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Abstract

Using printed photograph and replaying videos of bio-

metric modalities, such as iris, fingerprint and face, are

common attacks to fool the recognition systems for granting

access as the genuine user. With the growing online person-

to-person shopping (e.g., Ebay and Craigslist), such attacks

also threaten those services, where the online photo illustra-

tion might not be captured from real items but from paper

or digital screen. Thus, the study of anti-spoofing should be

extended from modality-specific solutions to generic-object-

based ones. In this work, we define and tackle the problem

of Generic Object Anti-Spoofing (GOAS) for the first time.

One significant cue to detect these attacks is the noise pat-

terns introduced by the capture sensors and spoof mediums.

Different sensor/medium combinations can result in diverse

noise patterns. We propose a GAN-based architecture to

synthesize and identify the noise patterns from seen and un-

seen medium/sensor combinations. We show that the proce-

dure of synthesis and identification are mutually beneficial.

We further demonstrate the learned GOAS models can di-

rectly contribute to modality-specific anti-spoofing without

domain transfer. The code and GOSet dataset are available

at cvlab.cse.msu.edu/project-goas.html.

1. Introduction

Anti-spoofing (i.e., spoof detection) is a long-standing

topic in the biometrics field that empowers recognition sys-

tems to detect samples from spoofing mediums, e.g., printed

paper or digital screen [2, 6, 8, 26]. A similar concern may

appear in online commerce websites, e.g., Ebay, Craigslist,

which provide services to enable direct user-to-user buying

and selling. For instance, when purchasing, a customer may

wonder, “Is that a picture of a real item he owns?” This sce-

nario motivates a broader problem of anti-spoofing:

Given an image of a generic object, such as a cup

or a desk, can we automatically classify if this

was captured from the real object, or through a

medium, such as digital screen or printed paper?

Figure 1. Similarly to biometric anti-spoofing, GOAS determines

if an image of an object is captured from the real object or through

spoof mediums. Anti-spoofing algorithms can be sensitive to

device-specific noises. Given the challenge of capturing spoof data

with full combinations of sensors/mediums, we synthesize spoof

images at any combination (marked as X), which benefits GOAS.

We define this problem as Generic Object Anti-Spoofing

(GOAS). With the wider variety of objects, there are richer

appearance variations and greater challenges in GOAS, as

shown in Fig. 1, compared to individual biometric modal-

ities. Successful solutions [2, 8, 23, 26, 27, 30, 31, 33] for

modality-specific anti-spoofing are likely ineffective for

GOAS. We find that capture sensors and spoofing mediums

bring certain texture patterns (e.g., Moiré pattern [32]) to all

captured images, regardless of the content. These patterns

are often low-energy and regarded as “noise”. However,

they are ubiquitous and consistent, since they result from

the physical properties of the sensors/mediums and envi-

ronmental conditions, such as light reflection. We believe

a proper modeling of such noise patterns will lead to effec-

tive solutions for GOAS and may contribute to modality-

specific anti-spoofing tasks. In this work, we study the fun-

damental low-level vision problem of modeling, synthesiz-

ing, and classifying the noise patterns for tackling GOAS.

Modeling noise patterns is a promising, yet challenging,

approach for GOAS. In [9,10,39], the camera model identi-
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fication problem is studied for the purpose of digital foren-

sics. The properties of different capture sensors are exam-

ined thanks to the assistance of databases, such as PRNU-

PAR Dataset [22] and Dresden Image Database [20]. Re-

lated topics such as noise pattern removal [1] and noise pat-

tern modeling for face modality [23] are also investigated.

The authors of [42] show that simple synthesis methods for

data augmentation are beneficial for the anti-spoofing task.

These prior works provide a solid base to begin the study of

GOAS. Meanwhile, we still face three major challenges:

Complexity of spoof noise patterns: The noise patterns

in GOAS are related to both sensor and medium, as well as

their interaction with the environment. First, it’s hard to

model the interaction mathematically. Second, the noises

are “hidden” under large appearance variations, thus even

more untraceable. Additionally, each physical device has

a unique fingerprint, though these fingerprints are similar

within the same device models as shown in [19, 21].

Insufficient data and lack of strong labels: Unlike

many other computer vision tasks, spoof data for anti-

spoofing cannot be collected from the Internet. More-

over, strong labels, e.g., pixel-wise correspondence between

spoof images and ground truth live images, is extremely dif-

ficult to obtain. The constant development of new sensors

and spoof mediums further complicates the data collection,

and increases the difficulty of learning a CNN that is robust

to these small, but significant variations [5].

Modality dependency: Current anti-spoofing methods

are designed for a specific modality, e.g., face, iris, or fin-

gerprint. These solutions cannot be applied to a different

modality. Thus, it is desirable to have a single anti-spoofing

model applicable to multiple modalities or applications.

To address these challenges, we propose a novel Gen-

erative Adversarial Network (GAN)-based approach for

GOAS, consisting of three parts: GOGen, GOLab, and

GoPad. GOGen is a generator network, which learns to

convert a live image to a spoof one given a target known or

unknown sensor/medium combination. GOGen allows for

synthesis of new images with specific combinations, which

helps to remedy insufficiency and imbalance issues in train-

ing data, such as the long tail problem [43]. GOLab serves

as a multi-class classifier to identify the type of sensor and

medium as well as live vs. spoof. GoPad is a binary clas-

sifier for GOAS. The three parts in this design, including

the synthesis procedure and multi-class identification, con-

tribute to our final goal of GOAS. To properly train such a

network, three novel loss functions are proposed to model

the noise pattern and supervise the training. Furthermore,

we collect the first generic object dataset (GOSet) to con-

duct this study. GOSet involves 7 camera sensors, 7 spoof

mediums, and other image variations.

To summarize, the contributions of this work include:

⋄ We identify and define the new problem of GOAS.

⋄ We propose a novel network architecture to synthesize

unseen noise patterns that are shown to benefit GOAS.

⋄ A generic object dataset (GOSet) is collected and con-

tains live and spoof videos of 24 objects.

⋄ We demonstrate SOTA generalization performance

when applying GOSet trained models to face anti-spoofing.

2. Prior Work

While there is no prior work on GOAS, we review rele-

vant prior work from three perspectives.

Modality-specific anti-spoofing: Early works [6,8] per-

form texture analysis via hand-crafted features for anti-

spoofing. [2] utilizes a patch-based CNN and score fusion

to show that spoof noise can be detected in small image

patches. Similarly, [15] uses minutiae to guide patch se-

lection for fingerprint anti-spoofing. Rather than detect-

ing spoof noise, [23] attempts to estimate and remove the

spoof noise from images. Cue-based methods incorporate

domain knowledge into anti-spoofing, e.g., rPPG [25, 26],

eyeblinks [30], visual rhythms [3, 16, 18], paired audio

cues [12], and pulse oximetry [34]. A significant limita-

tion is that each modality is domain specific; an algorithm

developed for one modality cannot be applied to the others.

The closest approach to cross domain is [28], via transfer

learning to fine-tune on the face modality. Our work im-

proves upon these by utilizing generic objects, and there-

fore is forced to be content independent. Further, we learn

a deep representation for the spoof noise of multiple spoof

mediums, and show that these noises can be convolved with

a live image to synthesize new spoof images.

Noise patterns modeling: Modeling or extracting noise

from images is challenging, since there is no canonical

ground truth. Hence some works attempt to estimate the

noise via assumptions about the physical properties of

the sensors and software post-processing of captured im-

ages [38, 39]. With these assumptions, ensemble classi-

fiers [9], hand-crafted feature based classifiers [38, 39], and

deep learning approaches [22] are proposed to address cam-

era model identification. Following these, we assume that

the sensor noise is image content independent. However,

we not only classify the noise in an image, but also learn a

noise prototype for each sensor that can be convolved with

any image to modify its “noise footprint”. We also address

the challenge of spoof medium noise modeling and classi-

fication. [23] estimates the spoof noise on an image, but

is limited to face images and estimates the noise per im-

age. Hence we extend both camera model identification

and spoof noise estimation works by combining both tasks

within a single CNN, and by modeling a generalized repre-

sentation of both the sensor and medium noises.

Image manipulation and synthesis: GANs have gained

increasing interest for style transfer and image synthesis

tasks. Star-GAN [14] utilizes images from multiple do-
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Figure 2. The overall framework of training GOGen. Live images are given to the generator to modify either the sensor or spoof noise. The

resulting image is classified by the GOLab discriminator to supervise the generated images. An additional discriminator is used to ensure

the generated images remained visually appealing and realistic. In each section of the figure, only the solid-colored network is updated in

that training step. We alternate between training GOGen in one step and GOLab and GODisc in the next step. Input one-hot vectors are

used as a mask to select the appropriately learned noise map, which is then concatenated to the input image.

mains and datasets to accurately manipulate images by

modifying attributes. [44] attempts to ensure high-fidelity

manipulation by requiring the generator to learn a mapping

such that it recreates the original image from the synthetic

one. The work in [29] shows that it is possible to condition-

ally affect the output of a GAN by feeding an extra label,

e.g., poses [40]. Here, we propose a GAN-based, targeted,

content independent, image synthesis algorithm (GOGen)

to alter only the high-frequency information of an image.

Similarly, image super-resolution [11, 17, 36, 37] is used

to improve the visual quality and high-frequency informa-

tion in an image. [24] uses a laplacian pyramid structure to

convert a low-resolution (LR) image into a high-resolution

(HR) one. [35] estimates an HR gradient field and uses it

with an upscaled LR image to produce an HR one. While

super-resolution produces high-frequency information from

low-frequency input, our GOGen aims to alter the existing

high-frequency information in the input live image, which

is particularly challenging given its unpredictable nature.

3. Proposed Methods
In this section, we present the details of the proposed

methods, including GOGen, GODisc, and GOLab. As

shown in Fig. 2, the overall framework adopts a GAN ar-

chitecture, which is composed of a generator (GOGen) and

two discriminators (GODisc and GOLab). GOGen synthe-

sizes additional spoof videos of any combination of sensor

and medium, even unseen combinations. GODisc is the dis-

criminator network to guide images from GOGen to be vi-

sually plausible. GOLab performs sensor and medium iden-

tification. In addition, GOLab serves as the module to pro-

duce a final spoof detection score. We also present GOPad,

which is adapted from a traditional binary classifier used by

previous anti-spoofing works, to compare with the proposed

method. To prevent overfitting and increase the quantity of

training data, the input for the networks are image patches

extracted from the original images.

3.1. GOGen: Spoof Synthesis

In anti-spoofing, the increasing variety of sensors and

spoof mediums creates a large challenge for data collec-

tion and generalization. It is increasingly expensive to col-

lect additional data from every combination of camera and

spoof medium. Meanwhile, the quantity, quality, and diver-

sity of training data determine the performance and impact

the generalization of deep learning algorithms. Hence, we

develop GOGen to address this need for continual data col-

lection via synthesis of unseen combinations.

We train GOGen to synthesize new images of un-

seen sensor/medium combinations using knowledge learned

from known combinations. When introducing a new device,

GOGen can be trained with minimal data from the new de-

vice while utilizing all previously collected data from other

devices. The generator, CNNGen(), converts a live image

into a targeted spoof image of a specified spoof medium

captured by a specified sensor. Specifically, the inputs of

the generator are a live image I ∈ R
H×W and two one-hot

vectors specifying the sensor of the output image ac ∈ R
nc ,

and the medium through which the output would be cap-

tured am ∈ R
nm . The output is a synthetic image Î.

One key novelty in GOGen is the modeling of the noise

from different sensors and spoof mediums. We assume

the sensor and medium noises are image independent since

they are attributed to the hardware, while the noise on

an image is image dependent, due to interplay between

the sensor, medium, image content, and imaging environ-

ment. To model such interplay, we denote a set of image-

independent latent noise prototypes for all types of sensors
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Figure 3. GOGen learns noise prototypes of sensors Mc (row 1)

and spoof mediums Mm (row 2). Rows 3 and 4 shows the 2D FFT

power spectrum of noise prototypes in rows 1 and 2, respectively.

Mc ∈ R
H×W×nc , and mediums Mm ∈ R

H×W×nm . In the

training, using input one-hot vectors, ac and am, we select

the noise prototypes for the specific sensor-medium combi-

nation, Nc,Nm ∈ R
H×W , via:

Nc =

nc∑

i=1

aicMi

c, Nm =

nm∑

i=1

aimMi

m. (1)

Then, we concatenate I, Nc and Nm as T = [I,Nc,Nm]
and feed T to the generator. With this concatenated input,

through convolution the generator mimics the interplay be-

tween the image content I, and the learnt Nc and Nm, to

generate a device-specific, image-dependent, synthetic im-

age. By manipulating only the sensor or the medium at a

time, we are able to supervise either of Mc or Mm indepen-

dently. In this manner, any combination from the learned

Nc and Nm are used together to produce the noise for a syn-

thetic image, even from unseen combinations.

We hypothesize that by integrating the noise representa-

tion as part of the GOGen, via backpropagation, we should

be able to learn latent noise prototypes that are specific to

the device but universal across all images captured by that

device. Such representations will enable GOGen to bet-

ter synthesize images under many (nc × nm) combinations

of sensors and mediums. We show the learned sensor and

medium noise prototypes in Fig. 3. After the input image

and noise prototypes are concatenated, they are fed to 8
convolution layers to synthesize spoof images. The detailed

network architecture of GOGen is shown in Tab. 1.

Since the additional spoof noise should be low-energy,

an L2 loss is employed to minimize the difference between

the live image and the image synthesized by the generator.

This loss helps to limit the magnitude of the noise:

JVis = ‖I− CNNGen(T)‖2
2
. (2)

Table 1. Network architectures of GOGen, GOLab, and GODisc.

Resizing is done before concatenation if required. Reshaping is

done before the fully connected layers at the end of the GOLab and

GODisc networks. All strides are of length 1. All convolutional

kernels are of size 3×3, except for Conv0 in Golab and GOPad,

which have size 5×5. The dropout rate is 0.5. For the output, we

show the size (height and width) and number of channels.

Method GOGen GOLab GODisc

Layer Inputs Output Inputs Output Inputs Output

Img - 64, 3 - 64, 3 - 64, 3

Lab - 64, 2

Conc0 Img,Lab 64, 5

Conv0 Conc0 64, 64 Img 64, 64 Img 64, 32

Pool0 Conv0 - Conv0 -

Conv1 Conv0 64, 96 Pool0 32, 96 Pool0 32, 32

Conv2 Conv1 64, 96 Conv1 32, 128 Conv1 32, 64

Conv3 Conv2 64, 96 Conv2 32, 96 Conv2 32, 64

Pool1 Conv3 - Conv3 -

Conv4 Conv3 64, 96 Pool1 16, 128 Pool1 16, 64

Conc1 Lab,Conv0-4 64, 450

Conv5 Conc1 64, 160 Conv4 16, 156 Conv4 16, 96

Conv6 Conv5 64, 64 Conv5 16, 128 Conv5 16, 96

Pool2 Conv6 -

Conv7 Pool2 8, 96

Conv8 Conv7 8, 128

Conv9 Conv8 8, 96

Conc2 Lab,Conv5-6 64, 226 Conv3,6,9 8, 320 Conv3,6 32, 160

Conv10 Conv2 64, 3 Conc2 8, 96 Conc2 32, 64

Conc3 Img,Conv10 64, 3

Conv11 Conv10 8, 64 Conv10 32, 32

Drop0 Conv11 Conv11 -

Sensor Branch

Conv12 Drop0 8, 3

FC1 Conv12 1, 512 Drop0 1, 256

FC2 FC1 1, 7 FC1 1, 2

Soft FC2 1, 7 FC2 1, 2

Medium Branch

Conv13 Drop0 8, 3

FC3 Conv13 1, 512

FC4 FC3 1, 7

Soft FC4 1, 7

3.2. GODisc: Discriminator and GAN Losses
Next, the discriminator GODisc ensures that Î is visually

appealing. The GODisc network includes 10 convolution

layers and 2 fully connected layers, shown in Tab. 1. It out-

puts the Softmax probability for the two classes, real spoof

images vs. synthesized spoof images.

The training of the GAN follows an alternating training

procedure. During the training of CNNDisc(), we fix the

parameters of CNNGen() and use the following loss:

JDisctrain
= −EI∈R log(CNNDisc(I))

− EI∈L log(‖1− CNNDisc(CNNGen(T))‖), (3)

where R represents the real spoof images and L the real live

images. During the training of GOGen, we fix the parame-

ters of CNNDisc() and use the following loss:

JDisctest
= −EI∈L log(‖CNNDisc(CNNGen(T))‖). (4)

3.3. GOLab: Sensor and Medium Identification
GOLab is designed to classify noises from certain sen-

sors and spoof mediums. It serves as the discriminator to

guide GOGen to generate accurate spoof images as well as

the final module to produce scores for GOAS. Shown in

Tab. 1, the input for GOLab is an RGB image with the size

of 64× 64. The input images can be either the original im-

ages or the GOGen synthesized images. It uses 11 convolu-

tion layers and 3 max pooling layers to extract features, and
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Figure 4. Example live images of all 24 objects and 7 backgrounds from the collected GOSet dataset.

then two fully connected layers to generate nc- and nm-dim

vectors for sensor and medium classification. Each comes

from an independent stack of fully connected layers.

We use the cross entropy loss to supervise the training of

GOLab. Given the input image I, the ground truth one-hot

label am and the softmax normalized prediction âm for the

spoof medium; and ac, âc for the sensor, the loss functions

are defined as:

Sc = −
∑

i

aiclog(âi

c), Sm = −
∑

i

ai

mlog(âim), (5)

where i is the class index of the sensors and spoof mediums.

Then, the final loss to supervise GOLab is:

JLabtrain
= Sc(I) + Sm(I), (6)

The GOLab network provides supervision for the gener-

ator and guides it via backpropagation from the sensor and

spoof medium loss functions. Specifically, we define a nor-

malized loss for updating the generator network:

JLabtest
=

Sm(CNNGen(T))

1 + Sm(I)
+

Sc(CNNGen(T))

1 + Sc(I)
, (7)

where the numerator shows the classification losses, i.e.,

Sm() and Sc(), for the synthesized images, and Sm(I) and

Sc(I) are the loss of the live images during the updating of

GOLab. By using the normalized loss, GOGen will not be

penalized when GOLab has high classification error on the

real data, i.e., a large denominator leads to a small quotient

regardless of the numerator.

3.4. GOPad: Binary Classification

To show the benefits of the proposed method, we follow

the baseline algorithm [26], specifically the pseudo-depth

map branch, to implement a binary classification of GOAS,

termed as GOPad. To demonstrate strong generalization

ability later, we limit the size of the GOPad algorithm by

dramatically reducing the number of convolution kernels in

each layer to approximately one-third compared to the base-

line algorithm. The GOPad network takes an RGB image as

input, and produces a 0-1 map CNNPad(I) ∈ R
H×W in the

final layer, where it is 0 for live and 1 for spoof. The net-

work activates where the spoof noise is detected. During the

training process, this map allows the CNN model to make

live/spoof labeling at the pixel level. When converged, the

0-1 map should be uniformly 0 or 1, representing a confi-

dent classification of live vs. spoof. Formally, the loss func-

tion is defined as:

JPad = ‖CNNPad(I)−G‖2
2
, (8)

where G is the ground truth 0-1 map.

3.5. Implementation Details

We show all of the three proposed CNN networks in

Fig. 2. We use an alternating training scheme for updating

the networks during the training. We train the GOGen while

the GOLab and GODisc are fixed. In the next step, we keep

the GOGen fixed and train the other two networks. We al-

ternate between these two steps until all networks converge.

To train the GOGen and GOLab, we use batch sizes of 40.

Patch sizes of 64×64 are used for the GOGen, GODisc, and

GOLab. Patch sizes of 256 × 256 are used for the GOPad,

following the setting of previous works. The final loss for

training the generator of GOGen can be summarized as:

J = JDisctest
+ λ0JVis + λ1JLabtest

, (9)

where λ0 and λ1 are weighting factors. And the final loss

for training GODisc and GOLab can be denoted as:

J = JDisctrain
+ λ1JLabtrain

, (10)

and λ0 and λ1 were set to 0.5 and 0.1, for all experiments.

4. Generic Object Dataset for Anti-Spoofing
To enable the study of GOAS, we consider a total of 24

objects, 7 backgrounds, 7 commonly used camera sensors,

and 7 spoofing mediums (including live as a blank medium)

while collecting the Generic Object Dataset (GOSet). If

fully enumerated, this would require a prohibitory collec-

tion of 8, 232 videos. Due to constraints, we selectively

collect 2, 849 videos to cover most combinations of back-

grounds, camera sensors and spoof mediums.

The objects we collect are: squeezer, mouse, multi-pen,

sunglasses, water bottle, keyboard, pencils, calculator, sta-

pler, flash drive, cord, hard drive disk, keys, shoe (red),

shoe (white), shoe (black), Airpods, remote, PS4 (color),
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Table 2. Comparison of modality specific anti-spoofing algorithms

and GOLab. All methods are trained and tested on GOSet.

Algorithm HTER EER AUC

Chingovska LBP [13] 16.6 16.9 91.6
Boulkenafet Texture [7] 18.2 19.5 89.1
Boulkenafet SURF [8] 34.0 35.1 67.6

Atoum et al. [2] 13.4 13.5 91.2
GOPad (Ours) 20.6 22.9 87.6
GOLab (Ours) 6.3 6.7 97.5

PS4 (black), Kleenex, blow torch, lighter, and energy bar,

shown in Fig. 4. Generic objects are more easily available

for data collection and are unencumbered by privacy or se-

curity concerns, as opposed to human biometrics. The ob-

jects are placed in front of 7 backgrounds, which are desk

wood, carpet speckled, carpet flowered, floor wood, bed

sheet (white), blanket (blue), and desk (black). The spoof

mediums include 3 common computer screens, (Acer Desk-

top, Dell Desktop, and Acer Laptop), and 3 mobile device

screens, (iPad Pro, Samsung Tab, and Google Pixel), which

are of varying size and display quality.

The videos were collected using 7 commercial devices,

(Moto X, Samsung S8, iPad Pro, iPod Touch, Google Pixel,

Logitech Webcam, and Canon EOS Rebel). Except for

videos from the iPod Touch at 720P resolution, all videos

are captured at 1, 080P resolution, with average length of

12.5 seconds. We first capture the live videos of all objects

while varying the distance and viewing angle, and then col-

lect the spoof videos via directly viewing a spoof medium

while the live video is displayed on it. During the collection

of spoof videos, care is taken to prevent unnecessary spoof-

ing artifacts (light reflection, screen bezels), as well as data

bias (differences in distance, brightness, and orientation).

To leverage the GOSet, we split it into a train and test

set. The train set is composed of the first 13 objects and

corresponds to the first 2 backgrounds. The test set is com-

posed of the rest of the objects and backgrounds. This split

prevents overlap and presents a real-world testing scenario.

5. Experiments

In all experiments, we use the training/testing partition

mention above to train and evaluate the proposed method.

For evaluation metrics, we report Area Under the Curve

(AUC), Half Total Error Rate (HTER) [4], and Equal Er-

ror Rate (EER) [41]. Performance is video-based, which

is computed via majority voting of patch scores. For each

video, we use all frames; and for each frame, we randomly

select 20 patches.

5.1. Generic Object AntiSpoofing

Baseline Performance: To demonstrate the superiority

of our proposed method, we compare our method with our

Table 3. Confusion matrices for camera sensor and spoof medium

identification. The identification accuracy for each sensor/medium

and averages are reported using majority voting of 20 patches from

each frame in a video.

Sensor (1) (2) (3) (4) (5) (6) (7) Acc

(1) Moto X 16 0 7 5 18 0 0 34.8
(2) Logitech 2 320 0 0 0 0 3 98.5

(3) Samsung S8 1 2 353 1 0 7 17 92.7
(4) iPad Pro 6 0 42 220 0 3 0 81.2

(5) Canon EOS 55 0 7 32 68 0 3 41.2
(6) iPod Touch 0 0 0 0 0 270 0 100.0

(7) Google Pixel 1 1 0 0 0 1 259 98.9
Overall 87.6

(a)

Medium (1) (2) (3) (4) (5) (6) (7) Acc

(1) Live 97 7 0 0 0 1 0 92.4
(2) Acer Desktop 50 116 67 36 9 45 3 35.6
(3) Dell Desktop 31 52 83 59 20 77 8 25.2
(4) Acer Laptop 58 53 4 141 7 3 5 52.0

(5) iPad Pro 43 30 31 29 107 30 0 39.6
(6) Samsung Tab 4 0 0 79 5 115 0 56.7
(7) Google Pixel 7 54 5 12 34 20 84 38.9

Overall 43.2

(b)

implementation of the recent methods [2, 7, 8, 13] on the

GOSet test set. These recent methods are modality specific

algorithms that perform anti-spoofing based on color and

texture information. From Tab. 2, it is shown that GOLab

outperforms the other anti-spoofing methods by a large mar-

gin for the GOAS task.

Benefits of GOLab: Tab. 3 (a) and (b) show the confu-

sion matrices of GOLab on sensor and spoof medium clas-

sification. The classification performance for sensors is no-

ticeably better than that of mediums, with the overall ac-

curacy of 87.6% vs. 43.2%. Although Fig. 3 indicates the

noises among medium have distinct patterns, it is worth not-

ing that the medium noises can be “hidden” in the image by

the sensor noises, which causes the lower accuracy. The ac-

curacy for detecting live videos is 92.4% which exhibits its

promising ability for the anti-spoofing task.

We compute the ROC curves of GoLab on GOSet test-

ing data. Fig. 5 (a) and (b) show the ROC curves of differ-

ent objects and different backgrounds respectively. We can

see the AUCs for different objects are similar. But AUCs

for different backgrounds have larger variation, which de-

notes that the GOLab is more sensitive to surfaces with rich

texture, e.g., Carpet Flowered in (b). By comparing the

ROCs for different sensors in Fig. 5 (c), we observe that the

“Google Pixel” and “iPod Touch” are the hardest sensors

to detect, because they are the highest and lowest quality,

respectively. This causes images from the iPod to appear

more spoof-like, and images from the Pixel less so, while

their respective noise patterns are most distinguishable in

Tab. 3. Similarly, the “Acer Laptop” is the most challeng-

ing spoof medium for anti-spoofing, shown in Fig. 5 (d).
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(a) (b) (c) (d)

Figure 5. ROC curves for the anti-spoofing performance of the GOLab algorithm on the GOSet test set. (a) Performance by objects, (b)

Performance by backgrounds, (c) Performance by sensors, and (d) Performance by spoof mediums.

Table 4. Performance of GOLab when trained on varying amounts

of live, real spoof, and synthetic spoof data. Live data was ran-

domly selected. For each live video, 1 or 2 (out of 6 possible)

spoof videos were then selected. We randomly select from the

generated data to increase the training data by 10%.

Data GOLab GOLab + GOGen

Live, Spoof AUC HTER EER AUC HTER EER

1/4, 1/6 79.7 26.8 27.7 79.7 27.2 27.6
1/4, 1/3 85.1 24.0 25.7 86.5 22.3 22.8
1/2, 1/6 81.9 24.7 26.7 86.0 22.2 22.8
1/2, 1/3 87.6 19.6 21.0 92.5 14.9 16.2

Benefits of GOGen: GOGen generates synthetic spoof

images and performs data augmentation to improve the

training of GOLab. It can synthesize spoof images which

may be under-represented or missing in the training data. To

present the advantage of GOGen, we train the GOLab with

different compositions of training data. The data composi-

tions and corresponding results are shown in Tab. 4. Com-

paring the relative performance, we see that more spoof data

is more important than more live data because additional

spoof data contains sensor and medium noise, whereas live

data only has sensor noise. Comparing the performance

of the GOLab without GOGen to those of the GOLab

with GOGen, the inclusion of synthetic data during train-

ing has significant benefit for the anti-spoofing performance

of GOLab. As additional sensors/mediums are introduced,

GOGen can reduce the cost of future data collection by ap-

propriately generating images for the new sensor/medium

combinations.

5.2. Face AntiSpoofing Performance

We also evaluate the generalization performance of the

proposed method on face anti-spoofing tasks. We present

cross-database testing between two face anti-spoofing

databases, SiW and OULU-NPU. The testing on OULU-

NPU follows the Protocol 1 and the testing on SiW is ex-

ecuted on all test data. The evaluation and comparison in-

clude two parts: firstly, we train the previous methods on

either OULU-NPU or SiW, and test on the other; secondly,

we train the previous methods and ours on GOSet, and test

on the two face databases. The results are shown in Tab. 5.

Table 5. Performance of GOPad and GOLab algorithms along

with SOTA face anti-spoofing algorithms on face anti-spoofing

datasets. The algorithms trained on face data are cross-tested be-

tween OULU and MSU-SiW. The rest are trained on GOSet. [Key:

Best, Second best]

OULU P1 MSU SiW

Algorithm Train HTER EER HTER EER

Chingovska LBP [13] Face 38.5 44.2 30.5 31.7
Boulkenafet Texture [7] Face 40.8 43.3 28.6 29.9
Boulkenafet SURF [8] Face 38.2 40.8 36.0 36.7

Atoum et al. [2] Face 11.8 13.3 11.0 11.2

Chingovska LBP [13] GOSet 44.1 46.1 42.2 42.4
Boulkenafet Texture [7] GOSet 34.6 36.7 44.1 44.9
Boulkenafet SURF [8] GOSet 45.3 45.8 47.7 48.6

Atoum et al. [2] GOSet 32.9 35.0 8.2 8.8

GOPad (Ours) GOSet 33.4 34.2 9.5 10.2

GOLab (Ours) GOSet 41.2 42.5 15.6 16.0

GOPad is structurally very similar to the Atoum et al. al-

gorithm [2], however, [2] uses more than 10X the num-

ber of network parameters. The similar performance be-

tween these two methods implies that the leaner and faster

GOPad was able to learn strong discriminative ability, re-

gardless of its smaller size. The SOTA performance of both

Atoum et al. and GOPad on SiW when trained on GOSet

demonstrates the generalization ability from generic objects

to face data. The lack of such performance when tested on

OULU shows that the generalization of current methods to

unseen sensors/mediums is poor, providing future incentive

for GOGen to synthesize data that represents these devices.

We train Atoum et al. [2] using MSU SiW face dataset

and test on the GOSet dataset, resulting in an AUC of 62.3,

HTER of 37.0, and EER of 41.4. Comparing to Tab. 4,

Atoum et al. [2] has the lowest performance, even worse

than GOLab trained with the smallest amount of data. This

shows that models trained only on faces are domain specific

and can not model or detect the true noise in spoof images.

5.3. Ablation Study

Noise representation: Fig. 3 shows the learned noise

prototypes for the sensors and mediums. In the last row of

Fig. 3, the distinctive high frequency information is evident
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Table 6. Anti-spoofing performance of GOPad and GOLab on the

GOSet dataset with varying amounts of training data.

Data Golab GoPad

(Live, Spoof) AUC HTER EER AUC HTER EER

(1/4, 1/6) 79.7 26.8 27.7 84.4 23.8 24.8
(1/4, 4/6) 86.0 21.6 23.8 86.2 22.4 22.9
(All, 4/6) 94.6 12.5 13.9 86.3 22.4 23.8
(All, All) 97.5 6.3 6.7 87.6 20.6 22.9

Figure 6. Illustration of GOLab-based anti-spoofing, with 2 suc-

cess (left) and 2 failure (right) cases for live (top row) and real

spoof (bottom row) using 20 patches per image. The color bar

shows the output range of the network: 1 is spoof and 0 is live.

The score at the top left corner is the average of all patches.

in the FFT of the spoof medium prototypes. In contrast,

the FFT for the sensor prototypes are similar. To evaluate

the advantage of modeling noise prototypes, we train the

GOGen network without noise prototypes by constructing

T = [I,M′
c,M′

m]. M′
c and M′

m are of the same size of as

Mc and Mm, and with all elements being zeros except the

prototypes of selected spoof and medium being all 1. The

Rank-1 accuracy for sensor and spoof medium identifica-

tion of the related GOLab on the synthesized data is 11.0%
and 19.7%, respectively. However, by learning noise proto-

types, as shown in Fig. 2, the accuracy is 56.0% and 26.3%.

Binary or N-ary Classification: We train the GOPad on

the GOSet dataset, and we find that GOPad performs better

than GOLab when only a small amount of data is utilized

for training. However, GOLab is better than GOPad when

using a larger training set. The training data to be used is

chosen by randomly sampling of the GOSet training set.

We attribute this improvement to the auxiliary information

(classification between multiple sensors and mediums) that

is learned by GOLab for the sensor and spoof medium iden-

tification. The detailed comparison is shown in Tab. 6.

GOLab Loss Functions: To demonstrate the benefit of

both sensor and medium classification in the GOLab al-

gorithm, experiments were run using each independently.

Using only Sc(I) in Eq. 6, we obtain a Rank-1 accuracy

of 84.7%. Similarly using only Sm(I), we obtain an ac-

curacy of 42.0% with anti-spoofing performance AUC of

85.9, HTER of 22.1 and EER of 22.8. By fusing tasks,

we improve accuracy for sensor and medium to 87.6% and

43.2%, respectively. This also improves anti-spoofing per-

formance to AUC of 97.5, HTER of 6.3, and EER of 6.7.

Figure 7. Visual comparison of live (first row), synthetic spoof

(second row), and real spoof (third row) images. Columns are

whole image, image patch, and the FFT power spectrum of the

image patch. Each synthetic image was generated from a live im-

age. The corresponding ground truth spoof images (third row) are

collected with the target sensor/spoof medium combination.

5.4. Visualization and Qualitative Analysis

Fig. 6 shows success and failure cases of the GOLab

model on the GOSet dataset. This suggests that the smooth,

reflective background is classified disproportionately as live

and the textured carpet/cloth backgrounds are inversely

classified as spoof. Hence, it is crucial that GOAS and bio-

metric anti-spoofing be possible over the entire image, be-

cause no singular patch in the image can provide an accurate

and confident score for the entire image.

We show some examples of the generated synthetic

spoof images in Fig. 7. We can compare the visual qual-

ity with their corresponding live and real spoof images. The

GOGen network is trained to change the high frequency in-

formation in the images which are related to the sensor and

spoof medium noises. GOGen is successfully able to alter

the high frequency information in these patches to be more

similar to the associated spoof than the input live.

6. Conclusion
We present our proposed generic object anti-spoofing

method which consists of multiple CNNs designed for mod-

eling the sensor and spoof medium noises. It generates syn-

thetic images which are helpful for increasing anti-spoofing

performance. We show that by modeling the spoof noise

properly, the anti-spoofing methods are domain indepen-

dent and can be utilized in other modalities. We propose

the first generic object anti-spoofing dataset which contains

live and spoof videos from 7 sensors and 7 spoof mediums.
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