

periodic orbit and is quite different from the external noise
[also see Fig. 1(b)]. Since now Lyapunov exponents are no
longer a proper measure of complexity of the systems [19],
common noise-induced synchronization is not necessarily
linked to noise-induced order, as claimed in Ref. [12].

We understand different synchronization behavior of the
Rössler and the Lorenz systems from the structure of their
Jacobian matrix Df�x�. In the Lorenz system, there co-
exist a saddle point S � �0, 0, 0� and two unstable foci C1
and C2 whose stable and unstable manifolds shape the ge-
ometry of the chaotic attractor. There exists a significantly
large contraction region close to the stable manifold of
S where Re�Li� , 0 �i � 1, 2, 3� [Li are the eigenvalues
of Df�x�], and it is not frequently visited by unperturbed
chaotic trajectories (Fig. 3). The saddle’s two-dimensional
stable manifold crossing the z axis separates the phase
space into two halves [20]. Trajectories coming close to
this stable manifold near the saddle point are rather pos-
sible to cross the stable manifold to enter into the same
half-space and move in phase when receiving a common
perturbation in the y direction. For large enough noise,
the trajectories explore deep into the contraction region;
l1 becomes negative and CS occurs when the contraction
dominates over the expansion close to the unstable mani-
fold of S. We note that the expansion region always ex-
ists, so that CS may be lost intermittently especially for D
shortly beyond Dc, when there is additional perturbation
from parameter mismatches or discrepancies between the
two driving noises, which are inevitable in real systems.
Perturbations to x or to both x and y have similar effects
and CS can be expected and is verified numerically. How-
ever, due to the symmetry of the Lorenz system, noise act-
ing only on the z direction does not have the tendency of
bringing trajectories into the same half-space, and CS is not
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FIG. 3. Trajectories in the phase space of the Lorenz system
at different noise intensity. The dotted background shows the
contraction region in the plane y � 0.
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observed accordingly. In the Rössler system, a contraction
region with all three Re�Li� , 0 exists, but the contrac-
tion is very weak because the largest Re�Li� is close to
zero. In addition, in the presence of noise the systems still
spend only a small portion of time in the contraction re-
gion. Contraction is not sufficient to induce CS. There are
also regions in the phase space where all Re�Li� . 0, and
strong enough noise �D . 4� makes the system access to
such regions and breaks the system down easily.

This comparison study has clarified the mechanism of
noise-induced CS. The existence of a significant contrac-
tion region plays the decisive role. If there does not exist a
contraction region, CS cannot be achieved by any additive
common driving signal. A biased noise may be easier to
induce CS when its mean value moves the dynamics to a
stable regime [12] in the contraction region.

II. Phase synchronization of nonidentical systems with
common noise.—To study PS due to noise, we consider
two systems with small parameter mismatches so that
phases are not synchronized without noise. For the Rössler
system, we use v1 � 0.97 and v2 � 0.99, and in the
Lorenz system, we fix s1 � 10, r1 � 28, s2 � 10.2,
and r2 � 28.5; this slight parameter difference does not
change the Lyapunov exponent spectra of the systems
much. l2 becomes negative at a relatively small D value
in both the Rössler and the Lorenz systems (Figs. 4a and
4b). A phase linked to l2 now cannot be rigorously de-
fined as in the noise-free case. Nevertheless, we can prac-
tically calculate a phase variable as in the deterministic
system [15,17]; e.g., f�t� � 2p�k 1 �t 2 tk���tk11 2

tk��, tk , t , tk11, where tk and tk11 are two succes-
sive crossings of a Poincaré section after cycling a refer-
ence point (unstable fixed point of the noise-free system).
The phase, however, is no longer coherent, and it is im-
possible to observe perfect synchronization of phases f1
and f2, i.e., jf1 2 f2j , const [15]. We expect to ob-
serve preferred phase differences at least when l2 be-
comes appreciably negative. An approach to study phase
synchronization behavior in stochastic systems is to com-
pute the distribution of cyclic phase difference, P�Df�,
on �2p,p� [21]. A peak in P�Df� manifests a preferred
phase difference between the systems, i.e., we interpret PS
in a statistical sense [22].

Without noise the two nonidentical Rössler systems
are not phase synchronized and the phase difference u �
f1 2 f2 decreases almost monotonously. Hence, the
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FIG. 4. The second Lyapunov exponent l2 and mutual infor-
mation M via the noise intensity D. (a), (c) The Rössler systems.
(b), (d) The Lorenz systems.
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distribution P�u� is very close to a uniform one (Fig. 5b).
In contrast for strong enough noise, where we also have
l2 , 0, one observes many plateaus in the phase differ-
ence, i.e., many phase-locking epochs (Fig. 5a, D � 3.0),
and this is reflected by a pronounced peak around u � 0
in P�u� (Fig. 5d); this illustrates a noise-induced phase
synchronization. For D close to the transition of l2,
phase-locking epochs are not very pronounced, and the
peak is lower and is not located around u (Fig. 5c).
Similar properties are observed in the Lorenz system.

To understand PS induced by common noise, we
examine an approximate phase dynamics of the Rössler
system obtained similarly as in [15], i.e., �u � Dv 1

2Dj sin f11f2

2 sin u

2 1 F�A�, where F�A� denotes fluc-
tuations coming from the amplitudes. In a simplified
version �u � Dv 1

p
2 Dj sin u

2 1 D1h, F�A� is de-
scribed as independent Gaussian noise h. The common
noise term

p
2 Dj sin u

2 has a nonzero mean value

�
p

2 Dj sin u

2 �j �
D2

4 �sinu�j [23], which gives rise
to a systematic contribution to the average dynamics
(with respect to j) of the system. As a zero-order
approximation, we arrive at the effective equation
�u � Dv 1

D2

4 sinu 1 D1h. The analysis shows that
when two oscillators are forced by a common noise, their
phases establish a relationship which is equivalent to the
case that they are coupled and subjected to perturbations;
this zero-order approximation yields qualitatively the
same features observed in the Rössler oscillators (Fig. 6).

We measure the degree of PS quantitatively by mutual
information between the cyclic phases

M1 �
X

i,j
p�i, j� ln

p�i, j�
p1�i�p2� j�

, (3)

where p1�i� and p2� j� are the probabilities when the
phases f1 and f2 are in the ith and jth bins, respectively,
and p�i, j� is the joint probability that f1 is in the ith bin
and f2 in the jth bin. The number of bins of �2p,p�
in our simulations is N � 100. M1 is normalized into
�0, 1� as M � M1�Sm, where Sm � lnN is the Shannon
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FIG. 5. (a) Time series of phase difference of two nonidentical
Rössler systems (v1 � 0.97 and v2 � 0.99), at noise intensity
D � 0 and D � 3. Distribution P�u� of cyclic phase difference
for D � 0 (b), D � 0.7 (c), and D � 3 (d).
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FIG. 6. Distribution P�u� in the zero-order approximation of
the phase model with Dv � 0.02, at different D and D1 values.

entropy of the uniform distribution p1 and p2 (Figs. 4c
and 4d). Because of the incoherence of the phases, an
exact correspondence between the transition of l2 and PS
would not be expected. Nevertheless, when l2 becomes
appreciably negative, M increases rapidly, indicating an
increasing degree of PS.

It is important to stress that noise-induced PS is observed
in many perturbation configurations both in the Rössler and
the Lorenz systems. This demonstrates that PS is more
general. By PS, noise induces an observable macroscopic
mean field in a large ensemble of elements. At weak noise
intensity, this collective motion has small amplitude be-
cause the degree of synchronization is weak, while at large
intensity, it is fairly noisy; it becomes the most coherent at
a certain intermediate noise intensity, as is similar to other
noise-induced resonantlike behavior [24]. This enhanced
collective response to external fluctuating signals by syn-
chronization may be of great importance in biology.

In summary, we have clarified the mechanism leading
to CS by a common additive noise. A necessary condition
for CS is the existence of a significant contraction region
in the phase space, which in time-continuous systems may
result from the existence of a saddle. Since there is clear
evidence that a saddle point(s) underlies the firing mecha-
nism in many neurons, such as in electroreceptors from
dogfish and catfish, and from facial cold receptors [25],
noise-induced synchronization is especially significant for
interpreting experimental observations [8] and bringing a
new understanding of neuron encoding. We have also
demonstrated that noise is able to induce statistical phase
synchronization in chaotic systems. Our results suggest a
connection between phase synchronization and the transi-
tion of the zero Lyapunov exponent whose interpretation is
generally not clear in stochastic systems [18]. In ecology,
population dynamics may be well modeled by Rössler type
chaotic dynamics [26], and noise-induced PS is significant
for understanding the role of common environmental fluc-
tuations on population synchronization [7].
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