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We study nontrivial effects of noise on synchronization and coherence of a chaotic Hodgkin—
Huxley model of thermally sensitive neurons. We demonstrate that identical neurons which are not
coupled but subjected to a common fluctuating inp@aussian noigecan achieve complete
synchronization when the noise amplitude is larger than a threshold. For nonidentical neurons, noise
can induce phase synchronization. Noise enhances synchronization of weakly coupled neurons. We
also find that noise enhances the coherence of the spike trains. A saddle point embedded in the
chaotic attractor is responsible for these nontrivial noise-induced effects. Relevance of our results to

biological information processing is discussed. 2003 American Institute of Physics.

[DOI: 10.1063/1.1493096

Nontrivial effects of noise in nonlinear dynamical systems
have been a subject of great interest and importance, in
the context of stochastic resonanck, coherence
resonance’ and noise-induced synchronizatiort. In par-
ticular, synchronization of chaotic dynamical systems by
a common random forcing is a topic of relevance to neu-
roscience. Experiments have demonstrated a remarkable
reliability of repetitive spike sequences in neocortical
neurons in response to repeated fluctuating stimuli,
which is a feature not observed in response to constant
input currents. This reliability is of importance for infor-
mation encoding by spike timing of neurons. The under-
lying mechanism, however, has not been addressed
clearly. In this contribution, we study synchronization be-
havior of a chaotic Hodgkin—Huxley model of thermally
sensitive neurons subjected to a common noise, and in-
vestigate the mechanism of noise-induced synchroniza-
tion. We find that the existence of a saddle poin§ in the
phase space plays an important role. Noise induces syn-
chronization when the contraction close to the stable
manifold of S becomes dominant over the expansion close
to the unstable manifold of S. We also investigate non-
identical neurons in terms of phase synchronization of
the spike sequences. In an ensemble of weakly coupled
neurons, a common random forcing can enhance phase
synchronization among the elements. As a consequence of
this enhanced synchronization, the ensemble establishes a
higher degree of sensitivity in the collective response to
fluctuating stimuli. On the other hand, in the presence of
noise, the trajectory is prevented from staying close to the
saddle point for long time. This can generate much larger
spiking rates and reduce considerably the fluctuation of
the interspike intervals. We demonstrate that noise can
optimize the coherence of the spike trains. This mecha-
nism of noise-induced synchronization and coherence
resonance is general in systems displaying spiking behav-
ior due to a saddle point.
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I. INTRODUCTION

The subject of this contribution is at the borderline of
two basic families of phenomena in nonlinear systems nowa-
days attracting large interest: noise-induced effects and syn-
chronization. Constructive effects of noise in nonlinear sys-
tems have been investigated extensively in the context of
stochastic resonantand coherence resonarfcBy stochas-
tic resonance, noise can optimize a system’s response to an
external signal and induces stochastic phase synchronization
to the external forcing. With coherence resonance, pure
noise without an external signal can generate the most coher-
ent motion in the system, as has been mainly observed in
excitable system5.

The study of coupled oscillators is one of the fundamen-
tal problems in nonlinear dynamics and has applications in
various field€ Mutual synchronization is of great interest
and importance among the collective dynamics of coupled
oscillators. The notion of synchronization has been extended
to include a variety of phenomena in the context of interact-
ing chaotic oscillators, such as complete synchronization,
generalized synchronizatidnphase synchronizatiohand
lag synchronizatior?

Noise influences synchronization in different ways. In
complete synchronization of coupled chaotic systems, noise
may induce intermittent loss of synchronization due to a lo-
cal instability of the synchronization manifotd.In phase
synchronization of coupled oscillators, noise can generate
phase slips in phase-locked periodic oscillatbes well as
in chaotic oneg?

On the other hand, identical systems which are not
coupled but subjected to a common noise may achieve com-
plete synchronization at a large enough noise intensity, as has
been demonstrated both in periddi&® and chaotic
systems®1’For complete synchronization to occur, it is nec-
essary that the largest Lyapunov exponent becomes negative
in the presence of noisé!” The circumstance that different
systems are not or only weakly coupled but subjected to a
common random forcing is of great relevance, especially in
neuroscience. Different neurons commonly connected to an-
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other group of neurons receive a common input signal whiclsystems has intrinsically a highly nonuniform dynamics and
often approaches a Gaussian distribution as a result of intéhe sensitivity to small perturbations is high only in the vi-
gration of many independent synaptic currents. It is impor<inity of S. Hence, the basic geometrical structure of the
tant to emphasize experimental observations of a remarkablerbits is preserved, whil€, may be changed significantly, so
reliability of spike timing of animal neocortical neuroh$n  that information of the input may be encoded by the timing
these experiments, rat neocortical neurons are stimulated f the spike train. In particular, a noise input may reduce the
input currents. When the input is a constant current, a neurofiuctuation of T, and enhance the coherence of spike se-
generates independent spike trains in repeated experimerggences.
with the same input. This is evidence that the constant input  There is another feature that makes the system behavior
when viewed as a control parameter has moved the neurdrontrivial in the presence of noise input. Accompanying the
dynamics from a fixed point into a chaotic spiking regime. Insaddle pointS, there exists a contraction region close to the
contrast, when a Gaussian white noise is added to the costable manifold ofS, where nearby orbits converge tempo-
stant current, the neuron generates repetitive spike trains ii@lly. There also exists an expansion region close to the un-
repeated experiments with the same fluctuating stimulus. Restable manifold ofS. The contraction region is essential for
peatable firing means that a common synaptic current innoise-induced synchronization. It is possible that noise alters
duces complete synchronization in two identical neuronghe dynamics and makes the contraction dominant, so that
with different initial conditions. This behavior is of great Systems with different initial conditions converge to an iden-
importance for signal encoding and transmission in the infortical response in the presence of a common random forcing.
mation processing of neuron@) single neurons may faith- We demonstrate these nontrivial effects of noise input in
fully encode temporal information in the timing of succes-a chaotic Hodgkin—HuxleyHH) model of thermally sensi-
sive spikes(ii) a group of neurons can respond collectively tive neurons possessing such a saddle poRather weak
to a common synaptic current due to synchronization. noise can already induce synchronization, while stronger
The mechanism underlying such a remarkable noiseh0ise can optimize the coherence of the spike train patterns.
induced synchronization of chaotic neurons, however, has
not been clearly explained. In Ref. 15, synchronization ofj|. THE MODEL
randomly driven nonlinear oscillators has been studied in .
terms of phase synchronization of the oscillators to the phase A HH model of thegmall_y sensitive neurons has been
of the external random forcing. This is useful for analyzingProPosed by Brauretal” which mimics various types of
synchronization of periodic oscillators subjected to a slowlySPike train pattemns observed in electroreceptors from dogfish
fluctuating forcing. Unfortunately, typical noise sources that""nd catfish, and frg’J{“ facial cold receptors and hypothalamic
arise in many situations are not of this case. Furthermore, thd&urons of the rat”! The model equations read

approach in Ref. 15 cannot explain complete synchronization dv

of two chaotic oscillators subjected to a common fluctuating ~ ©m gy = ~h—la=lr—lsa—ls+DE(D),

input. For example, chaotic Reler oscillators can achieve

phase synchronization to a random forctfigyut complete da, @(T)(a;.—ay)

synchronization of two identical chaotic Bsler oscillators dt T ’

with a common random forcing has never obsertfeth (1)
fact, whether noise can induce synchronization of chaotic daﬁd: ¢(T)(asd=—8sa)

systems has been subjected to a strong controversy. In some dt Tsd ’

systems, noise with a nonzero mean value can induce syn-
chronization but unbiased noise canfibtwhile in some
other systems, unbiased noise can also achieve
synchronizatiort! So far, the mechanism of noise-induced with
synchronization is not completely understood. In particular,
in what type of systems noise can induce synchronization is
still an open problem. and
In this contribution, we present a mechanism of noise- _ _
induced synchronization which occurs in systems displaying h=p(MaddV=Vi, (k=r.sdsr),
spiking behavior, such aslzrleurons. Anzignportant characterigvhere
tic of many biological," chemical* and physical _ _ _ -1 _
oscillator§3digplayinggspiking behavior is the exisrzce?f/lce of a A= [1+exp=sV=Va)] % (k=d.r,sdsn)
saddle poinSS in the phase space. In these systems, the orb@nd
comes back to a neighborhood 8fand slows down after (T)=A(T~To/10 (T)=A
each or a burst of a few quick spikes away fr@n The P 1 r¢
dynamics is characterized by rather regular orbits in theHereV is the membrane potential, ahdis the leakage cur-
phase space and widely fluctuating time interiglbetween rentl,=g,(V—V,); |4 andl, are fast Hodgkin—Huxley cur-
successive returns 8. In neuroscience, the significance of rents representing Na and K channag(k=r,sd,sr) are
interspike intervalT, in biological information processing activation variables, ang(T) and ¢(T) are temperature-
has been discussédt is important to note that this type of dependent scaling factors. With this model, the classical

dag, _ o(T)(— nlsg— Oag,)
dt Tor '

4= p(T)ggag-(V—Vy),

(T—Tg)/10
5 )
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Hodgkin—Huxley(HH) model?! on the one hand, has been (a) ' ]
simplified, but on the other hand, has been extended by two 0 i+ H
additional slow current$sy andlg, according to the experi- = ]
mental findings of spike-independent oscillatidhs. ;E« —40

In numerical simulations, we employ the same set of
parameter values as in Ref. 24, i.g.q=0.25 mS/cr, g,
=0.4 mS/cm, g¢gq=1.5mS/cmd, g,=2.0 mS/cm, g
=0.1 mS/cm, 7sq=10 ms, 7,=20 ms, 7,=2.0 Ms, Sgq (b) 120
=0.09mV'! s$,=025mV?% s,=025mV?% Vo
=—40mV, Vog=—-25mV, Vo=—-25mV, Ve=Vy4 2
=50 mV, Vg,=V,=—-90 mV, V,=60 mV, »=0.012, 6 c 0
=0.17. These parameter values yield a good agreement of <
the model with experimentally observed temperature depen-
dence of spike train patterns. The spike trains are chaotic in 120, 80 40 50 60
a broad range of temperaturésg., 7<<T<13). A more de- time (s)
tailed description of the model and a comparison with the
experimentally observed temperature dependence of SpiH'_éG- 1. Spike train(@) and local Lyapunov exponerib) of the chaotic
train patterns can be found in Refs. 5 and 24. In our studyeuron aT=10.
we consider Gaussian noigét) with zero mean value and
correlation in time. The noisy equations are integrated using
a Heun algorithrf? with a time stepAt=0.05 ms which is
rather small compared to the duration {00 ms) of a single  which is about half of the duration of a single spike, but is
spike. much smaller than the average interspike interval

In the chaotic spiking regime, the system possesses an400 ms. With thisr value, quick and large changes of
unstable fixed pOint which has both stable and unstable d||'oca| Stab|||ty a|0ng the orbits during the spike have been
rections. Thus it is a saddle poi® A trajectory starting smoothed out considerably and we can see clearly the
close to the stable directions will approach the neighborhooghanges of the stability close to the saddle point where the
of S and leave it along the unstable directions. This saddlgypits slow down.
pointS is embedded in the chaotic attractor, i.e., typical cha- typical chaotic spike sequence of the neuronTat
otic trajectory may have very close recurrenceStafter a  —1q (without noise inputis shown in Fig. 1, along with the
burst of spikes. The eigenvalues corresponding to stable diargest local Lyapunov exponent,. The neuron undergoes
rections, are realN;<0.A,<0) and the eigenvalues corre- rsts of spikes between successive returns to the neighbor-
sponding to unstable directions are complax 4= u*iv),  hood ofS (indicated by arrows in Fig. 1 close te-2.5 and
and —\3 2> u,** and the chaotic dynamics results from this t=4.5). After a few (3-5 successive spikes away fro8)
Shilnikov conditiof” are a typical mechanism of chaotic the orbit approaches, and is guided by the stable manifold
spiking in neuron models: Close to the stable manifold, a 55 geen by negativ, ; then it departs frons following the
large contraction region exists in the phase space where ﬂtﬁjidance of the unstable manifold for a long time, as mani-
largest local Lyapunov exponent is negative and nearby traggteq by small positivé\ .. A single spike(e.g., close td
jectories converge, while close to the unstable manifold, the. 3 5nqt=55 in Fig. 3 follows this recurrence t&. Such
largest local Lyapunov exponent is positive and nearby trag gjnge spike is well separated from the next burst of spikes,
jectories diverge. Since the eigenvalues satisty>w, the  pecayse the orbit cycle8 and slows down aroun@. For
contraction rate is stronger than the expansion rate. It has,ch spikep . is positive during the activation phase while it
been shown that this system exhibits a homoclinic bifurcajg phegative during the relaxation phase. Such a spike train
tion, where the interspike interval pecome524very long, whemattern repeats, but the number of spikes within a burst can
the control parameter temperatures varied- be different, and the interval, between the bursts and the

To manifest the change of local stability close to thegjngje spikes fluctuates strongly, depending on the closeness
saddle point during the evolution of the neuron, we consideps the recurrence to the saddle poidt In the absence of

the largest local Lyapunov exponeAt,, noise, the spike sequence is chaotic so that the largest global

1 | ox(1)] Lyapunov exponent, which equals the time average of the
A (D)=—IN—r—, (2)  largest local Lyapunov exponent ., is positive, i.e.,\
T | X(t— 1) —(A)>0.

where| 5x(t)| is a small distance between two trajectories in  Although the detailed spike train patterns may be differ-
the phase space at timend 7 is a finite time.A . measures ent in other systems with a similar saddle point in the phase
the average expansion or contraction rate during the finitepace, the fluctuation of interspike intervals resulting
interval 7. In numerical simulations) , is calculated using a from the recurrence t& and the stability propertie&oex-
standard methdd which integrates the variationdlinear-  istence of the contraction and expansion regi@me generic.
ized) equation of the neuron model E() and computes the For these reasons, the response behavior to noise input re-
largest exponent of the matrix solution of the linearizedported in this neuron model should be universal in this type
equation within every intervat. Here we chose=50 ms,  of system.
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FIG. 2. (a) The largest Lyapunov exponentand (b) the relative synchro- © 001 + —
nization errorE (closed circles for two identical neurons and squares for two 0.00 [ ]
nonidentical neurons with a 5% difference of the leakage paramgeters 2100 100

the noise intensityp. A_(1/s)

FIG. 4. (a) Distribution of the interspike interval, atD =0 (solid line) and
D=4 (dotted ling; (b) distribution of the largest local Lyapunov exponent

IIl. NOISE-INDUCED COMPLETE SYNCHRONIZATION at D=0 (solid ling) andD —4 (dotted line.

OF IDENTICAL NEURONS

In this section, we study complete synchronization of ) . _
two identical chaotic neuron®; andV,, with independent ~Systems, the geometry of the dynamics may be distorted sig-
initial conditiony which are linked only by a common nificantly by noise when synchronization is achieved at large

. . . H i L7
Gaussian noise inpug(t). We calculate the largest trans- €nough intensities” o _
verse Lyapunov exponeitas a function of the noise inten- e synchronization behavior in this systéi is deter-
sity D. In parallel, we compute the average relative synchromined by the competition between contraction and expansion
nization error E=(|V,;—V,|)/ay between both neurons. I the phase space. Since the negative eigenvalues have
Here 0.\2/ is the variance ok/(t) over time, which increases larger amplitudes than the positive ones, the contraction rate
with D because a larger input generates a more frequeri® 1arger than the expansion rate arodidn the presence of
spiking. It is seen in Fig. @) that\ undergoes a transition @ Suitable level of noise, the orbits can still appro&cand
from positive to negative values around the noise intensitygXPerience contraction, while they cannot follow the guid-
D.~3.5 pAlcnt. Beyond this critical point, two identical ance of the weakly unstable manifold for a long time. There
neurons with the same input converge to an identical spik@re two consequences of this restltthose long intervals in
sequence after a short transiéhtg. 3), and the synchroni- the noise-free case resulting from following the unstable di-
zation errorE vanishes[Fig. 2(b), closed circle} In the rections and spiraling arour&ih'ave been. reducgd consider-
synchronized regime, a single neuréwithout parameter aPly, as seen in Fig.(4 showing the distributions of the
drifts) will have perfect reliability in response to a repeatedinterspike intervalsT, at D=0 andD=4; and(ii) the ex-
fluctuating stimulus. pansion degree is reduced correspondingly compared to the

Note that in this system, the dynamics is sensitive to thd'0ise-free case. In Fig(d) we have plotted the correspond-
noisy input close to the saddle point, while the spikes are nof'd distributions of the largest local Lyapunov exponent
affected much. This property is of importance for biological A -(7=50 ms). AtD=0, there is a high peak at small posi-
information processing using spike trains which are well-tivé A, resulting from a long residence time close to the

defined even in the presence of a fluctuating input. In otheHnstable manifold. The peak becomes much loweb &t4,
and on average the contraction becomes dominant over the

expansion. As a result, the largest Lyapunov exponent
=(A,) becomes negative and synchronization is achieved.
' One should have noticed from Fig(b that even in the
synchronization regime, the expansion regions still exist in
the phase space, and the orbits still have access to these
regions (e.g., during the activation phase of each spike
Small distances between orbits grow temporally in these re-
gions. As a result, synchronization is lost intermittently in the
80 - 9.0 presence of additional perturbations due to parameter mis-
time (s) matches or discrepancies between the noisy driving forces.
FIG. 3. Synchronization of the spike trains of two identical neuronB at This situation naturally occurs in repeated experiments with

—4. The spike sequences started from different initial conditions convergdh€ same neuron and driving signal. Due to this nonid_entit_Yv
to an identical one after a short transient. synchronization cannot be perfect. As demonstrated in Fig.

V,V, (mV)
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2(b) (squarep the relative synchronization err@ between
two nonidentical neurons with a 5% difference in the leakage
parameteg, remains rather large even fbrwell beyond the
synchronization threshold. Nonidentity is typical in biologi-
cal systems. In this context, in Sec. IV we study phase syn-
chronization of nonidentical neurons subjected to a common
fluctuating input.

IV. PHASE SYNCHRONIZATION OF NONIDENTICAL > 03 L | D=3 -
NEURONS £ 02 [ (c) D=8 ]
Synchronization of nonidentical oscillators has been re- % 0.1 L -
cently intensively studied in terms of phase o L ,

Synchronizatior?.'lo'so It has been found for Coupled chaotic 0.0 O
-7 0 T N 0 T

systems that phase synchronization sets in at a much weaker
coupling strength compared to that for almost complete syn- Ao Ad

chronlzathn. ical h ik FIG. 5. Phase dynamics between two nonidentical neur@n$hase dif-
In nonidentical neurons, the spike sequences cannot t%@rences aD =0 (solid line) andD =3 (dotted ling; corresponding distri-

fully identical. However, since the neurons are sensitive tGution of cyclic phase difference &=0 (b) andD=3 (c).

perturbation when the trajectories are close to the saddle

point, the common input may dominate the dynamics and

generate similar spike train patterns in a period of time inthe presence of a common noise input with=3, many
spite of the nonidentity. To study this similarity in terms of phase locking plateaus are observed and the distribution of
phase synchronization, we define a phase variable for thghe cyclic phase difference exhibits a sharp peak around

spike train a¥" A.$=0, indicating that there are many spikes having rather
— reliable spike timing even though the systems are nonidenti-

o) =27K+27————, nsSt<mgq, (3)  caland the inputis not strong enough to exceed the threshold
Tk+17 Tk of complete synchronization. These results illustrate that a

wherer, is the time when th&th spike occurs, as detected in fluctuating input induces phase synchronization between
numerical simulations when the membrane potern¥iadx-  nonidentical neurons.
ceeds a threshold of 20 mV. In this definition, the spike The sharpness of the distribution of the cyclic phase dif-
train is considered as a point process and each spike genefarence reflects the degree of phase synchronization, which
tion is associated with ar2phase increase. Phases betweercan be quantified by the entropy of the distributfdri,e.,
two successive spikes are obtained by a linear interpolatiotd=—=M , p; Inp;, whereM is the number of bins. Normal-
A phase defined in this way is a piecewise-linear function ofizing H into [0,1] by the maximal entropy,=In M of the
time, and is closely related to the most important characteruniform distribution, we obtain the phase synchronization
istic, i.e., spike timing of the spike trains. Since the spikesindex
are well defined even in the presence of quite large noise poe=(H-—H)/H 4)
input, the phases of the spike trains can be computed without "P* * '™ m
much ambiguity. However, in a noisy system, phase lockingrhe degree of phase synchronization is higher with larger
cannot be perfect, but rather many phase synchronizatiopps. In Fig. 6, we calculates along with the relative dif-
epochs may occur where phases are locked temporally, ariéirence between the average spiking ratgsand w, of the
then interrupted by rapid2phase slips. Phase synchroniza-two neurons, i.e.,
tion can be detected by phase locking plateaus in the plot of |wy— w2y
phase difference\ ¢(t) = ¢,(t) — p41(t) between two neu- Aw=2——. 5)
rons. Another approach to detect phase synchronization w1t
among phase slips is to examine the distribution of the cyclidt is seen thatAw decreases angd,s becomes appreciably
phase difference\ .= A ¢ mod 2.3 A peak in the distri-  nonzero and increases continuously whgris larger than
bution exhibits a preferred phase differetfcbetween the Dps~2. Before D, the spike timing of the two neurons
spike sequences of the two neurons. keeps effectively independent. Afté&,s, more and more

In numerical simulations, we introduce a mismatch intospikes are evoked with a small variability in the spiking
the leakage parametgr and keep the other parameters iden-times (a higher peak around.¢=0 in the distribution of
tical. We first consider two neurons, wigf=0.1 forV, and  the cyclic phase differenge
g7=1.05} for V,. With this parameter heterogeneity, the Note that in repeated experiments, the input signal can-
first neuron has a larger average spiking rate in the absenemt be fully identical due to unavoidable intrinsic or environ-
of a noisy input. The phases are not synchronized, as seenental noises. To take this discrepancy into account, we have
from quick, random-like slips in the plot of the phase differ- also considered the case that the noise inputs between the
enceA ¢ [Fig. 5@), D=0 (solid ling)] and from the uniform  two neurons are correlated with< 1, whereC is the corre-
distribution of the cyclic phase differende.¢ [Fig. 5(b)]. In lation coefficient. WhileAw does not exhibit a clear depen-
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FIG. 6. (a) Relative frequency differencéw between the two nonidentical .
neurons with an identical inputb) Phase synchronization index, for time (S)

identical noise inputclosed circles and nonidentical noise input®pen

circles with a correlationC=0.98. FIG. 7. Mean fieldU of ensembles of nonidentical neuroria) Without

inputD=0, U, (solid line) andU, (dotted ling have small and independent

fluctuations around a constant value; ail with a common noise input

D=4,U, andU, exhibit almost identical spike sequendése dotted line is
dence orC when it is close to Iresults not showna small ~ not easily seen now
discrepancy increases the variability in spiking times and
reduces the degree of phase synchronization considerabI

X ) o IP(put, bothU,; andU, exhibit many spikes and become al-
[Fig. 6(b)] for a correlationC=0.98. Phase synchronization

il ‘ b ith most identical[Fig. 7(b)] as a result of noise-induced syn-
still occurs forD beyondDys, but pys decreases with de- o onization. To quantify these changes, we calculate the

creasing correlatio until it vanishes when the driving sig- fluctuation amplituder,, (standard deviationof U, , and
nals become independent. These results demonstrate that tthe K

reliability of spike timing of the neurons in repeated responsehe relative difference betweed; and U as Ene=(|Uy

is robust to some extent with respect to changes in the sys- 2/ \Jou,ou, ou, and oy, are amost the same for

tem parameters and unavoidable perturbatieng., changes arge enoughN; and N. The results ofo, and Eens are

of amplitudeD and correlatiorC) to the input signals, which Snown in Figs. &) and &c), respectively.oy increases

is meaningful for biological information processing. when larger input generates more spikes in the collective
In the following, we study the collective behavior of an motion by phase synchronization. The difference between

ensemble of nonidentical neurons subjected to a commoWe meanfield of the two nonidentical ensembles decreases
noise input,

wgr =~ la= 1= Tsa— st DEY), (6) (@) eeee, _
3 s o ¢ Ce . —
which corresponds to the situation where a number of neu- o 004 . fea,
rons receive a fluctuating stimulus simultaneously. To take i IAEEY
heterogeneity into account, the leakage paramefecs the 0.00 :
ith neuron is assumed to be a random variable uniformly 20 — : —
distributed in the range 0X4[1— 8,1+ &] with §=0.05. We ~ 15 L (b) EE@EEE“
. . O]
first consider an ensemble df=200 neurons and compute E 0l am®" 7
. . . . Na¥ — = ]
the frequency disorder,, defined similar taA ,, namely =t s 1
o 5 = 7
(Loi—(w)]?)"? Lﬁ@@w?mm \ ]
Co=—F (7) 0=
(@i) —
where( ) denotes the ensemble averagg.as a function of 1.0 = (c) N
noise intensityD is plotted in Fig. 8a), showing a noise- @ M. ]
enhanced phase synchronization behavior similar to that of TR T 7
two neurons in Fig. @). i T‘AUTA““ . 1

Now we divide the ensemble into two subensembles 0.0
with different numbers of neurori¢; =90 andN,=110. The
leakage parameters are independent in these two ensembles.
We focus on the mean field, = 1IN, =, VE(k=1,2) of the
two ensembles. In the absence of the noisy inpytandU,
fluctuate independently around a constant valkig. 7(a)].
However, in the presence of a strong enough common noiss&mbles.

1.0

2.0

3.0

4.0 5.0

noise intensity D (pA/cm?’)

FIG. 8. (a) Frequency disordes,, of an ensemble ol=200 nonidentical
neurons.(b) Amplitude o, of the mean fieldU of two independent en-
sembles withN; =90 (closed squargsaandN,=110 (open squargsand(c)

relative synchronization errok,s betweenU, and U, of the two en-
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FIG. 9. Frequency disorder, (a) and amplituder, (b) of an ensemble of é
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quickly and vanishes effectively whed>3. Compared to time (s)

the much I.arger SynChromzatlon e.rrEr qroundng be- FIG. 10. Mean fieldJ of an ensemble dfl=200 nonidentical neurona)

tween two identical neurons or nonidentical ofiegy. 2(b)], €=0.02.D=0: (b) e=0.02,D=3: and(c) =0 andD 3.

it is clear that the collective response of an ensemble of

neurons has a higher degree of reliability to repeated fluctu-

ating stimulus. In particular, the reliability is robust to pa-

rameter drifts and the number of neurons in the ensembleynd phase synchronization is not perfect even for rather

Since nonidentity is typical in neural systems, this enhancedtrong coupling strength. However, in the weak coupling re-

reliability by collective response may be of relevance to bio-gjon, phase synchronization among the neurons is enhanced

logical information processing. significantly by a noisy input, quantified by a much smaller
frequency disordes,, and a much larger amplitude; . o,
decreases andgl, increases with increasing coupling strength

V. NOISE-ENHANCED PHASE SYNCHRONIZATION IN e. The collective response of the ensemble to a noise input of

WEAKLY COUPLED NEURONS D=3 is shown in Fig. 1() for e=0.02. Compared to that

Neurons are often coupled and receive fluctuatindr: thetin?emblke of un|<_:oupler<]j neur@tahyo, Flg_.t_lgc)],flir:s |
stimuli simultaneously. In this section we study the interplayC ear that weak coupling enhances the sensitivity ot the col-

between coupling and common noise input. We consider ahactive response to a fluctuating stimulus, although in the

ensemble of weakly globally coupled nonidentical neurons,absence of a n0|sy.|nput, bF’th ensembles exhibit no pro-
nounced macroscopic collective behavior.

dV; Combined with the results for the uncoupled neurons in
Mgr ~ N lem T lsam lem e(VimU)EDE, () goc i1, a collective response of weakly coupled effec-

. ' tively uncoupled neurons may be meaningful in biological
Wherﬁnu I?r tzet;n?ra;]r? field CI)|:1 the ﬁn;emblﬁ ?ddrsdﬂf]er thinformation processing: without an input, the ensemble does
gng ? Sin? I? it. insn(ioﬁp tr? S(r: Eca? icn?/ Stie ?i no ; ot show a macroscopic mean field, while in the presence of
€ of simpiicity any theore estigations of strong enough fluctuating input, it generates a collective
coupled oscillators, however, may not be fully relevant to

) . . 7. . . response. The reliability of the collective response is robust
biological reality where transmission time of the spikes P y P

. o to heterogeneity which is generic in biological systems.
should be taken into account. The ensemble has d|str|bute8 9 y 9 9 Y

leakage parametergy as in Eq.(6). To characterize phase

synchronization of the neurons, we compute the frequency

disordero,, and the amplituder, of the collective motion

U. The results as a functions of the coupling strengdre /| NOISE-ENHANCED COHERENCE OF SPIKE

shown in Fig. 9 for various noise input intensid. In the  TRAINS

absence of noisB =0, there is a transition to perfect phase

synchronization among the neurons at a relative weak cou- We have observed that in the presence of a noise input,
pling €,4~0.043 mS/cr. Beyond this critical point, the the spiking behavior is preserved in the neuron, however, the
mean fieldU exhibits spike train patterns similar to those of property of the interspike intervdl, has been altered signifi-

a single neuron. In weak coupling regimes, eeg=,0.02, U cantly. Earlier, we have investigated synchronization of neu-
does not exhibit spikes but slow and weak oscillatiffig.  rons due to modified stabilities as a result of the changes in
10(a)] resulting from the slow currentk;y and I, in the  the spike train patterns. In this section, we will concentrate
model[Eg. (1)]. With a noisy input, the transition is smeared on the coherence of the spike train of a single neuron.
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FIG. 11. Average interspike intervél|) (a) and coherence factd® (b) as
functions of noise intensit{.

|
0.5
For each noise intensitp we collect a large number of time (s)

interspike mtervalsT, and compute the average vaI(Ié,) FIG. 12. Spike train patterns of the neuron subjected to different levels of
and the variance vaf(). We employ a measure of coher- noise input.(a) D=0; (b) D=10; and(c) D=25. Note a different time
ence proposed in Ref. 2, namely, scale in(a).

LD o

\/var(T,).

R measures the sharpness of the distributioif,of As seen
in Fig. 4(a), in the absence of noisg has a broad distribu-
t?on which will re_sult inR~1, while for D=4 the distribu- VIl. CONCLUSION
tion becomes unimodal, arRigets larger than 1. The results
of (T,) andR are shown in Fig. 11 as functions of the noise In this paper we have studied nontrivial effects of noise
intensity D, which is now extended to much larger valueson synchronization and coherence of chaotic neurons. Strong
than the threshold of synchronization. Synchronization isenough common noise input induces complete synchroniza-
found persistent even at very large noise intensity. The avetion of two identical neurons due to the existence of contrac-
age interspike interva|T,) decreases witlD. However,R  tion regions accompanying a saddle poitin the phase
increases, reaches a maximal value arobDrd12, and de- space. The noise input modifies significantly the motion
creases at largdd. This behavior is very similar to coher- close toS, which reduces the residence time in the neighbor-
ence resonance observed in excitable systems, with a  hood of S. In the absence of noise, this time is mainly de-
different mechanism. In excitable systefnapise induces termined by a slow motion along the weak unstable direc-
spiking by kicking the system over an energy barrier. Cohertions of S. As a result of this noise-induced modification, the
ence resonance is a result of the competition between twoompetition between contraction and expansion is altered, so
effects of noise, namelgi) at small intensity it alters mainly that synchronization occurs when the contraction becomes
the stochastic activation time from the potential well; &gind  dominant.
at large intensity, it also affects significantly the dynamics = We have also demonstrated that noise is able to induce
during the spiking, and induce strong fluctuation in the rephase synchronization in an ensemble of nonidentical neu-
fractory time. In the present system, the spike sequence i®ns, because the systems have high sensitivity to perturba-
generated by chaotic recurrence to the sa&dIl8mall noise tions close to the saddle point where the common noise input
mainly changes the time that the system takes to leave thmay dominate the dynamics over the nonidentity, even at an
neighborhood of5, and large noise also perturbs the systemintensity weaker than that for complete synchronization. The
strongly during the spiking. The competition between thesecollective response of an ensemble has a higher degree of
two effects results in coherence resonance. This mechanismliability to a repeated fluctuating stimulus compared to that
is also different from noise-induced coherent jumping amongf a single neuron. Weak coupling in the ensemble enhances
coexisting attractor& Figure 12 illustrates spike train pat- the sensitivity of the collective response to the stimulus.
terns at weak D=1), intermediate D=10), and strong The same mechanism leading to synchronization results
(D =25) noise intensities, where the interspike intervals arén enhanced coherence of the spike train. There exists an
the most regular fob = 10. optimal input amplitude where the interspike intervals be-
The coherence of the collective motidsh of an en- come the most regular. This mechanism of coherence reso-
semble of neuronguncoupled or coupleddisplays similar  nance is different from that in excitable systems.

features. A difference is that in a weak coupling regime,
rather weak input cannot generate spikedJin
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