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Abstract. This paper presents an original work for aircraft noise monitoring 
systems and it analyzes the airplanes noise signals and a method to identify 
them. The method uses processed spectral patterns and a neuronal network 
feed-forward, programmed by means of virtual instruments. The obtained 
results, very useful in portable systems, make possible to introduce redundancy 
to permanent monitoring systems. The noise level in a city has fluctuations 
between 50 dB (A) and 100 dB (A).  It depends on the population density and 
its activity, commerce and services in the public thoroughfare, terrestrial and 
aerial urban traffic, of the typical activities of labor facilities and used 
machinery, which give varied conditions that must be faced of diverse ways 
within the corresponding normalization. The sounds or noises that exceed the 
permissible limits, whichever the activities or causes that originate them, are 
considered events susceptible to degrade the environment and the health. 
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1   Introduction  

The goal of this research stage is to make aircrafts noise signals analysis, that allows 
creating a recognition method, that will do possible to identify types or class of 
aircrafts by means of its noise patterns.  These types of aircrafts can be of propeller, 
turbojet and reaction.  On the other hand, it is possible to classify the aircrafts as long 
reach (high power), medium reach (medium power) and short reach (low power).  

Committees of Aerial Transport and Environmental propose an aircraft 
classification based on the level of noise emission. The proposed common 
classification of aircraft is based on the principle that the aircraft operator should pay 
a fair price that should be proportional to its noise impact, independently of the 
weight of the aircraft or of the transport service rendered. Such data would make it 
possible to recognize the environmental merits of larger aircraft, even if these aircraft 
are noisier in absolute terms when compared to smaller aircraft [1].  

Much of this work involves the collection and analysis of large amounts of aircraft 
noise data from the Noise and Track Keeping systems (NTK) installed at airports. 
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Like any other measured quantity, aircraft noise measurements are subject to some 
uncertainty, which can influence the quality of the final measured result [2]. 

The uncertainty contributions for a typical noise study can be considered in two 
groups. The first group includes the components of uncertainty associated with the 
measurement of aircraft noise at a particular monitoring location. The second group 
includes the components of uncertainty associated with any subsequent data analysis 
that may be carried out [2], [3], [4]. The overall accuracy of any type of measurement 
is limited by various sources of error or uncertainty. Components of uncertainty can 
essentially be classified as either random or systematic in nature. When making a 
series of repeated measurements, the effect of the former is to produce randomly 
different results each time, which are all spread or scattered around an average (mean) 
value. In contrast, systematic components of uncertainty cause the measurement to be 
consistently above or below the true value. For example, when measuring the time 
with a watch that has been set 1 minute slow, there will be a systematic error (or bias) 
in all the measurements. In a well-designed measurement study, the systematic 
components of uncertainty should generally be smaller than the random components 
[2], [5].  Possible sources of uncertainty for aircraft noise measurements include not 
only the noise instrumentation itself, but also variations in the noise source and 
propagation path, meteorological variations, the local environment at the 
measurement site, and also any variance due to data sampling - all of these individual 
uncertainty components can influence the quality of the final measured result [1]. An 
internationally accepted procedure for combining and expressing measurement 
uncertainties is given in the ISO Guide to the Expression of Uncertainty in 
Measurement [6], [7], [8]. 

2   Diagrams and Description of Typical Architecture of an 
Aircraft Noise Monitoring Station [9], [10] 

Generally, a noise monitoring complex system detects, identifies and analyses the 
noise produced by arriving and departing aircrafts. The Fig. 1 presents a typical 
architecture of aircraft noise monitoring stations. The noise monitoring system (NMS) 
measures aircraft noise according to defined criteria. The first step of the system is the 
collection of the detected aircraft noise, the second the attribution of the noise to a 
specific aircraft movement. To perform the correlation of the aircraft noise, additional 
information is necessary, which will be described later. 

2.1   EMU - Environmental Monitoring Unit 

The EMU consists of: a) a digital microphone; b) a local unit for data backup; c) a 
modem for transmitting data to the central processing system. 

2.1.1   Microphone Unit 
Each unit is mounted at the end of a mast and equipped with a digital microphone, an 
anti-wind and bird guard and a lightning arrestor. The microphone captures the 
analogue noise signal and performs the critical conversion of the signal immediately 
at the microphone head, and transmits the noise data in digital form to the EMU’s 
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Fig. 1. Typical architecture of aircraft noise monitoring stations and correlation principle 

electronics. The immediate conversion to a digital signal provides a higher immunity 
to interference. The unit guarantees an omni directional detection of noise with high 
reception qualities. The 5 local units are synchronized by the central system GPS 
clock. 

2.2   Central Processing System 

All the data collected via network or modem from the airport radar, the flight plan 
processing system and the EMUs are put through to the central processing system 
which consists of Communication Server and Global Environment Monitoring 
System (GEMS). The Communication Server collects: a) the noise events of the five 
EMUs; b) the radar aircraft tracks; c) the flight plans from FDP (Flight Data 
Processor); d) the GPS (Global Positioning System) to guarantee the synchronization 
of the noise monitoring system.  

The GEMS processes and correlates the data acquired by the Communication 
Server in order to identify an aircraft that produced a noise event. The essential 
processing in the GEMS consists of: a) correlating the real time data from the 
Communication Server; b) archiving the acquired data, and generating reports about 
individual events, daily, monthly or annual summaries. 

Identification of the noise event: The EMU continuously analyses the incoming 
noise signal to identify the source of noise. By using various detection algorithms it is 
possible to identify noise generated by an aircraft flying past, known as event. The 
process of identifying a noise event is based on threshold and time change criteria. 
The incoming data are noise events, aircraft flight plans and Radar information. The 
correlation principle is observed in the right side of Fig 1. 

3   Aircrafts Noise Patterns 

The used airplanes noises in this work have been acquired by means of MP201 
microphone. It is a good choice for use in IEC61672 class 1 sound level meters and 
other noise measurements requiring class 1 accuracy [11]. It is a 1/2" prepolarized 
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free-field measurement microphone.  The data acquisition card is USB-9233. It is a 
four-channel dynamic signal acquisition module for making high-accuracy 
measurements from IEPE sensors. The USB-9233 delivers 102 dB of dynamic range. 
The four USB-9233 input channels simultaneously acquire at rates from 2 to 50 kHz. 
In addition, the module includes built-in antialiasing filters that automatically adjust 
to your sampling rate. The USB-9233 uses a method of A/D conversion known as 
deltasigma modulation. If the data rate is 25 kS/s, each ADC actually samples its 
input signal at 3.2 MS/s (128 times the data rate) and produces samples that are 
applied to a digital filter. This filter then expands the data to 24 bits, rejects signal 
components greater than 12.5 kHz (the Nyquist frequency), and then digitally 
resamples the data at the chosen data rate of 25 kS/s. This combination of analog and 
digital filtering provides an accurate representation of desirable signals while 
rejecting out-of-band signals. The built-in filters automatically adjust themselves to 
discriminate between signals based on the frequency range, or bandwidth, of the 
signal.  

In this work, the noise samples were acquired with sampling frequencies of 22050 
Hz (Samples/second: S/s) and 11025 Hz (S/s), monophonic and during 24 seconds. In 
general, this interval is greater than to aircraft takeoff time, or greater to the time in 
which the produced noise affects the zones near an airport. It is possible to extend this 
sampling time interval (>24 seconds). For a same aircraft, many noise events were 
acquired, taken for different meteorological conditions, several microphone 
orientations and background noises. The takeoff direction is always the same one and 
this reduces the disturbances of Doppler Effect. 

3.1   Aircraft Noise Signals Analysis 

The Fig. 2 and Fig. 3 present examples of some aircrafts noise signals.  

 

Fig. 2. Noise of Falcon aircraft taking off, with sampling frequency of 22050 Hz 

For all used aircraft noises the typical form of the amplitude spectrum is observed 
from 0 to 5000 Hertz, for this reason, in this work was used a sampling frequency of 
11025 Hz, in order to reduce the number of taken samples in 24 seconds (264600 
samples). The amplitude spectrum has 132300 harmonics, with fΔ = 0.04167 Hz. In 

other aircraft noise analyses, the recommended sampling frequency is 25 Ks/s and D, 
C and A-weighting filters. 
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Fig. 3. Noise of Falcon aircraft taking off, with sampling frequency of 11025 Hz 

3.1.1   Reduction of the Spectral Resolution 
It is necessary to reduce the spectral resolution because of the following reasons: 

1. The amplitude spectrum has 132300 harmonics and its processing will be very 
complex. 

2. It is only of interest the spectral form. 

The following hypotheses are presented: 

1. Any reduction method of spectral resolution introduces a tolerance in the initial 
and final times within the measurement interval of aircraft noise. 
For example, a feedforward neural network is trained with one noise pattern 
which was acquired from zero seconds from the aircraft takeoff until 24 seconds 
later. In run time, if the aircraft takeoff noise is acquired from 5 seconds until 24 
seconds, this time displacement of 5 seconds will affect little the spectral form if 
its spectral resolution has been reduced. 

2. A median filter (moving average filter) creates a typical form of the aircrafts 
takeoff noises spectrums. 

3. The decimation of average spectrum, with a rate X, conserves the spectral form 
of aircrafts takeoff noises. 

3.1.2   Spectral Estimation 
In the present work is used the Bartlett-Welch method [12] for spectral estimation. 
The Bartlett method consists on dividing the received data sequence into a number K, 
of non-overlapping segments and averaging the calculated Fast Fourier Transform.  

It consists of three steps: 
1. The sequence of N points is subdivided in K non overlapping segments, where 

each segment has length M. 

( ) ( )i ix n x n iM= + , i 0,1,...,K -1= , n 0,1,...,M 1= −                  (1) 

2. For each segment, periodogram is calculated 
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3. The periodograms are averaged for the K segments and the estimation of the 
Bartlett spectral power can be obtained as: 
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The statistical properties of this estimation are the following ones:   
    The average value is: 
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The true spectrum is convolutioned with the frequency characteristic of the Bartlett 
window ( )Bw m . Reducing the length of the data window of N points to M=N/K, it 

results in a window whose spectral wide has been increased by the factor k. 
Consequently, the frequency resolution has decreased for the factor k, in exchange 
for a variance reduction. 

The variance of the Bartlett estimation is: 
2K 1
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Welch Method [12], [13], [14]: unlike in the Bartlett method, the different data 
segments are allowed to overlap and each data segment is windowed. 

         ( ) ( )ix n x n iD ,  n 0,1,...,M 1,  i 0,1,...,L 1= + = − = −                        (7) 

Where iD is the point of beginning of the sequence i-th. If D=M, the segments are not 
overlapped. If D=M/2, the successive segments have 50% of overlapping and the 
obtained data segments are L=2K. 

Another modification proposed by Welch to the Bartlet method consists on using a 
window for the data segments before calculating the periodogram. The result is the 
"modified" periodogram: 
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Where U is a normalization factor for power of the function window and it is selected as: 

                                          ( )
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The Welch estimation of spectral power is the average of these modified 
periodograms: 
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The average of the Welch estimation is: 
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The normalization factor assures that: ( )
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The variance of the Welch estimation is: 
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Why Welch method is introduced? 
- Overlapping allows more periodograms to be added, in hope of reduced variance. 
- Windowing allows control between resolution and leakage. 
The Welch method is hard to analyze, but empirical results show that it can offer 

lower variance than the Bartlett method, but the difference is not dramatic. 

•  Suggestion is that 50 % overlapping is used. 
In this paper, the data segment of 264600 samples, acquired in 24 seconds, is 

divided in 24 segments: K=24, with 50% of overlapping, therefore, L=2K=48 
overlapped data segments, later is applied the FFT (periodogram) to each segment 
and they are averaged. 

3.2   Examples of Some Aircrafts Noise Patterns 

 

Fig. 4. Example of noise pattern of Falcon aircraft taking off (turbojet) 



838 L.P. Sánchez Fernández et al. 

 

Fig. 5. Example of noise pattern of T6 aircraft taking off (propeller) 

 

Fig. 6. Example of noise pattern of f Boeing 707 aircraft taking off  

In this stage, 16 aircrafts types were tested with 12 patterns by aircraft. In all, the 
neural network was trained with 192 patterns. Ninety and six patterns were used for 
testing. 

4   Neural Network 

The neural network has 221 inputs. Every input is a normalized harmonic and some 
examples were presented in Fig. 4, 5 and 6. The output layer has 16 neurons, 
corresponding to the 16 recognized aircrafts. After several tests, the neural network 
was successful with a hidden layer of 14 neurons. The activation functions are tan-
sigmoid. The Fig 7 presents the topological diagram and training performance. The 
training performance was successful with an error of 1.51281e-10 in 300 epochs. The 
training finished in 19 minutes in a Pentium IV of 3 GHz. 
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Input: 221 neurons  
(aircrafts noise harmonics)

Output layer: 16 neurons 
(aircrafts type)

 

Fig. 7. Neural network topology and training performance 

5   Analysis of Results 

For aircraft noise used in neural network training, the recognition was successful. For 
an aircraft noise non-used in the training, the neural network non-recognized a 
specific aircraft and the program presented a message with three aircrafts whose 
mixed noise patterns have similarity to the acquired noise event (see Fig. 8). Table 1 
shows results of a test of aircrafts recognition.  

 

 

Fig. 8. Example of two tests of patterns recognition and non-recognition 

Table 1. Certainty of recognized aircrafts in the first test 

Aircrafts 
type 

Evaluated 
Aircrafts

Recognized 
aircrafts with 

certainty  of more 
than  80% 

Recognized aircrafts with 
certainty of mote than 

60% and less than  80% 

Propeller 5 4 1 
Turbojet 17 13 4 

Reaction 4 4 0  
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6   Conclusions and Future Work 

The presented work tested successfully a methodology to create aircrafts noise 
patterns. It combines the decrease of spectral resolution, a moving average filter and 
decimation of average spectrum, this method allows reducing the number of 
significant harmonics in amplitude spectrum, so that a feedforward neural network 
with 221 inputs can recognize the aircraft type. The decrease of spectral resolution 
using the Bartlett-Welch method introduces a tolerance in the initial and final times 
within the measurement interval of aircraft noise, which produces a better recognition 
of the patterns when the measurements can have uncertainties. This research tests the 
feasibility to identify the aircraft that produces a certain noise level, having only noise 
information. The obtained results make possible to introduce redundancy to 
permanent monitoring systems of aircraft noise (Fig. 1). These results are very useful 
in portable systems. The noise intensity and others environmental contamination 
indicators are calculated by statistical methods using noise time series. The next tests 
will include more aircrafts types using a distributed and portable system. 
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