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We consider dephasing in the electronic Mach-Zehnder interferometer strongly coupled to current noise

created by a voltage biased quantum point contact (QPC). We find the visibility of Aharonov-Bohm

oscillations as a function of voltage bias and express it via the cumulant generating function of noise. In

the large-bias regime, high-order cumulants of current add up to cancel the dilution effect of a QPC. This

leads to an abrupt change in the dependence of the visibility on voltage bias which occurs at the QPC’s

transparency T ¼ 1=2. Quantum fluctuations in the vicinity of this point smear out the sharp transition.
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The effective theory of quantum Hall (QH) edge states

[1] suggests that at integer filling factors the low-energy

edge excitations are free chiral electrons. If this were the

case, it would imply that edge excitations remain coherent

at long distances, and would call for various quantum

information applications. Results of tunneling spectros-

copy experiments [2] reasonably agree with the free-

electron description of edge states. In contrast, the first

experiment on Aharonov-Bohm (AB) oscillations of a

charge current in the electronic Mach-Zehnder (MZ) inter-

ferometer [3] has shown that the phase coherence is

strongly suppressed at energies, which are inverse propor-

tional to the interferometer’s size. Moreover, subsequent

experiments [4–7] have found that the visibility of AB

oscillations as a function of voltage bias applied to the

interferometer shows unusual lobe-type behavior, suggest-

ing that a strong Coulomb interaction might be responsible

for dephasing of edge electrons.

Early attempts to explain the unusual AB effect in MZ

interferometers have focused on the filling factor � ¼ 1
state, and suggested different mechanisms of dephasing,

including the resonant interaction with a counterpropagat-

ing edge state [8], the dispersion of the Coulomb interac-

tion potential [9], and non-Gaussian noise effects [10,11].

To date, however, all the experiments, reporting multiple

side lobes in the visibility function of voltage bias, have

been done at filling factor � ¼ 2. In one of our previous

works [12], we have shown that in this case the long-range

Coulomb interaction splits the spectrum of collective

charge excitations at the QH edge (plasmons) in two

modes: a fast charge mode and a slow dipole mode. At

low energies, only slow mode is excited at the first quan-

tum point contact (QPC). It carries away the electron phase

information, but may be absorbed at the second QPC. This

process partially restores the phase coherence at specific

values of voltage bias, and generates multiple lobes in the

visibility. At the same time, thanks to the chirality of edge

states, the electron transport through a single QPC is not

affected by interaction.

Importantly, the experiments [4–7] can be roughly

grouped into two categories according to whether dephas-

ing in MZ interferometers is caused by spontaneous emis-

sion of plasmons, addressed earlier in Refs. [8,9,12], or it is

induced by external noise sources. In the present Letter, we

consider the second group of experiments, where electrons

are injected into a MZ interferometer via an additional

QPC, as shown in Fig. 1. Apart from diluting the incoming

electron channel, this additional QPC generates a partition

noise [13]. The MZ interferometer turns out to be strongly

coupled to this noise, so that non-Gaussian effects, char-

acterized by irreducible moments (cumulants) of the cur-

rent noise, become important. We express the visibility of

AB oscillations in the differential conductance in terms of

the cumulant generating function, and find that in the limit

of large voltage bias, all the current cumulants add up to

cancel the dilution effect of an additional QPC. We predict

that this leads to a phase transition at the QPC’s trans-

parency T ¼ 1=2, where the visibility function of voltage

bias abruptly changes its behavior.

Electronic Mach-Zehnder interferometer.—The model

of a MZ interferometer, introduced earlier in

FIG. 1 (color online). Schematic of the electronic MZ inter-

ferometer. Two chiral channels are formed at the edge of a

quantum Hall liquid at filling factor � ¼ 2. Outer channels

(shown by blue or gray lines) are mixed at two QPCs and

form an Aharonov-Bohm loop. Electrons are injected into the

interferometer through an additional voltage biased QPC, which

is placed at the distance W from the interferometer and has

transparency T.
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Refs. [8,12], is discussed here only briefly. We note that

experimentally relevant energy scales are very small [4–7].

Therefore, it is appropriate to use an effective theory [14]

describing edge states at filling factor � ¼ 2 as collective

fluctuations of the charge density �s�ðxÞ, where � ¼ 1, 2
enumerates channels at the QH edge, and s ¼ U, D enu-

merates arms of the interferometer. The charge density

fields are expressed in terms of chiral boson fields,

�s�ðxÞ, satisfying the commutation relations

½�s�ðxÞ; �k�ðyÞ� ¼ i��sk���sgnðx� yÞ; (1)

namely, �s�ðxÞ ¼ ð1=2�Þ@x�s�ðxÞ. The total Hamiltonian

of a MZ interferometer, H ¼ H 0 þ
P

‘ðA‘ þ Ay
‘ Þ, con-

tains a term describing edge states

H0¼
1

8�2

X

s;�;�

Z

dxdyV��ðx�yÞ@x�s�ðxÞ@y�s�ðyÞ; (2)

where the kernel, V��ðx� yÞ ¼ 2�vF����ðx� yÞ þ
U��ðx� yÞ, includes a free fermion contribution with the

Fermi velocity vF, and the Coulomb interaction potential

U��. Vertex operators A‘ ¼ t‘ exp½i�D1ðx‘Þ � i�U1ðx‘Þ�,
‘ ¼ L, R, describing electron tunneling between outer

edge channels of the interferometer at the left and right

QPC, are treated perturbatively. The AB phase ’AB is

taken into account via the relation for tunneling ampli-

tudes, t�RtL ¼ jtRtLjei’AB .

The electron current is defined as a rate of change of the

electron number ND in the lower arm: I ¼ i½H ; ND�. To
leading order in tunneling amplitudes, its average value is

given by hIi ¼ R1
�1 dt

P

‘‘0h½Ay
‘ ðtÞ; A‘0ð0Þ�i. The AB oscil-

lations in the differential conductance G � dhIi=d�� are

characterized by the visibility V ABð��Þ ¼ ðGmax �
GminÞ=ðGmax þGminÞ. Using the expression for the average
current, one easily finds that both the visibility and the

phase shift of AB oscillations are expressed in terms of the

same complex function [12], namely

VAB ¼ V 0jIð��Þj; �’AB ¼ argIð��Þ; (3a)

Ið��Þ ¼ @��
Z 1

�1

dt

2�
KUðL; tÞK�

DðL; tÞ; (3b)

where V 0 / 2jtLtRj=ðjtLj2 þ jtRj2Þ, and
Ksðx; tÞ / hexp½�i�s1ðx; tÞ� exp½i�s1ð0; 0Þ�i (4)

are the electron correlation functions [15] at the outer

channels of the interferometer.

Correlation functions and FCS.—The Hamiltonian (2),

together with the commutation relations (1), generates

equations of motion for the fields �s�, which have to be

accompanied with a boundary condition:

@t�s�ðx; tÞ ¼ � 1

2�

X

�

Z 1

�1
dyV��ðx� yÞ@y�s�ðy; tÞ;

(5a)

@t�s�ð�W; tÞ ¼ 2�js�ðtÞ; (5b)

where js� is the charge current flowing out of the QPC at

the point x ¼ �W [16]. In general, the fields�s� influence

fluctuations of the currents js� at a QPC, leading to the

dynamical Coulomb blockade in the quantum, low-energy

regime [17], and to cascade corrections to noise in the

classical limit [18]. An important simplification in the

present case arises from the fact that such backaction

effects are absent for chiral edge states [8,12]. As a con-

sequence, in the case of � ¼ 2 the electron transport

through a single QPC is not affected by interactions, which

has been recently confirmed in the experiment [5].

Therefore, by solving Eqs. (5), one may express the corre-

lation functions of the fields �s� in terms of irreducible

moments (cumulants) of the currents, hhjns�ii, and equiva-

lently, via the generator of full counting statistics (FCS)

defined as [19],

	s�ð
; tÞ ¼ hei
Qs�ðtÞe�i
Qs�ð0Þi; (6)

where @ni
 logð	s�Þ=t ¼ hhjns�ii in the long-time limit. Here,

averaging is defined over free electrons, and Qs�ðtÞ ¼R
t
�1 dt0js�ðt0Þ.
All the interaction effects are encoded in a solution of

Eq. (5a). We assume that the Coulomb potential is screened

at distances d, with L � d � a, where a is the distance

between edge channels. The screening may occur due to

the presence of either a back gate, or a massive air bridge

[12]. Therefore, at low energies one can neglect the loga-

rithmic dispersion of the Coulomb potential and simply

write U��ðx� yÞ ¼ U���ðx� yÞ. Nevertheless, the long-
range character of the interaction, i.e., the fact that d � a,
allows one to approximate U�� ¼ �u, where u=vF �
logðd=aÞ � 1. As a result, the spectrum of collective

charge excitations splits in two modes: a fast charged

mode with the speed u, and a slow dipole mode with the

speed v ’ vF. At relevant energies, v=L, the charged mode

is not excited, which leads to a universality in the electron

transport predicted in Ref. [12] and observed in experi-

ments [4–7]. Here, taking the limit u ! 1 simplifies the

solution of Eq. (5a), and we obtain the result �s1ðx; tÞ ¼
��½Qs1ðtÞ þQs2ðtÞ þQs1ðtWÞ �Qs2ðtWÞ�, where tW ¼
t� ðxþWÞ=v.
Finally, we further assume that the noise source is

located far away from the interferometer, W � L, which
reasonably agrees with the experimental situation [4–7].

This assumption implies that the charges Qs�ðtWÞ and

Qs�ðtÞ in the solution for the field �s1ðx; tÞ are well sepa-
rated in time, and therefore contribute independently to the

correlation function (4). Therefore, the correlator Ksðx; tÞ
splits in the product of four terms

KsðL; tÞ / 	s1ð�; tÞ	s1ð�; t� L=vÞ	s2ð�; tÞ
� 	s2ð��; t� L=vÞ; (7)

where we used the definition (6) for the generator of FCS.

Gaussian noise approximation.—We note that the vari-

able 
 in the expression (7) plays a role of a coupling

constant in the context of the noise detection physics [19].
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It is typically small, so the contribution of high-order

cumulants of noise to the detector signal is negligible

[20]. Here, in contrast, 
 ¼ ��, implying that a MZ

interferometer is strongly coupled to noise. Nevertheless,

it is instructive, for comparison purpose, to consider

Gaussian fluctuations first. Expanding the generator (6)

up to second order in charge operators, we obtain

log½	s�ð
; tÞ� ¼ i
hjs�it� 
2Js�ðtÞ; (8)

where a Gaussian noise contribution is given by the inte-

gral

Js�ðtÞ �
1

2�

Z d!Ss�ð!Þ
!2 þ �2

ð1� e�i!tÞ; � ! 0; (9)

and Ss�ð!Þ ¼ R
dtei!th�js�ðtÞ�js�ð0Þi is the noise power.

The expression (9) for the correlation function Js�ðtÞ is
typical in the context of the noise detection physics (see,

e.g., Ref. [20]). In the long-time (classical) limit, a domi-

nant contribution to this function is linear in time: Js�ðtÞ ¼
ð1=2Þhhj2s�iijtj, where hhj2s�ii � Ss�ð0Þ, in agreement with

definition (6) of the FCS generator. For a QPC at zero

temperature, the scattering theory [13] gives

Ss�ð!Þ ¼ Sqð!Þ þ Rs�Ts�Snð!Þ; (10)

where Sqð!Þ ¼ ð1=2�Þ!�ð!Þ is the quantum, ground-

state spectral function, and Snð!Þ ¼ P

�Sqð!� ��Þ �
2Sqð!Þ, is the nonequilibrium contribution (see Fig. 2).

Note that the noise power (10) differs from the one for a

nonchiral case [20].

We now focus on the specific situation shown in Fig. 1,

namely, we set TD1 ¼ TD2 ¼ TU2 ¼ 1 and TU1 ¼ T ¼
1� R. We evaluate the electron correlation function (7)

in the upper arm of the MZ interferometer, using Eqs. (8)–

(10), and arrive at the result

KUðL; tÞ /
expfi��Tðt� L=2vÞg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tðt� L=vÞ
p expf��2RT½Jnð��tÞ

þ Jnð��t���L=vÞ�g; (11)

where the function Jn is given by the integral (9) with

Ss�ð!Þ replaced by Snð!Þ. In expression (11), the numera-

tor in the first term originates from the average current

T��=2� in (8), the denominator is the contribution of the

quantum noise Sqð!Þ, and the last term comes from the

nonequilibrium noise Snð!Þ and describes dephasing. The

correlation function in the lower arm of the interferometer

can be obtained from Eq. (11) by setting�� ¼ R ¼ 0with

the result KDðL; tÞ / 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tðt� L=vÞ
p

. Thus for a ballistic

channel, and for L ¼ 0, the electron correlation function

coincides with the one for free electrons. This explains the

fact that in the � ¼ 2 case, the Coulomb interaction does

not affect an electron transport through a single QPC [5],

and justifies our approach.

Next, we use the results for correlation functions Ks to

evaluate the integral (3b). For a large voltage bias

L��=v � 1, we obtain

Ið��Þ / Elb@�� sin

�
���

Elb

�

e���=Edf ; (12a)

Elb ¼
2�v

TL
; Edf ¼

4v

�RTL
: (12b)

Thus the visibility V AB, given by Eq. (3a), shows a lobe-

type behavior: It oscillates as a function of voltage bias

��, vanishes at certain values of bias, and decays. Since

the function Ið��Þ is real, the AB phase shift�’AB jumps

by� at zeros of the visibility and remains constant between

zeros, thus showing the phase rigidity [4]. The distance

between zeros of the visibility, Elb, is determined by the

average current of transmitted electrons, and can be viewed

as a ‘‘mean-field’’ contribution to the correlator (11). The

dephasing rate Edf is determined by the current noise

power. The ratio 2Elb=ð�EdfÞ ¼ R is given, in general,

by the Fano factor of Gaussian noise.

Noise induced phase transition.—In what follows, we

consider non-Gaussian noise, and show that the contribu-

tion of high-order cumulants of current is indeed not small.

Note that the ground-state contribution of the current noise,

Sq, that dominates at short times, is pure Gaussian.

Therefore, the denominator in expression (11) remains

unchanged. In the long-time limit, the dominant contribu-

tion to the FCS generator comes from the nonequilibrium

part of noise, Sn. For a QPC, it is given by the well known

expression [19] for a binomial process: 	U1ð
; tÞ ¼ ðRþ
Tei
ÞN , where N ¼ ��t=2� is the number of electrons

that contribute to noise. Applying the analytical continu-

ation 
 ! �, we obtain

log½	U1ð�; tÞ� ¼
��t

2�
½logjT � Rj þ i��ðT � RÞ�; (13)

where the imaginary part contributes to the effective volt-

age bias in the first term of the correlator (11), while the

real part is responsible for dephasing.

A remarkable property of the expression (13) is that

high-order cumulants of current add up to cancel the

dilution effect of a QPC. Therefore, the continuous varia-

tion of the mean-field contribution in the correlator (11) is

replaced with the jump in the voltage bias across a MZ

interferometer at the point T ¼ 1=2. We evaluate the in-

tegral (3b) in the limit L��=v � 1 and arrive at the result
(12a), as in the Gaussian case, but with new energy scales:

FIG. 2 (color online). Two spectral functions that contribute to

the noise power (10).
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Elb ¼
2�v

L
; Edf ¼

2�v

Lj logðT�RÞj ; T > 1=2: (14)

The rigidity of zeros of the visibility for T > 1=2 is clearly
seen in Fig. 3. For T < 1=2, the visibility may be found by

taking the limit Elb ! 1 in the expression (12a) with the

result Ið��Þ / ð1���=EdfÞe���=Edf . Thus, the only

zero of the visibility scales as �� ¼ Edf , given by the

expression in (14).

The behavior of the visibility of AB oscillations, shown

in Fig. 3, may be considered a phase transition, because

strictly speaking, it arises in the classical regime, where the

number of electrons that contribute to this effect is large,

N � 1. The transition occurs at the critical point, 
 ¼ �,
T ¼ 1=2, where the moment generator 	U1ð
; tÞ of a bi-

nomial process vanishes, and can be viewed as a result of

entanglement between electrons of the noise source and

those that contribute to AB oscillations. However, quantum

fluctuations of N at critical point smear out the sharp

transition.

Quantum correction at critical point.—Finding quantum

corrections to the long-time asymptotic of the FCS of

noninteracting electrons requires the evaluation of

Fredholm determinants, which is best formulated in the

wave-packet basis [19]. In the present situation a simplifi-

cation arises from the fact that in the long-time limit the

dominant contribution to the generator (6) comes from

nonequilibrium electrons in the energy interval ��. Such

electrons can be viewed as a ‘‘train’’ of incoming wave

packets WðsnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

��=2�vF

p
sinðsnÞ=sn, where sn ¼

ð��=2Þðx=vF � tÞ þ �n, which are normalized as
R
dxjWðsnÞj2 ¼ 1. If electrons were transmitted through

the QPC (placed at x ¼ 0 for the convenience) with the

probability T and reflected with the probabilityR ¼ 1� T,

this would lead to a binomial process. However, the fact

that wave packets have a finite width leads to the small

probability Pn ¼ R
0
�1 dxW2ðsnÞ for electrons not to reach

the QPC, which can be well approximated with Pn ¼
½�ð��t� 2�nÞ��1. Thus, taking into account all three

possibilities, we write the moment generating function as

	U1ð
; tÞ ¼
Q

n½ð1� PnÞðRþ Tei
Þ þ Pn�. At critical

point, 
 ¼ �, T ¼ 1=2, this gives the following result:

log½	U1�¼
X

n

logðPnÞ¼���t

2�
½logð���tÞ�1�: (15)

The imaginary part of log½	U1� comes from a branch cut of

the logarithm and grows gradually in the interval T � R 	
1=ð2�2NÞ, smearing out the discontinuity in (13). Using

Eq. (15) we find that at critical point the visibility scales as

V AB/@"expf�"½logð�2"Þ�1�g= ffiffiffi
"

p
, "¼��L=2�v�

1. The result of a numerical evaluation, shown by the black

line in Fig. 3, demonstrates the residual phase coherence at

critical point due to quantum fluctuations of the number N.
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[14] J. Fröhlich and A. Zee, Nucl. Phys. B364, 517 (1991).

[15] Th. Giamarchi, Quantum Physics in One Dimension

(Oxford University Press, Oxford, 2003).

[16] For a different boundary condition in ballistic 1D systems,

see I. Safi, Eur. Phys. J. B 12, 451 (1999).

[17] For a recent experiment, see C. Altimiras et al., Phys. Rev.

Lett. 99, 256805 (2007).

[18] K. E. Nagaev, Phys. Rev. B 66, 075334 (2002).

[19] L. S. Levitov, H. Lee, and G. B. Lesovik, J. Math. Phys.

(N.Y.) 37, 4845 (1996).

[20] E. V. Sukhorukov and J. Edwards, Phys. Rev. B 78,

035332 (2008).

FIG. 3 (color online). The visibility of AB oscillations is

shown as a function of the normalized voltage bias for different

transparencies of the QPC that injects electrons. It is evaluated

numerically using the Gaussian approximation at low bias, and

Markovian FCS at large bias. The visibility shows several lobes

for T > 1=2, while it has only one side lobe for T < 1=2. The
black curve shows the visibility at critical point of the phase

transition. Dashed lines indicate the position of zeros.
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