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Noise-induced synchronization and coherence resonance of a
Hodgkin–Huxley model of thermally sensitive neurons

Changsong Zhoua) and Jürgen Kurths
Institute of Physics, University of Potsdam, PF 601553, 14415 Potsdam, Germany

~Received 18 March 2002; accepted 11 May 2002; published 21 February 2003!

We study nontrivial effects of noise on synchronization and coherence of a chaotic Hodgkin–
Huxley model of thermally sensitive neurons. We demonstrate that identical neurons which are not
coupled but subjected to a common fluctuating input~Gaussian noise! can achieve complete
synchronization when the noise amplitude is larger than a threshold. For nonidentical neurons, noise
can induce phase synchronization. Noise enhances synchronization of weakly coupled neurons. We
also find that noise enhances the coherence of the spike trains. A saddle point embedded in the
chaotic attractor is responsible for these nontrivial noise-induced effects. Relevance of our results to
biological information processing is discussed. ©2003 American Institute of Physics.
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Nontrivial effects of noise in nonlinear dynamical systems
have been a subject of great interest and importance, in
the context of stochastic resonance,1 coherence
resonance,2 and noise-induced synchronization.3 In par-
ticular, synchronization of chaotic dynamical systems by
a common random forcing is a topic of relevance to neu-
roscience. Experiments have demonstrated a remarkable
reliability of repetitive spike sequences in neocortical
neurons in response to repeated fluctuating stimuli,
which is a feature not observed in response to constan
input currents.4 This reliability is of importance for infor-
mation encoding by spike timing of neurons. The under-
lying mechanism, however, has not been addresse
clearly. In this contribution, we study synchronization be-
havior of a chaotic Hodgkin–Huxley model of thermally
sensitive neurons5 subjected to a common noise, and in-
vestigate the mechanism of noise-induced synchroniza
tion. We find that the existence of a saddle pointS in the
phase space plays an important role. Noise induces syn
chronization when the contraction close to the stable
manifold of S becomes dominant over the expansion clos
to the unstable manifold of S. We also investigate non-
identical neurons in terms of phase synchronization of
the spike sequences. In an ensemble of weakly couple
neurons, a common random forcing can enhance phas
synchronization among the elements. As a consequence
this enhanced synchronization, the ensemble establishes
higher degree of sensitivity in the collective response to
fluctuating stimuli. On the other hand, in the presence of
noise, the trajectory is prevented from staying close to the
saddle point for long time. This can generate much larger
spiking rates and reduce considerably the fluctuation of
the interspike intervals. We demonstrate that noise can
optimize the coherence of the spike trains. This mecha
nism of noise-induced synchronization and coherence
resonance is general in systems displaying spiking behav
ior due to a saddle point.

a!Electronic mail: cszhou@agnld.uni-potsdam.de
4011054-1500/2003/13(1)/401/9/$20.00
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I. INTRODUCTION

The subject of this contribution is at the borderline
two basic families of phenomena in nonlinear systems no
days attracting large interest: noise-induced effects and
chronization. Constructive effects of noise in nonlinear s
tems have been investigated extensively in the contex
stochastic resonance1 and coherence resonance.2 By stochas-
tic resonance, noise can optimize a system’s response t
external signal and induces stochastic phase synchroniza
to the external forcing.3 With coherence resonance, pu
noise without an external signal can generate the most co
ent motion in the system, as has been mainly observe
excitable systems.2

The study of coupled oscillators is one of the fundame
tal problems in nonlinear dynamics and has applications
various fields.6 Mutual synchronization is of great intere
and importance among the collective dynamics of coup
oscillators. The notion of synchronization has been exten
to include a variety of phenomena in the context of intera
ing chaotic oscillators, such as complete synchronizatio7

generalized synchronization,8 phase synchronization,9 and
lag synchronization.10

Noise influences synchronization in different ways.
complete synchronization of coupled chaotic systems, no
may induce intermittent loss of synchronization due to a
cal instability of the synchronization manifold.11 In phase
synchronization of coupled oscillators, noise can gene
phase slips in phase-locked periodic oscillators12 as well as
in chaotic ones.13

On the other hand, identical systems which are
coupled but subjected to a common noise may achieve c
plete synchronization at a large enough noise intensity, as
been demonstrated both in periodic14,15 and chaotic
systems.16,17For complete synchronization to occur, it is ne
essary that the largest Lyapunov exponent becomes neg
in the presence of noise.16,17 The circumstance that differen
systems are not or only weakly coupled but subjected t
common random forcing is of great relevance, especially
neuroscience. Different neurons commonly connected to
© 2003 American Institute of Physics
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other group of neurons receive a common input signal wh
often approaches a Gaussian distribution as a result of
gration of many independent synaptic currents. It is imp
tant to emphasize experimental observations of a remark
reliability of spike timing of animal neocortical neurons.4 In
these experiments, rat neocortical neurons are stimulate
input currents. When the input is a constant current, a neu
generates independent spike trains in repeated experim
with the same input. This is evidence that the constant in
when viewed as a control parameter has moved the ne
dynamics from a fixed point into a chaotic spiking regime.
contrast, when a Gaussian white noise is added to the
stant current, the neuron generates repetitive spike train
repeated experiments with the same fluctuating stimulus.
peatable firing means that a common synaptic current
duces complete synchronization in two identical neuro
with different initial conditions. This behavior is of grea
importance for signal encoding and transmission in the in
mation processing of neurons:~i! single neurons may faith
fully encode temporal information in the timing of succe
sive spikes,~ii ! a group of neurons can respond collective
to a common synaptic current due to synchronization.

The mechanism underlying such a remarkable no
induced synchronization of chaotic neurons, however,
not been clearly explained. In Ref. 15, synchronization
randomly driven nonlinear oscillators has been studied
terms of phase synchronization of the oscillators to the ph
of the external random forcing. This is useful for analyzi
synchronization of periodic oscillators subjected to a slow
fluctuating forcing. Unfortunately, typical noise sources th
arise in many situations are not of this case. Furthermore
approach in Ref. 15 cannot explain complete synchroniza
of two chaotic oscillators subjected to a common fluctuat
input. For example, chaotic Ro¨ssler oscillators can achiev
phase synchronization to a random forcing,18 but complete
synchronization of two identical chaotic Ro¨ssler oscillators
with a common random forcing has never observed.19 In
fact, whether noise can induce synchronization of cha
systems has been subjected to a strong controversy. In s
systems, noise with a nonzero mean value can induce
chronization but unbiased noise cannot,20 while in some
other systems, unbiased noise can also ach
synchronization.17 So far, the mechanism of noise-induce
synchronization is not completely understood. In particu
in what type of systems noise can induce synchronizatio
still an open problem.

In this contribution, we present a mechanism of noi
induced synchronization which occurs in systems display
spiking behavior, such as neurons. An important characte
tic of many biological,21 chemical,22 and physical
oscillators23 displaying spiking behavior is the existence o
saddle pointS in the phase space. In these systems, the o
comes back to a neighborhood ofS and slows down after
each or a burst of a few quick spikes away fromS. The
dynamics is characterized by rather regular orbits in
phase space and widely fluctuating time intervalsTI between
successive returns toS. In neuroscience, the significance
interspike intervalTI in biological information processing
has been discussed.4 It is important to note that this type o
ownloaded 02 Mar 2006 to 141.89.176.72. Redistribution subject to AIP lic
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systems has intrinsically a highly nonuniform dynamics a
the sensitivity to small perturbations is high only in the v
cinity of S. Hence, the basic geometrical structure of t
orbits is preserved, whileTI may be changed significantly, s
that information of the input may be encoded by the timi
of the spike train. In particular, a noise input may reduce
fluctuation of TI and enhance the coherence of spike
quences.

There is another feature that makes the system beha
nontrivial in the presence of noise input. Accompanying t
saddle pointS, there exists a contraction region close to t
stable manifold ofS, where nearby orbits converge temp
rally. There also exists an expansion region close to the
stable manifold ofS. The contraction region is essential fo
noise-induced synchronization. It is possible that noise al
the dynamics and makes the contraction dominant, so
systems with different initial conditions converge to an ide
tical response in the presence of a common random forc

We demonstrate these nontrivial effects of noise inpu
a chaotic Hodgkin–Huxley~HH! model of thermally sensi-
tive neurons possessing such a saddle point.5 Rather weak
noise can already induce synchronization, while stron
noise can optimize the coherence of the spike train patte

II. THE MODEL

A HH model of thermally sensitive neurons has be
proposed by Braunet al.5 which mimics various types o
spike train patterns observed in electroreceptors from dog
and catfish, and from facial cold receptors and hypothala
neurons of the rat.5,24 The model equations read

CM

dV

dt
52I l2I d2I r2I sd2I sr1Dj~ t !,

dar

dt
5

w~T!~ar`2ar !

t r
,

~1!
dasd

dt
5

w~T!~asd̀ 2asd!

tsd
,

dasr

dt
5

w~T!~2hI sd2uasr!

tsr
,

with

I d5r~T!gdad`~V2Vd!,

and

I k5r~T!gkak~V2Vk!, ~k5r ,sd,sr!,

where

ak`5@11exp~2sk~V2V0k!!#21, ~k5d,r ,sd,sr!

and

r~T!5A1
(T2T0)/10, w~T!5A2

(T2T0)/10.

HereV is the membrane potential, andI l is the leakage cur-
rent I l5gl(V2Vl); I d and I r are fast Hodgkin–Huxley cur-
rents representing Na and K channels.ak(k5r ,sd,sr) are
activation variables, andr(T) and w(T) are temperature-
dependent scaling factors. With this model, the class
ense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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Hodgkin–Huxley~HH! model,21 on the one hand, has bee
simplified, but on the other hand, has been extended by
additional slow currentsI sd and I sr according to the experi
mental findings of spike-independent oscillations.25

In numerical simulations, we employ the same set
parameter values as in Ref. 24, i.e.,gsd50.25 mS/cm2, gsr

50.4 mS/cm2, gd51.5 mS/cm2, gr52.0 mS/cm2, gl

50.1 mS/cm2, tsd510 ms, tsr520 ms, t r52.0 ms, ssd

50.09 m V21, sd50.25 m V21, ssr50.25 m V21, V0sd

5240 mV, V0d5225 mV, V0r5225 mV, Vsd5Vd

550 mV, Vsr5Vr5290 mV, Vl560 mV, h50.012, u
50.17. These parameter values yield a good agreemen
the model with experimentally observed temperature dep
dence of spike train patterns. The spike trains are chaoti
a broad range of temperatures~e.g., 7,T,13!. A more de-
tailed description of the model and a comparison with
experimentally observed temperature dependence of s
train patterns can be found in Refs. 5 and 24. In our stu
we consider Gaussian noisej(t) with zero mean value andd
correlation in time. The noisy equations are integrated us
a Heun algorithm26 with a time stepDt50.05 ms which is
rather small compared to the duration (;100 ms) of a single
spike.

In the chaotic spiking regime, the system possesse
unstable fixed point which has both stable and unstable
rections. Thus it is a saddle pointS. A trajectory starting
close to the stable directions will approach the neighborh
of S and leave it along the unstable directions. This sad
point S is embedded in the chaotic attractor, i.e., typical c
otic trajectory may have very close recurrence toS after a
burst of spikes. The eigenvalues corresponding to stable
rections, are real (l3,0,l4,0) and the eigenvalues corre
sponding to unstable directions are complex (l1,25m6 in),
and2l3,4.m,24 and the chaotic dynamics results from th
Shilnikov condition27 are a typical mechanism of chaot
spiking in neuron models.28 Close to the stable manifold,
large contraction region exists in the phase space where
largest local Lyapunov exponent is negative and nearby
jectories converge, while close to the unstable manifold,
largest local Lyapunov exponent is positive and nearby
jectories diverge. Since the eigenvalues satisfy2l.m, the
contraction rate is stronger than the expansion rate. It
been shown that this system exhibits a homoclinic bifur
tion, where the interspike interval becomes very long, wh
the control parameter temperatureT is varied.24

To manifest the change of local stability close to t
saddle point during the evolution of the neuron, we consi
the largest local Lyapunov exponentLt ,

Lt~ t !5
1

t
ln

udx~ t !u
udx~ t2t!u

, ~2!

whereudx(t)u is a small distance between two trajectories
the phase space at timet andt is a finite time.Lt measures
the average expansion or contraction rate during the fi
intervalt. In numerical simulations,Lt is calculated using a
standard method29 which integrates the variational~linear-
ized! equation of the neuron model Eq.~1! and computes the
largest exponent of the matrix solution of the lineariz
equation within every intervalt. Here we choset550 ms,
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which is about half of the duration of a single spike, but
much smaller than the average interspike intervalT
;400 ms. With thist value, quick and large changes o
local stability along the orbits during the spike have be
smoothed out considerably and we can see clearly
changes of the stability close to the saddle point where
orbits slow down.

A typical chaotic spike sequence of the neuron atT
510 ~without noise input! is shown in Fig. 1, along with the
largest local Lyapunov exponentLt . The neuron undergoe
bursts of spikes between successive returns to the neigh
hood ofS ~indicated by arrows in Fig. 1 close tot52.5 and
t54.5!. After a few ~3–5! successive spikes away fromS,
the orbit approachesS, and is guided by the stable manifol
as seen by negativeLt ; then it departs fromS following the
guidance of the unstable manifold for a long time, as ma
fested by small positiveLt . A single spike~e.g., close tot
53 andt55.5 in Fig. 1! follows this recurrence toS. Such
a single spike is well separated from the next burst of spik
because the orbit cyclesS and slows down aroundS. For
each spike,Lt is positive during the activation phase while
is negative during the relaxation phase. Such a spike t
pattern repeats, but the number of spikes within a burst
be different, and the intervalTI between the bursts and th
single spikes fluctuates strongly, depending on the close
of the recurrence to the saddle pointS. In the absence of
noise, the spike sequence is chaotic so that the largest g
Lyapunov exponent, which equals the time average of
largest local Lyapunov exponentLt , is positive, i.e.,l
5^Lt&.0.

Although the detailed spike train patterns may be diff
ent in other systems with a similar saddle point in the ph
space, the fluctuation of interspike intervals resulti
from the recurrence toS and the stability properties~coex-
istence of the contraction and expansion regions! are generic.
For these reasons, the response behavior to noise inpu
ported in this neuron model should be universal in this ty
of system.

FIG. 1. Spike train~a! and local Lyapunov exponent~b! of the chaotic
neuron atT510.
ense or copyright, see http://chaos.aip.org/chaos/copyright.jsp



o

-
-
ro
.

s
e

sit
l
ik

ed

th
n
a
ll

he

sig-
rge

ion
have
rate

id-
re

di-
r-

the
-
nt
i-
he

the
t
d.

in
hese
e
re-

he
is-

ces.
ith

tity,
Fig.

wo

t
rg

nt

404 Chaos, Vol. 13, No. 1, 2003 C. Zhou and J. Kurths

D

III. NOISE-INDUCED COMPLETE SYNCHRONIZATION
OF IDENTICAL NEURONS

In this section, we study complete synchronization
two identical chaotic neurons~V1 andV2 , with independent
initial conditions! which are linked only by a common
Gaussian noise inputj(t). We calculate the largest trans
verse Lyapunov exponentl as a function of the noise inten
sity D. In parallel, we compute the average relative synch
nization error E5^uV12V2u&/sV between both neurons
HeresV

2 is the variance ofV(t) over time, which increase
with D because a larger input generates a more frequ
spiking. It is seen in Fig. 2~a! that l undergoes a transition
from positive to negative values around the noise inten
Dc'3.5 pA/cm2. Beyond this critical point, two identica
neurons with the same input converge to an identical sp
sequence after a short transient~Fig. 3!, and the synchroni-
zation errorE vanishes@Fig. 2~b!, closed circles#. In the
synchronized regime, a single neuron~without parameter
drifts! will have perfect reliability in response to a repeat
fluctuating stimulus.

Note that in this system, the dynamics is sensitive to
noisy input close to the saddle point, while the spikes are
affected much. This property is of importance for biologic
information processing using spike trains which are we
defined even in the presence of a fluctuating input. In ot

FIG. 2. ~a! The largest Lyapunov exponentl and ~b! the relative synchro-
nization errorE ~closed circles for two identical neurons and squares for t
nonidentical neurons with a 5% difference of the leakage parametergl! vs
the noise intensityD.

FIG. 3. Synchronization of the spike trains of two identical neurons aD
54. The spike sequences started from different initial conditions conve
to an identical one after a short transient.
ownloaded 02 Mar 2006 to 141.89.176.72. Redistribution subject to AIP lic
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systems, the geometry of the dynamics may be distorted
nificantly by noise when synchronization is achieved at la
enough intensities.17

The synchronization behavior in this system~1! is deter-
mined by the competition between contraction and expans
in the phase space. Since the negative eigenvalues
larger amplitudes than the positive ones, the contraction
is larger than the expansion rate aroundS. In the presence of
a suitable level of noise, the orbits can still approachS and
experience contraction, while they cannot follow the gu
ance of the weakly unstable manifold for a long time. The
are two consequences of this result:~i! those long intervals in
the noise-free case resulting from following the unstable
rections and spiraling aroundS have been reduced conside
ably, as seen in Fig. 4~a! showing the distributions of the
interspike intervalsTI at D50 andD54; and ~ii ! the ex-
pansion degree is reduced correspondingly compared to
noise-free case. In Fig. 4~b! we have plotted the correspond
ing distributions of the largest local Lyapunov expone
Lt(t550 ms). AtD50, there is a high peak at small pos
tive Lt resulting from a long residence time close to t
unstable manifold. The peak becomes much lower atD54,
and on average the contraction becomes dominant over
expansion. As a result, the largest Lyapunov exponenl
5^Lt& becomes negative and synchronization is achieve

One should have noticed from Fig. 4~b! that even in the
synchronization regime, the expansion regions still exist
the phase space, and the orbits still have access to t
regions ~e.g., during the activation phase of each spik!.
Small distances between orbits grow temporally in these
gions. As a result, synchronization is lost intermittently in t
presence of additional perturbations due to parameter m
matches or discrepancies between the noisy driving for
This situation naturally occurs in repeated experiments w
the same neuron and driving signal. Due to this noniden
synchronization cannot be perfect. As demonstrated in
e

FIG. 4. ~a! Distribution of the interspike intervalTI at D50 ~solid line! and
D54 ~dotted line!; ~b! distribution of the largest local Lyapunov expone
at D50 ~solid line! andD54 ~dotted line!.
ense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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2~b! ~squares!, the relative synchronization errorE between
two nonidentical neurons with a 5% difference in the leaka
parametergl remains rather large even forD well beyond the
synchronization threshold. Nonidentity is typical in biolog
cal systems. In this context, in Sec. IV we study phase s
chronization of nonidentical neurons subjected to a comm
fluctuating input.

IV. PHASE SYNCHRONIZATION OF NONIDENTICAL
NEURONS

Synchronization of nonidentical oscillators has been
cently intensively studied in terms of phas
synchronization.9,10,30 It has been found for coupled chaot
systems that phase synchronization sets in at a much we
coupling strength compared to that for almost complete s
chronization.

In nonidentical neurons, the spike sequences canno
fully identical. However, since the neurons are sensitive
perturbation when the trajectories are close to the sa
point, the common input may dominate the dynamics a
generate similar spike train patterns in a period of time
spite of the nonidentity. To study this similarity in terms
phase synchronization, we define a phase variable for
spike train as31

f~ t !52pk12p
t2tk

tk112tk
, tk<t,tk11 , ~3!

wheretk is the time when thekth spike occurs, as detected
numerical simulations when the membrane potentialV ex-
ceeds a threshold of220 mV. In this definition, the spike
train is considered as a point process and each spike ge
tion is associated with a 2p phase increase. Phases betwe
two successive spikes are obtained by a linear interpolat
A phase defined in this way is a piecewise-linear function
time, and is closely related to the most important charac
istic, i.e., spike timing of the spike trains. Since the spik
are well defined even in the presence of quite large no
input, the phases of the spike trains can be computed with
much ambiguity. However, in a noisy system, phase lock
cannot be perfect, but rather many phase synchroniza
epochs may occur where phases are locked temporally,
then interrupted by rapid 2p phase slips. Phase synchroniz
tion can be detected by phase locking plateaus in the plo
phase differenceDf(t)5f2(t)2f1(t) between two neu-
rons. Another approach to detect phase synchroniza
among phase slips is to examine the distribution of the cy
phase differenceDcf5Df mod 2p.31 A peak in the distri-
bution exhibits a preferred phase difference12 between the
spike sequences of the two neurons.

In numerical simulations, we introduce a mismatch in
the leakage parametergl and keep the other parameters ide
tical. We first consider two neurons, withgl

150.1 for V1 and
gl

251.05gl
1 for V2 . With this parameter heterogeneity, th

first neuron has a larger average spiking rate in the abs
of a noisy input. The phases are not synchronized, as
from quick, random-like slips in the plot of the phase diffe
enceDf @Fig. 5~a!, D50 ~solid line!# and from the uniform
distribution of the cyclic phase differenceDcf @Fig. 5~b!#. In
ownloaded 02 Mar 2006 to 141.89.176.72. Redistribution subject to AIP lic
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the presence of a common noise input withD53, many
phase locking plateaus are observed and the distributio
the cyclic phase difference exhibits a sharp peak aro
Dcf50, indicating that there are many spikes having rat
reliable spike timing even though the systems are nonide
cal and the input is not strong enough to exceed the thres
of complete synchronization. These results illustrate tha
fluctuating input induces phase synchronization betw
nonidentical neurons.

The sharpness of the distribution of the cyclic phase d
ference reflects the degree of phase synchronization, w
can be quantified by the entropy of the distribution,31 i.e.,
H52( i 51

M pi ln pi , whereM is the number of bins. Normal
izing H into @0,1# by the maximal entropyHm5 ln M of the
uniform distribution, we obtain the phase synchronizati
index

rps5~Hm2H !/Hm . ~4!

The degree of phase synchronization is higher with lar
rps. In Fig. 6, we calculaterps along with the relative dif-
ference between the average spiking ratesv1 andv2 of the
two neurons, i.e.,

Dv52
uv12v2u
v11v2

. ~5!

It is seen thatDv decreases andrps becomes appreciably
nonzero and increases continuously whenD is larger than
Dps'2. Before Dps, the spike timing of the two neuron
keeps effectively independent. AfterDps, more and more
spikes are evoked with a small variability in the spikin
times ~a higher peak aroundDcf50 in the distribution of
the cyclic phase difference!.

Note that in repeated experiments, the input signal c
not be fully identical due to unavoidable intrinsic or enviro
mental noises. To take this discrepancy into account, we h
also considered the case that the noise inputs between
two neurons are correlated withC,1, whereC is the corre-
lation coefficient. WhileDv does not exhibit a clear depen

FIG. 5. Phase dynamics between two nonidentical neurons.~a! Phase dif-
ferences atD50 ~solid line! andD53 ~dotted line!; corresponding distri-
bution of cyclic phase difference atD50 ~b! andD53 ~c!.
ense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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dence onC when it is close to 1~results not shown!, a small
discrepancy increases the variability in spiking times a
reduces the degree of phase synchronization consider
@Fig. 6~b!# for a correlationC50.98. Phase synchronizatio
still occurs for D beyondDps, but rps decreases with de
creasing correlationC until it vanishes when the driving sig
nals become independent. These results demonstrate th
reliability of spike timing of the neurons in repeated respon
is robust to some extent with respect to changes in the
tem parameters and unavoidable perturbations~e.g., changes
of amplitudeD and correlationC! to the input signals, which
is meaningful for biological information processing.

In the following, we study the collective behavior of a
ensemble of nonidentical neurons subjected to a comm
noise input,

CM

dVi

dt
52I l2I d2I r2I sd2I sr1Dj~ t !, ~6!

which corresponds to the situation where a number of n
rons receive a fluctuating stimulus simultaneously. To ta
heterogeneity into account, the leakage parametersgl

i of the
i th neuron is assumed to be a random variable unifor
distributed in the range 0.13@12d,11d# with d50.05. We
first consider an ensemble ofN5200 neurons and comput
the frequency disordersv defined similar toDv , namely

sv5
^@v i2^v i&#2&1/2

^v i&
, ~7!

where^ & denotes the ensemble average.sv as a function of
noise intensityD is plotted in Fig. 8~a!, showing a noise-
enhanced phase synchronization behavior similar to tha
two neurons in Fig. 6~a!.

Now we divide the ensemble into two subensemb
with different numbers of neuronsN1590 andN25110. The
leakage parameters are independent in these two ensem
We focus on the mean fieldUk51/Nk( i 51

Nk Vi
k(k51,2) of the

two ensembles. In the absence of the noisy input,U1 andU2

fluctuate independently around a constant value@Fig. 7~a!#.
However, in the presence of a strong enough common n

FIG. 6. ~a! Relative frequency differenceDv between the two nonidentica
neurons with an identical input.~b! Phase synchronization indexrps for
identical noise input~closed circles! and nonidentical noise inputs~open
circles! with a correlationC50.98.
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input, bothU1 andU2 exhibit many spikes and become a
most identical@Fig. 7~b!# as a result of noise-induced syn
chronization. To quantify these changes, we calculate
fluctuation amplitudesUk

~standard deviation! of Uk , and
the relative difference betweenU1 and U2 as Eens5^uU1

2U2u&/AsU1
sU2

. sU1
and sU2

are almost the same fo
large enoughN1 and N2 . The results ofsU and Eens are
shown in Figs. 8~b! and 8~c!, respectively.sU increases
when larger input generates more spikes in the collec
motion by phase synchronization. The difference betwe
the meanfield of the two nonidentical ensembles decrea

FIG. 7. Mean fieldU of ensembles of nonidentical neurons.~a! Without
input D50, U1 ~solid line! andU2 ~dotted line! have small and independen
fluctuations around a constant value; and~b! with a common noise input
D54, U1 andU2 exhibit almost identical spike sequences~the dotted line is
not easily seen now!.

FIG. 8. ~a! Frequency disordersv of an ensemble ofN5200 nonidentical
neurons.~b! Amplitude sU of the mean fieldU of two independent en-
sembles withN1590 ~closed squares! andN25110 ~open squares!; and~c!
relative synchronization errorEens betweenU1 and U2 of the two en-
sembles.
ense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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quickly and vanishes effectively whenD.3. Compared to
the much larger synchronization errorE aroundD53 be-
tween two identical neurons or nonidentical ones@Fig. 2~b!#,
it is clear that the collective response of an ensemble
neurons has a higher degree of reliability to repeated flu
ating stimulus. In particular, the reliability is robust to p
rameter drifts and the number of neurons in the ensem
Since nonidentity is typical in neural systems, this enhan
reliability by collective response may be of relevance to b
logical information processing.

V. NOISE-ENHANCED PHASE SYNCHRONIZATION IN
WEAKLY COUPLED NEURONS

Neurons are often coupled and receive fluctuat
stimuli simultaneously. In this section we study the interp
between coupling and common noise input. We conside
ensemble of weakly globally coupled nonidentical neuron

CM

dVi

dt
52I l2I d2I r2I sd2I sr2e~Vi2U !1Dj~ t !, ~8!

where U is the mean field of the ensemble ande is the
coupling strength. This coupling scheme considered for
sake of simplicity in many theoretical investigations
coupled oscillators, however, may not be fully relevant
biological reality where transmission time of the spik
should be taken into account. The ensemble has distrib
leakage parametersgl

i as in Eq.~6!. To characterize phas
synchronization of the neurons, we compute the freque
disordersv and the amplitudesU of the collective motion
U. The results as a functions of the coupling strengthe are
shown in Fig. 9 for various noise input intensityD. In the
absence of noiseD50, there is a transition to perfect pha
synchronization among the neurons at a relative weak c
pling eps'0.043 mS/cm2. Beyond this critical point, the
mean fieldU exhibits spike train patterns similar to those
a single neuron. In weak coupling regimes, e.g.,e50.02, U
does not exhibit spikes but slow and weak oscillations@Fig.
10~a!# resulting from the slow currentsI sd and I sr in the
model@Eq. ~1!#. With a noisy input, the transition is smeare

FIG. 9. Frequency disordersv ~a! and amplitudesU ~b! of an ensemble of
N5200 globally coupled nonidentical neurons subjected to a common n
input.
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and phase synchronization is not perfect even for rat
strong coupling strength. However, in the weak coupling
gion, phase synchronization among the neurons is enha
significantly by a noisy input, quantified by a much smal
frequency disordersv and a much larger amplitudesU . sv

decreases andsU increases with increasing coupling streng
e. The collective response of the ensemble to a noise inpu
D53 is shown in Fig. 10~b! for e50.02. Compared to tha
in the ensemble of uncoupled neurons@e50, Fig. 10~c!#, it is
clear that weak coupling enhances the sensitivity of the c
lective response to a fluctuating stimulus, although in
absence of a noisy input, both ensembles exhibit no p
nounced macroscopic collective behavior.

Combined with the results for the uncoupled neurons
Sec. III, a collective response of weakly coupled~or effec-
tively uncoupled! neurons may be meaningful in biologica
information processing: without an input, the ensemble d
not show a macroscopic mean field, while in the presenc
a strong enough fluctuating input, it generates a collec
response. The reliability of the collective response is rob
to heterogeneity which is generic in biological systems.

VI. NOISE-ENHANCED COHERENCE OF SPIKE
TRAINS

We have observed that in the presence of a noise in
the spiking behavior is preserved in the neuron, however,
property of the interspike intervalTI has been altered signifi
cantly. Earlier, we have investigated synchronization of n
rons due to modified stabilities as a result of the change
the spike train patterns. In this section, we will concentr
on the coherence of the spike train of a single neuron.

se

FIG. 10. Mean fieldU of an ensemble ofN5200 nonidentical neurons.~a!
e50.02, D50; ~b! e50.02, D53; and~c! e50 andD53.
ense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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For each noise intensityD we collect a large number o
interspike intervalsTI and compute the average value^TI&
and the variance var(TI). We employ a measure of cohe
ence proposed in Ref. 2, namely,

R5
^TI&

Avar~TI !
. ~9!

R measures the sharpness of the distribution ofTI . As seen
in Fig. 4~a!, in the absence of noiseTI has a broad distribu
tion which will result inR'1, while for D54 the distribu-
tion becomes unimodal, andR gets larger than 1. The resul
of ^TI& andR are shown in Fig. 11 as functions of the noi
intensity D, which is now extended to much larger valu
than the threshold of synchronization. Synchronization
found persistent even at very large noise intensity. The a
age interspike interval̂TI& decreases withD. However,R
increases, reaches a maximal value aroundD512, and de-
creases at largerD. This behavior is very similar to coher
ence resonance observed in excitable systems,2 but with a
different mechanism. In excitable systems,2 noise induces
spiking by kicking the system over an energy barrier. Coh
ence resonance is a result of the competition between
effects of noise, namely~i! at small intensity it alters mainly
the stochastic activation time from the potential well; and~ii !
at large intensity, it also affects significantly the dynam
during the spiking, and induce strong fluctuation in the
fractory time. In the present system, the spike sequenc
generated by chaotic recurrence to the saddleS. Small noise
mainly changes the time that the system takes to leave
neighborhood ofS, and large noise also perturbs the syst
strongly during the spiking. The competition between the
two effects results in coherence resonance. This mecha
is also different from noise-induced coherent jumping amo
coexisting attractors.32 Figure 12 illustrates spike train pa
terns at weak (D51), intermediate (D510), and strong
(D525) noise intensities, where the interspike intervals
the most regular forD510.

The coherence of the collective motionU of an en-
semble of neurons~uncoupled or coupled! displays similar

FIG. 11. Average interspike interval^TI& ~a! and coherence factorR ~b! as
functions of noise intensityD.
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features. A difference is that in a weak coupling regim
rather weak input cannot generate spikes inU.

VII. CONCLUSION

In this paper we have studied nontrivial effects of no
on synchronization and coherence of chaotic neurons. Str
enough common noise input induces complete synchron
tion of two identical neurons due to the existence of contr
tion regions accompanying a saddle pointS in the phase
space. The noise input modifies significantly the moti
close toS, which reduces the residence time in the neighb
hood of S. In the absence of noise, this time is mainly d
termined by a slow motion along the weak unstable dir
tions ofS. As a result of this noise-induced modification, th
competition between contraction and expansion is altered
that synchronization occurs when the contraction becom
dominant.

We have also demonstrated that noise is able to ind
phase synchronization in an ensemble of nonidentical n
rons, because the systems have high sensitivity to pertu
tions close to the saddle point where the common noise in
may dominate the dynamics over the nonidentity, even a
intensity weaker than that for complete synchronization. T
collective response of an ensemble has a higher degre
reliability to a repeated fluctuating stimulus compared to t
of a single neuron. Weak coupling in the ensemble enhan
the sensitivity of the collective response to the stimulus.

The same mechanism leading to synchronization res
in enhanced coherence of the spike train. There exists
optimal input amplitude where the interspike intervals b
come the most regular. This mechanism of coherence r
nance is different from that in excitable systems.

FIG. 12. Spike train patterns of the neuron subjected to different level
noise input.~a! D50; ~b! D510; and~c! D525. Note a different time
scale in~a!.
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The mechanism presented here for a realistic HH neu
model should interpret the experimental observation of r
ability of spike timing of neurons and shed new light o
understanding biological information processing. The beh
ior, however, is not special for this neuron model. It is ge
eral for systems possessing a saddle point embedded
chaotic attractor in the phase space. In fact, we have
served noise-induced synchronization and coherence r
nance of a homoclinic chaos laser, both numerically a
experimentally.33
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