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Physical neural networks are promising candidates for next generation artificial intelligence hardware. In such archi-
tectures, neurons and connections are physically realized and do not leverage digital concepts with their practically
infinite signal-to-noise ratio to encode, transduce and transform information. They therefore are prone to noise with a
variety of statistical and architectural properties, and effective strategies leveraging network-inherent assets to mitigate
noise in an hardware-efficient manner are important in the pursuit of next generation neural network hardware. Based
on analytical derivations, we here introduce and analyse a variety of different noise-mitigation approaches. We analyt-
ically show that intra-layer connections in which the connection matrix’s squared mean exceeds the mean of its square
fully suppresses uncorrelated noise. We go beyond and develop two synergistic strategies for noise that is uncorrelated
and correlated across populations of neurons. First, we introduce the concept of ghost neurons, where each group of
neurons perturbed by correlated noise has a negative connection to a single neuron, yet without receiving any input
information. Secondly, we show that pooling of neuron populations is an efficient approach to suppress uncorrelated
noise. As such, we developed a general noise mitigation strategy leveraging the statistical properties of the different
noise terms most relevant in analogue hardware. Finally, we demonstrate the effectiveness of this combined approach
for trained neural network classifying the MNIST handwritten digits, for which we achieve a 4-fold improvement of
the output signal-to-noise ratio and increase the classification accuracy almost to the level of the noise-free network.

I. INTRODUCTION

During the past years, neural networks (NNs) have
provided solutions to previously unsolvable computing
problems1. Among others, these tasks include image recog-
nition and classification2,3, improvement of sound recordings,
speech recognition4 and prediction of climatic phenomena5.
The basic principle of NNs is signal propagation between
nonlinear neurons along connections according to some con-
nection coefficients or connection weights. Among the most
pressing objectives today is to implement NN topologies in
hardware that drastically reduces the energy consumption
compared to current NN hardware, and research activity along
these lines has lately exploded. Special purpose NN chips, i.e.
the newest generation of tensor and graphic processing units,
allow low (2-6 bit) resolution computing6.

Combined with the need for removing the von Neumann
bottleneck, the interest into low precision digital NN com-
puting actually suggest analogue implementations of NN,
i.e. in-memory computing leveraging computing with phys-
ical neural networks7,8, as promising substrates. At current
digital resolutions for NN computing, analogue implementa-
tions substantially profit from the favorable energy usage per
unit of information given by fundamental thermodynamics9.
Physical NNs target encoding a NN’s topology in a tun-
able analogue circuit, for example in electronic10–12 and
photonic systems13. Physical NNs leveraging lasers14–18,
and spin-torque oscillators19 as neurons have been demon-
strated. A physical NN’s connections have been realized using
holography20, diffraction21,22, integrated networks of Mach-
Zender modulators23, wavelength division multiplexing24,

and 3D printed optical interconnects25–27. Such, analog NN
hardware is fundamentally prone to noise, and previous works
provide strategies for reducing an analogue physical neuron’s
noise specific for the particular hardware28–32. Previously, we
derived analytical descriptions of noise propagation and po-
tential accumulation in deep NNs33,34. The analytic equations
describing the signal to noise ratio (SNR) at the output of a
physical NN identified the most relevant sources of noise as
well as strategies for effective noise suppression. Here, we
introduce and discuss several approaches of noise mitigation
that are tailored to mitigate the most relevant generic types of
noise. Importantly, individual strategies can be combined into
a general noise mitigation framework that is adjustable to the
particularities of a specific NN hardware architecture.

First, we discuss which sections of NNs are most affected
by particular noise types, which is followed by analytically
describing how one can leverage statistical properties of a
NNs connectivity matrices to reduce noise simply by means
of a noise-optimized topology. Next, we go beyond pure
statistics-based strategies and introduce ghost neurons. A
ghost neuron is a single neuron per layer that does not receive
any input, and whose output is subtracted from each neuron
in this layer in order to remove correlated additive noise. Fur-
thermore, we discuss the impact of pooling neuron popula-
tions within layers, i.e. combining several neurons receiving
the same input into one ’macro’ neuron. Averaging the out-
puts of its individual elements, the macro neuron has reduced
sensitivity to both types of uncorrelated noise. Finally, we ap-
ply the suggested noise mitigation techniques to reduce noise
in NN trained to recognize MNIST digits database, where we
achieve an excellent 4-fold suppression of noise at the final
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output layer of the 3 layer NN.

II. SYSTEM UNDER STUDY

Our work focuses on deep feed-forward neural networks
(FNNs). These are networks consisting of a linear input and
output layer, plus potentially several hidden layers, and in-
formation propagates strictly uni-directional from a preced-
ing to a following layer. A schematic illustration of such a
FNN is shown in Fig. 1(a). The input layer comprising I1
linear neurons receives input according to vector ~u(t), while
the output layer with I3 linear or nonlinear neurons provides
output vector ~y out(t). Here, we generally consider one hid-
den layer with I2 = 100 neurons with f (·) as their nonlinear
activation function. The connection topology between layers
n and (n+ 1) is captured by connection matrix Wn that is of
dimension In× In+1. Then the signals coming to neurons be-
longing to layer (n+1) are~an+1, and after activation function
they transform to the noise-less signals~xn+1:

~an+1 = Wn ·~yn, ~xn+1 = f (~an+1), (1)

where~yn is the noisy signal from layer n. If noise is turned off
then~yn =~xn

u(t)
y (t)out

I1

xn,1 yn,1

yn,2

yn,i

xn,2

xn,i

noise-less
output

noisy
outputW1 W2

I3I2=100

(a) (b)

...

uncorrelated
noise

correlated
noise

ξUn,1

ξUn,2

ξUn,i ξCn

FIG. 1. (a) Schematic representation of a feed-forward neural net-
work, and (b) how uncorrelated and correlated noise is introduced
into neurons.

Thus, we come to the main aspect of this article: the mit-
igation of noise and avoiding its accumulating as informa-
tion propagates to the physical NN’s output ~y out(t). Previ-
ously, we analytically captured the general impact of noise on
FNNs with linear33 and nonlinear neurons that were trained
with with error back propagation34. Here, we substantially ex-
tend our analysis and derive noise reduction strategies. Here,
noise is introduced identical as in33,34, and we include additive
and multiplicative noise, which are the most common types of
noise found in analogue hardware. The signals of noisy neu-
rons i in layer n are

yn,i = xn,i +
√

2DA ·ξ A
n,i(t) additive noise,

yn,i = xn,i · (1+
√

2DM ·ξ M
n,i(t)) multiplicative noise, (2)

where indices A and M indicate the noise type. ξ is the
white Gaussian noise source with zero mean and unity vari-
ance, whose variance is controlled by noise intensity D as

Var[
√

2D · ξn,i(t)] = 2D. We will denote E[·] as the expected
value and Var[·] as variance of a random variable. The ex-
pected value of neuron’s noisy output coincides with its noise
free value E[yn,i] = E[xn,i]. The variance of signal with addi-
tive or multiplicative noise is Var[yn,i] = 2DA +Var[xn,i] and

Var[yn,i] = 2DM ·
(

E2[yn,i] + Var[xn,i]
)

, respectively. With-
out noise-contamination in previous layers, both variances be-
come 2DA or 2DM ·E2[yn,i]

34.
Furthermore, noise can be correlated or uncorrelated across

numbers of neurons, such as all neurons in one layer. We use
indices ’C’ and ’U’ to label these two features, see schematic
illustration in Fig. 1(b). Combining all four noise types leads
to the general description for the output of the ith neuron in
layer n:

yn,i(t) =
√

2DC
Aξ

C,A
n (t)+

√
2DU

A ξ
U,A
n,i (t)+

xn,i(t) ·
(

1+
√

2DC
Mξ

C,M
n (t)

)(
1+
√

2DU
Mξ

U,M
n,i (t)

)
.

(3)

To characterize the noise level in numerical simulation, we
use SNR, calculated as a ratio between expected value of the
output signal and corresponding standard deviation or square
root of variance35: SNR[~yout] = E[~yout]/

√
Var[~yout]. In order

to numerically determine the SNR, we repeat the same input
signal K = 300 times to calculate mean and standard deviation
for each entry in the noise-less input sequence.

III. PRINCIPLES OF NETWORK TOPOLOGY AND
NOISE ACCUMULATION

A. Linear vs. nonlinear FNNs

Nonlinearity can have a significant impact on noise propa-
gation. In33, we showed that the FNN similar to Fig. 1(a) but
with only linear neurons results in SNR curves as in Fig. 2(a)
for additive (blue), multiplicative (orange) and mixed (green)
uncorrelated noise. For FNNs with nonlinear neurons34, the
SNR relationship intimately depends on particularities of the
nonlinear activation functions, see Fig. 2(b) unsing the same
color scheme. For both cases, the properties of mixed noise
(additive & multiplicative) is the superposition of both indi-
vidual dependencies. The main overall result was that corre-
lated noise accumulates stronger than uncorrelated noise. If,
for example, connections are global and highly uniform, un-
correlated noise is essentially suppressed through averaging
across the many connections.

B. Input and output layers

Highly relevant for a physical NN noise are its in and out-
put layers33,34. In particular for a single input neuron, i.e.
scalar input information, all noise present at the input drives
responses in the following layers, and can therefore not be
suppressed through averaging. Similarly, noise-suppression
through averaging along many network connections is impos-
sible at the FNN’s output, and noise in readout neurons is
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FIG. 2. SNR in two FNNs which are schematically shown in Fig. 1(a)
with one linear neurons in the input and output layers I1 = I3 = 1.
Neurons in hidden layer I2 = 100 are linear in panel (a) and nonlinear
with sigmoid activation function f (x) = 1/(1+ exp(−7(x− 0.5))).
Figures are prepared for additive (blue dots), multiplicative (orange)
and mixed (green) noise with intensities DU

A = 10−4, DU
M = 10−3

another major influence33. Placing relatively more resources
to reduce hardware noise in the input and output layer is
therefore an important guide of physical NN hardware de-
sign. However, such ’special’ in and output neurons might
not always be feasible or economic, or the attainable per-
formance might be not sufficient for particular settings. We
therefore propose several techniques that allow to further re-
duce noise accumulation without changing the properties of
neurons themselves.

C. Impact of intra-hidden layer connection topology

In34, we considered trained FNNs and developed the an-
alytical treatment enabling the accurate prediction of noise.
Importantly, our analytics show that accumulation of different
noise types is greatly influenced by the connection matrices’
statistics. Details of the analytical derivation can be found in
Appendix .

Noise propagation and accumulation is greatly influenced
by the squared mean

µ
2(Wn) =

( 1
InIn+1

∑
i, j

W n
i, j

)2
(4)

and the mean of the square

η(Wn) =
1

InIn+1
∑
i, j
(W n

i, j)
2 (5)

of connection matrix Wn. A hidden layer’s noise-induced
variance is determined by, both, noise in the current as well
as by noise coming from previous layers. The impact of cor-
related noise in the current layer scales according to

I2
n ·µ2(Wn), (6)

while the impact of uncorrelated noise and the noise from the
previous layer scales according to

In ·η(Wn), (7)

see Ref.34 and Appendix. There, by changing the statistics of
Wn, we can therefore greatly influence the accumulation of
noise.

Figure 3 shows the numerical results leveraging our find-
ings. Here, we focus on the relevant aspects by only consider-
ing a FNN schematically illustrated in Fig. 3. The layer con-
sists of I = 100 nonlinear neurons, and at each time iteration
they receive the same input signal u(t) randomly drawn from
the interval [0;1]. All neurons exhibit the same noisy addi-
tive and multiplicative noise that is in parts correlated as well
as uncorrelated, parameters are given in the caption of Fig. 3.
This noisy layer is connected to a single linear and noiseless
output neuron according to connection matrix W.

an(t)

yn+1(t)

W
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FIG. 3. SNR for different noise intensities and connection matrices
W. Blue dots show the SNR curves with only additive noise, while
orange dots are prepared for only multiplicative noise. The top panels
correspond to the matrix with Iµ2(W) > η(W), namely Iµ2(W) =
0.0103, η(W) = 1.44 · 10−3. The bottom panel correspond to the
opposite case when Iµ2(W) < η(W), namely Iµ2(W) = 0.0101,
η(W) = 0.0340. Noise intensities are DU

A = DC
A = 10−4, DU

M =

DC
M = 10−3, I = 100.

Figure 3 shows SNR curves for additive (blue) and multi-
plicative (orange) noise sources for two statistically different
connection matrices. For a matrix for which Iµ2(W)> η(W)
the accumulation of uncorrelated noise and noise from previ-
ous layers is effectively removed, see top panels in Fig. 3. On
the other hand, a matrix with Iµ2(W) < η(W) increases un-
correlated noise (bottom panels in Fig. 3), and the correspond-
ing SNRs become lower. These relations between matrices do
not influence correlated noise’s contribution, and for compa-
rable levels of correlated and uncorrelated noise, one will see
mainly the impact of correlated noise for Iµ2(W) > η(W)
and the one of uncorrelated noise if Iµ2(W)< η(W). An im-
portant conclusion is that if uncorrelated noise dominates, one
can simply leverage learning (optimization) algorithms that
force the system towards a topology with Iµ2(W)> η(W). A
common mechanism for inducing correlating noise is a noisy
power supply in a general sense. In electronics, this could be
the circuit stabilising Vdd , while in optics this could be a pump
or illumination source of photonic neurons. Since a general
system will only have very few of such components, it ap-
pears feasible that these should receive an increased attention
during the design stage.
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FIG. 4. Schematic representation, how the ghost neuron can be added
to the network with direct coupling (panel (a)). Panel (b) shows SNR
for the case without ghost neuron with only additive uncorrelated
noise (blue points), with both types of additive noise (green) and for
the case with one ghost neuron (orange color). Noise intensities are
DU

A = 10−4, DC
A = 10−3

IV. GHOST NEURONS FOR ADDITIVE CORRELATED
NOISE MITIGATION

Let us consider a FNN layer illustrated in Fig. 4(a) com-
prising of I = 100 nonlinear and noisy neurons. Each neuron
i receives input signal ai emulating a neuron’s input from the
previous layer. Then the output of neuron i including corre-
lated and uncorrelated additive noise is

yi = f (ai)+
√

2DC
AξC,A +

√
2DU

A ξ
U,A
i ,

Var[yi] = 2DC
A +2DU

A .
(8)

We now suppress additive noise and include an extra neuron
with identical noise properties. Importantly, this ghost neu-
ron receives no input, but simply mimics the noise within the
layer. The ghost neuron’s output is then simply subtracted
from each neuron’s output, before this value yi propagates to
the next later, which results in

yi =
(

f (ai)+
√

2DU
A ξ

U,A
i −

√
2DU

A ξ
U,A
g

)
,

Var[yi] = 4DU
A .

(9)

As can be seen from Eq. (9), a ghost neuron fully suppresses
correlated additive noise, yet the impact of uncorrelated addi-
tive noise is doubled. We confirm this in numerical simulation
shown in Fig. 4(b). However, as we showed before, uncorre-
lated noise can be suppressed leveraging coupling statistics,
in particular Iµ2(W) > η(W). Rather than simply subtract-
ing the ghost neuron’s values as in Fig. 4(a), we now assign
a weight to the ghost neuron’s connection Wg, Fig. 5(a). The
output transforms into

y =
In
∑
j=1

W n
j1

(
f (u)+

√
2DU

A ξ
U,A
n, j +

√
2DC

Aξ
C,A
n

)
+

Wg

(√
2DU

A ξ
U,A
g +

√
2DC

Aξ
C,A
n

)
,

(10)
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(a) (c)(b)
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FIG. 5. Noise mitigation with ghost neuron for the uniform coupling
schematically shown in the panel (a) and the SNR obtained in nu-
merical simulation for Wg = −1 (panel (b)). SNR is prepared for
the case without ghost neuron with only additive uncorrelated noise
(blue points), with both types of additive noise (green) and for the
case with one ghost neuron (orange color). Panel (c) shows noise
mitigation with ghost neuron for the uniform coupling shown de-
pending on the weight of the ghost neuron Wg. Noise intensities are
the same as in Fig. 4.

and the corresponding variance is

Var[y] =
In
∑
j=1

(W n
j1)

2 ·2DU
A +W 2

g ·2DU
A+( In

∑
j=1

W n
j1 +Wg

)2
·2DC

A ≈

2DU
A ·
(

W 2
g + Inη(Wn)

)
+2DC

A ·
(

Wg + Inµ(Wn)
)2

.

(11)

For the special case of a uniform connection matrix W n
j1 =

1/In, the variance transforms to

Var[y] = 2DU
A ·
(

1
In
+W 2

g

)
+2DC

A ·
(

1+Wg

)2
. (12)

However, according to Eqs. (11,12), Wg impacts correlated
and uncorrelated noise differently. The multiplier of un-
correlated noise

(
W 2

g + Inη(Wn)
)

shows that a ghost neu-
ron increases the corresponding variance. The multiplier of

correlated noise
(

Wg + Inµ(Wn)
)2

indicates that if Wg =

−Inµ(Wn) or Wg = −1 for uniform connectivity, then corre-
lated noise is fully suppressed. Figure 5(b) numerically shows
the case Wg =−1, which completely suppresses correlated ad-
ditive noise, but at the same time increases uncorrelated noise.
As a consequence, one needs to optimize Wg in function of the
different noise amplitudes. Figure 5(c) shows the averaged
ratio between SNRs obtained with and without ghost neuron
depending on its weight Wg. Three types of noise are consid-
ered: additive uncorrelated noise (orange), additive correlated
noise (gray) and both noise types (black). The best overall
performance can be achieved when Wg =−1.

V. POOLING. UNCORRELATED NOISE REDUCTION

In this section we discuss a common strategy to reduce un-
correlated noise without constraining connections W. This
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method consists of combining several neurons into a distinct
subgroups called pools. Each unit inside a pool of m neurons
receives the same input, see In Fig. 6(a). The combined and
hence averaged output signal of a pool is transmitted to the
next layer. Each kth neuron of the ith group receiving the in-
put signal ai, has its own output value yi,k including noise and

each group produces the averaged output ypool
i = 1

m

m
∑

k=1
yi,k. We

used m = 3 in Fig. 6(a).
For uncorrelated additive and multiplicative noise, the vari-

ance of the corresponding output without pooling is33

Var[y j] = 2DU
A +2DU

M ·E2[y j]. (13)

Using a pool with m neurons then results in

Var[ypool
i ] = Var

[
1
m

m
∑

k=1
yi,k

]
= 1

m2 ·Var
[

m
∑

k=1
yi,k

]
=

1
m2 ·

m
∑

k=1

(
2DU

A +2DU
M ·E2[yi,k]

)
=

1
m ·
(

2DU
A +2DU

M ·E2[yi]
)
,

(14)

as the variance of the ith neuron pool output. Comparing
Eqs. (13, 14), one can see that average pooling reduces the
variance of uncorrelated additive and multiplicative noise m
times, while the SNR improves by

√
m. Figure 6 shows the

SNR for additive and multiplicative noise separately (panels
(b) and (c), respectively) and for the mixed uncorrelated noise
(d).
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a2
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y1

y2

yi

(a) (b) additive uncorr. noise

(d) mixed uncorr. noise(c) multiplicative uncorr. noise

... ...
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FIG. 6. Scheme of noise mitigation with average pooling (a) and im-
provement of SNR due to pooling technique (b–d). Noise intensities
are DU

M = 10−3, DU
A = 10−4.

VI. COMBINING BOTH TECHNIQUES

Ghost neurons therefore remove correlated additive noise,
while uncorrelated noise can be addressed using average pool-
ing. Crucially, both concepts can be combined, and Fig.

7(a) illustrates the corresponding architecture, while panel (b)
shows the SNR using average pooling in the case of, both, ad-
ditive correlated and uncorrelated noise. Comparing Fig. 6(a)
and Fig. 7(b), one can see the deteriorating effect of pooling
when correlated noise is present. However, adding a ghost
neuron substantially improves the situation, see Fig. 7(c).

(a) (b) (c)

no optimization
pooling with m=2
pooling with m=4

0 0.5 1
mean output

0

25
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75

100

SN
R

0 0.5 1
mean output

with ghost neuronsno ghost neuronsa1

a2

ai

y1

y2

yi
... ...

+

+

+

ghost
neurons

FIG. 7. Scheme of noise mitigation with combined pooling ghost
neuron technique (a) and improvement of SNR due to only pooling
(b) and combined (c) techniques for additive correlated an uncorre-
lated noise. Noise intensities are DU

A = DC
A = 10−4.

VII. APPLICATION TO TRAINED NETWORK

In this section we apply the described above techniques
to trained FNN. The noise-free network is trained to recog-
nize MNIST handwritten digits from36 using the open-source
python software library Keras37, using a network consisting
of three layers whose connections where optimized with stan-
dard error back propagation. The first layer receives the input
image’s 28× 28 pixels. The hidden layer has 100 nonlinear
neurons with sigmoid activation function f (x) = 1

1+e−x , and
the ten possible digits results in 10 nonlinear neurons with
the same activation function in the hidden layer. The net-
work’s classification result is given by the output neuron with
the largest value. With our proof-of-concept NN, we obtain
a classification accuracy of 97.54% for the test data without
noise.

Figure 8(a), green shows the SNR in the output layer for
500 randomly drawn digits without any noise mitigation strat-
egy for DU

A = 10−4 and DC
A = 10−3. Figure 8(a) shows the

ghost neuron’s impact when applied only in the final (blue
data) as well as in all layers (orange data) with Wg = −1.
Again, we can see that mitigation of noise in the final layer
is the most relevant. Secondly, we test pooling in a trained
network with uncorrelated additive and multiplicative noise
with noise intensities DU

A = 10−4 and DU
M = 10−3. The SNR

without (m = 1, green data) and with average pooling (m = 2
for blue data and m = 4 for orange data) is shown in Fig. 8(b).
However, we found almost no difference between pooling in
all layers or only in the final one, which is because the strong
suppression of uncorrelated noise by a densely connected net-
work consequence of training, for which Iµ2(W) > η(W).
We numerically confirmed that the SNR in our trained net-
work is improved by a factor

√
m for m = 2 and m = 4.
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FIG. 8. Noise reduction in FNN trained for MNIST digits recogni-
tion. Green dependencies in panels (a,b) are prepared without any
noise reduction, and demonstrate the SNR of the output FNN signal.
Panel (a) shows the noise reduction in trained network with addi-
tive uncorrelated DU

A = 10−4 and correlated DC
A = 10−3 noise using

ghost neuron. Panel (b) demonstrates uncorrelated noise reduction
with intensities DU

A = 10−4 and DU
M = 10−3 using pooling method

with m = 2 and m = 4. Panel (c) shows the result combining both
techniques for additive noise DU

A = 10−4, DC
A = 10−3.

Finally, Fig. 8(c) shows the SNR for combination of both
techniques of ghost neuron in the last layer and pooling
with m = 4 for FNN with additive noise DU

A = 10−4, DC
A =

10−3. Panel (c) demonstrates SNR with combined optimiza-
tion (blue) and without it (orange), providing maximum SNR
values 100 and 25, respectively. Thus, combining technique
leads to a 4-fold SNR improvement and consequently a 16-
fold variance reduction.

All previous conclusions regarding the improvement of the
noisy FNN were made with respect to SNR. However, the
accuracy is more important characteristics for classification
and recognition tasks. For the noise-free FNN it is 97.54%,
while it drops to 92.97% for noisy FNN with additive noise
DU

A = 10−4, DC
A = 10−3 . Using the combined technique form

the previous paragraph, the accuracy can be improved slightly
to 93.1%. Meanwhile, the best performance can be achieved
when using adaptive ghost neuron weights depending on ma-

trices statistics: W n
gi = −

In
∑
j=1

W n
i j. If these ghost neurons are

added to every layer optimized with pooling, then the range
of SNR values remains the same as in Fig. 8(c), but the ac-
curacy becomes 97.49%, which much closer to the noise-free
FNN.

VIII. CONCLUSIONS

We have proposed several noise reduction strategies specif-
ically leveraging our previous analytical insights obtained
in33,34, mitigating uncorrelated noise and additive correlated
noise. First, we show how the the particular statistics of con-
nection matrices allow the mitigation of particular noise types.
Such strategies can be used to amend optimization (learning)
algorithms. We go beyond and introduce two complementary
techniques of the case when statistics of intra-layer connec-
tions cannot be modified. Correlated additive noise can be
removed using ghost neurons, while average pooling works

well for, both, uncorrelated additive and multiplicative noise
without impacting correlated noise. Furthermore, we show
how both techniques can be combined to form a comprehen-
sive topology to suppress noise on a physical NN’s hardware
level. All above techniques were successfully applied to a NN
for MNIST handwritten digit recognition, where they showed
a reduction in the noise level in agreement to our analytical
descriptions and almost complete noise suppression in terms
of network accuracy.
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Appendix: Importance of connection matrices statistics

In order to illustrate the accumulation of noise, let us con-
sider the vector of signals coming from noisy layer n to
(n+1):

~an+1 = Wn ·~yn, or an+1,i =
In

∑
j=1

W n
i j · yn, j. (A.1)

According to nomenclature of the main part of article, this
value further transforms to ~xn+1 = f (~an+1) after activation
function and finally to~yn+1 after the noise impact.

Substituting the noise to yn, j, Eq. (A.1) transforms to

an+1,i =
In
∑
j=1

W n
i j ·
(√

2DC
Aξ

C,A
n +

√
2DU

A ξ
U,A
n, j

)
+

In
∑
j=1

W n
i jxn, j ·

(
1+
√

2DC
Mξ

C,M
n

)(
1+
√

2DU
Mξ

U,M
n, j

)
.

(A.2)

All terms and multipliers of correlated noise do not depend on
index j and they can be therefore moved out of sums:

an+1,i =
√

2DC
Aξ

C,A
n ·

In
∑
j=1

W n
i j +

√
2DU

A ·
In
∑
j=1

W n
i jξ

U,A
n, j

+
(
1+
√

2DC
Mξ

C,M
n
)
·

In
∑
j=1

W n
i jxn, j

(
1+
√

2DU
Mξ

U,M
n, j

)
.

(A.3)

The variance of this noisy signal will be determined based on
the basic arithmetic principles of calculating the variance of
random variables38 such as:

Var[c ·ξ ] = c2 ·Var[ξ ]; Var[ξ + c] = Var[ξ ];
Var[ξ ±ζ ] = Var[ξ ]+Var[ζ ];

Var[ξ ·ζ ] =
(
E2[ξ ]+Var[ξ ]

)
Var[ζ ]+E[ζ ]Var[ξ ],
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where ξ and ζ are some uncorrelated random variables, c is
some constant or noise-free variable. Then the variance of
Eq. (A.3) is

Var[an+1,i] = 2DC
A

( In
∑
j=1

W n
i j

)2
+2DU

A

In
∑
j=1

(
W n

i j
)2
+(

1+2DC
M
)
·Var

[ In
∑
j=1

W n
i jxn, j

(
1+
√

2DU
Mξ

U,M
n
)]
+

2DC
M ·E2

[ In
∑
j=1

W n
i jxn, j

(
1+
√

2DU
Mξ

U,M
n
)]

=

2DC
A

( In
∑
j=1

W n
i j

)2
+2DC

M ·
( In

∑
j=1

W n
i jE[xn, j]

)2
+

2DU
A

In
∑
j=1

(
W n

i j
)2

+2DU
M
(
1+2DC

M
) In

∑
j=1

(
W n

i j
)2E2[xn, j]

+
(
1+2DC

M
)(

1+2DU
M
)
·

In
∑
j=1

(
W n

i j
)2Var[xn, j].

For simplification, we assume that
In
∑
j=1

(
W n

i j
)2 ≈ In · η(Wn)

and
( In

∑
j=1

W n
i j

)2
≈ I2

n · µ2(Wn), where η(·) is the mean of the

square and µ(·) is the mean (see Eqs. (4,5), main text). Then

Var[an+1,i]≈ 2DC
A · I2

n µ2
(
Wn
)
+2DU

A · Inη
(
Wn
)
+

2DC
Mµ2

(
E[~xn]

)
· I2

n µ2
(
Wn
)
+

2DU
M(1+2DC

M)η
(
E[~xn]

)
· Inη

(
Wn
)
+

(1+2DC
M)(1+2DU

M)η(Wn) ·Var[~xn].

(A.4)

We will not go into detail about the last term of Eq. (A.4) as it
is not the subject of this article, and it has been described and
analyzed in Ref.34. It is clearly seen, that all rest terms with
I2
n µ2

(
Wn
)

are related to correlated noise as:

I2
n µ

2(Wn) ·{2DC
A +2DC

M ·µ2(E[~xn]
)}

, (A.5)

while terms with Inη
(
Wn
)

are

Inη
(
Wn) ·{2DU

A +2DU
M
(
1+2DC

M
)
·η
(
E[~xn]

)}
. (A.6)

Comparing Eqs. (A.5) and (A.6) one can see that if
Inµ2

(
Wn
)
> η

(
Wn
)
, then the impact of uncorrelated noise

is less than the correlated noise when noise intensities are the
same DU

A = DC
A, DU

M = DC
M .
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