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Abstract

Background: Human-generated noise pollution now permeates natural habitats worldwide, presenting evolutionarily novel
acoustic conditions unprecedented to most landscapes. These acoustics not only harm humans, but threaten wildlife, and
especially birds, via changes to species densities, foraging behavior, reproductive success, and predator-prey interactions.
Explanations for negative effects of noise on birds include disruption of acoustic communication through energetic
masking, potentially forcing species that rely upon acoustic communication to abandon otherwise suitable areas. However,
this hypothesis has not been adequately tested because confounding stimuli often co-vary with noise and are difficult to
separate from noise exposure.

Methodology/Principal Findings: Using a natural experiment that controls for confounding stimuli, we evaluate whether
species vocal features or urban-tolerance classifications explain their responses to noise measured through habitat use. Two
data sets representing nesting and abundance responses reveal that noise filters bird communities nonrandomly. Signal
duration and urban tolerance failed to explain species-specific responses, but birds with low-frequency signals that are more
susceptible to masking from noise avoided noisy areas and birds with higher frequency vocalizations remained. Signal
frequency was also negatively correlated with body mass, suggesting that larger birds may be more sensitive to noise due
to the link between body size and vocal frequency.

Conclusions/Significance: Our findings suggest that acoustic masking by noise may be a strong selective force shaping the
ecology of birds worldwide. Larger birds with lower frequency signals may be excluded from noisy areas, whereas smaller
species persist via transmission of higher frequency signals. We discuss our findings as they relate to interspecific
relationships among body size, vocal amplitude and frequency and suggest that they are immediately relevant to the global
problem of increases in noise by providing critical insight as to which species traits influence tolerance of these novel
acoustics.
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Introduction

Anthropogenic noise pollution (hereafter ‘‘noise’’) now perme-

ates natural areas worldwide, and these evolutionarily novel

acoustics are not only problematic for human wellbeing [1,2], but

negatively affect bird distributions, community diversity and

predator-prey interactions [3–6]. A likely cause for declines in

bird distributions in noisy areas is because noise interferes with

vocal communication, whereby birds with low-frequency vocali-

zations may be unable to communicate in the presence of low-

frequency industrial noise and must abandon otherwise suitable

areas [7–9]. This explanation is supported by the observation that

urban-tolerant species may be predisposed to occupy noisy urban

areas because they have higher frequency signals that may suffer

less acoustic interference from urban noise than birds that vocalize

at lower frequencies [10]. Yet because urban-tolerant birds have

broader environmental tolerances than non-urban birds [11] and

because their occupancy of urban environments also depends on

key foraging and nesting opportunities [12], it is not yet clear

whether urban-tolerant species persist in urban areas due to their

signaling characteristics or because of other factors.

Outside of urban areas, several studies have suggested that a

likely cause for declines in bird abundances in response to traffic

noise is because noise masks vocal communication (e.g. refs.

[7,13,14]), yet these studies have not adequately linked declines in

bird abundances to interference with acoustic communication for

several reasons (reviewed in refs. [5,9]). First, several stimuli that

often co-vary with noise could also explain the declines, such as
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edge habitat, vehicular motion and lights, or direct mortality of

birds due to collisions with vehicles. Second, the presence of noise

can also severely impair an observer’s ability to detect birds

[15,16], biasing surveys used to determine whether species

distributions are noise-dependent. Finally, although frequency

may be one feature that influences signal transmission in noisy

conditions, other signal features, such as greater signal duration,

may also improve signal detection in noisy areas [17–19] and

should be considered when evaluating species-specific responses to

noise.

Here, we used a unique study system that separates noise from

confounding stimuli to evaluate which species’ traits predict

species-specific sensitivities to noise as measured by habitat use. If

species distributions in noisy environments are determined by their

ability to communicate, then species with signals that are higher in

frequency and/or longer in duration should be less sensitive, and

their distributions should change little between noisy and quiet

environments. In contrast, species with signals that are lower

frequency signals and/or shorter in duration should be more

sensitive and should be more common in quiet relative to noisy

areas (Fig. 1). These signaling features may also influence urban

tolerance and explain why urban-tolerant birds persist in noisy

cities [10]; however, tolerance to a broad range of environmental

conditions and exploitation of key foraging and nesting opportu-

nities could also explain the persistence of urban-tolerant species in

cities [11,12]. If persistence in noisy cities is linked to signaling

features, then urban-tolerant species should be less sensitive to

noise than non-urban species in their habitat use in noisy non-

urban habitats (Fig. 1). In contrast, if persistence in noisy cities is

linked to exploitation of other key features within urban areas,

urban-tolerant and non-urban birds should not differ in their

habitat use in noisy non-urban habitats. In attempt to tease apart

these influences, we first determine whether urban tolerance or

signaling features explain habitat use in response to noise. We then

test whether urban-tolerant birds differ in vocal features from non-

urban birds, and we explore how vocal features relate to body size.

Methods

This study was completed in compliance with the University of

Colorado Animal Care and Use Guidelines. The University of

Colorado’s Animal Care and Use Committee reviewed the study’s

methods and determined it did not need IACUC approval because

the methods were observational only.

Study area
We conducted our study within Rattlesnake Canyon Habitat

Management Area (RCHMA), which is located in the San Juan

Basin in northwestern New Mexico and managed by the Bureau of

Land Management (BLM). RCHMA is dominated by piñon (Pinus

edulis)-juniper (Juniperus osteosperma) woodlands and is within one of

the United States’ most developed energy-producing regions (over

20,000 active oil and gas wells within the San Juan Basin). Gas

wells are often coupled with compressors, which aid in the

extraction and transportation of gas through pipelines and run

24 hours a day, 365 days a year aside from periodic maintenance

and our bird surveys and nest searches [6,19,20]. Similar to most

anthropogenic noise, compressor noise has most energy at low

frequencies and gradually diminishes towards higher frequencies;

thus, the energetic masking potential by compressor noise

progressively increases for lower frequency signals (Fig. 2; for

details on compressor noise see refs. [6,20]). Noisy compressors are

present on some well pads (treatment sites) and absent on others

(control sites), which provides a unique opportunity to determine

the influence of noise on natural populations and communities.

Critical to this design, with the exception of background noise

amplitude, which is significantly higher on treatment sites than

control sites through a distance of 400 m from the compressor or

wellhead, human activity and vegetation did not to differ on and

around the well pads with and without noisy compressors that

were used in this study [6]; thus, effects of noise are separated from

other confounding variables that complicated previous attempts to

characterize the influence of noise on bird distributions [7,13,14].

Finally, and perhaps most critically, compressors were turned off

during our visits to noisy treatment sites to quantify responses to

noise (see below) to control for the negative influence of noise on

observers’ abilities to detect birds [15].

Responses to noise
We searched for and monitored nests at nine treatment and

nine control sites during the breeding seasons of 2005 and 2006

and ten treatment and eight control sites in 2007. In 2007, we also

conducted point count surveys at eight control sites and five

treatment sites with compressors turned off during our surveys on

treatment sites. Methodological details for nest searching and

monitoring, plus the bird surveys can be found elsewhere [6,20].

Hereafter we refer to ‘‘nesting response’’ when referring to the

nesting data and ‘‘abundance response’’ for the survey data. From

the surveys, at each location we estimated a species abundance as

the maximum number of individuals detected during one of two

visits rather than summing the total from both visits, which would

have double-counted individuals that were detected on both the

first and second visit. Additionally, because of increases in

identification error with distance, we restricted our abundance

estimates to only those individuals observed within 60 m from the

point count location.

Figure 1. Predicted influences of vocal features and urban-
tolerance classifications on species-specific responses to noise.
If the degree to which species can successfully dispatch and receive
acoustic signals influences their distributions in environments charac-
terized by anthropogenic noise, species that have high-frequency
vocalizations or long signal durations may have a neutral response to
noise, but species that vocalize at low frequencies or with short signals
may avoid noisy areas. Similarly, if urban birds have signals predisposed
to noisy urban areas, urban-tolerant species should have neutral to
marginally negative responses to noise compared to strong negative
responses by non-urban species, even in noisy non-urban areas.
doi:10.1371/journal.pone.0027052.g001

Noise Pollution Filters Birds Nonrandomly
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We estimated the nesting response to noise as the ratio of the

mean number of nests per treatment and control site:

nesting response~loge

mean no: nests treatment site{1

mean no: nests control site{1

� �
, ð1Þ

Prior to calculating the mean number of nests per site, we

performed a quantitative adjustment to the data by adding one to

the total number of nests detected on treatment sites and to the

total number of nests detected on control sites. This was necessary

because some species did not nest on one of the two site types,

precluding our ability to gauge response to noise as a ratio.

Abundance response to noise was estimated as the ratio of the

mean number of individuals per survey location on treatment and

control sites:

abundance response~

loge

mean no: individuals treatment survey location{1

mean no: individuals control survey location{1

� �
,
ð2Þ

Subsequently, these ratios represent the relative strength of the

response of each species to noise in terms of habitat use.

Species vocalization features and urban tolerance
Vocalizations of all species were recorded at sites in our study

area between 11 May and 2 July 2009. To ensure for

independence of samples, we only sampled one individual per

species at each site, or for the minority of occasions when we did

sample more than one individual per species on a site, we only

sampled individuals that maintained non-adjacent territories. We

also recorded vocalizations from individuals located in noisy and

quiet areas to capture potential vocal variation among individuals

in quiet and noisy areas (e.g., refs. [8,19,20]).

We recorded vocalizations with a Marantz PMD 660 Digital

recorder using a directional shotgun microphone (Audio-technica

AT-815) pointed directly at the vocalizing individual (WAV

format, sampling rate = 48 kHz, bitrate = 1536 kbps). We record-

ed vocalizations for entire song or call bouts (i.e. duration that an

individual vocalizes from a single perch) when wind speed was less

than category three (<13–18 kmh21) on the Beaufort Wind Scale.

For each individual recorded, we randomly selected five

strophes or calls from each recording and measured the following

variables: vocalization length, number of notes, minimum and

maximum frequency, peak frequency (the frequency vocalized at

the highest amplitude), and peak frequency of the lowest note

(highest amplitude of the call or song’s lowest note). Peak

frequency and peak frequency of the lowest note were measured

automatically, and all other measurements were performed

manually in RavenPro 1.4 [21] using a Hamming window and

a fast Fourier transformation (FFT) length of 1024, resulting in a

spectral resolution of 47 Hz. Minimum and maximum frequencies

were measured using precise placement of a selection box on

power spectra at the margin of notes, and placement was verified

using the spectrogram view. Mean values of vocal features were

calculated for each individual male. For three species, the black-

chinned hummingbird (Archilochus alexandri), common poorwill

(Phalaenoptilus nuttallii), and piñon jay (Gymnorhinus cyanocephalus), we

only recorded a single vocalization for each; therefore, we used

vocalizations archived at the Cornell University Macaulay Library

(http://macaulaylibrary.org/index.do; catalog numbers 6112,

6113, 20580, 21254, 44632, 44979, 60118, 60120, 60122,

60123, 60124, 109034, 109095, 109113, 119406, 147569) and

Xeno-canto (http://www.xeno-canto.org/; catalog numbers

XC11631, XC21431, XC21752, XC70461) to increase the

number of individual samples for these species. We measured

songs for all songbirds (Order Passeriformes), except for the piñon

jay, western scrub-jay (Aphelocoma californica), and bushtit (Psal-

triparus minimus), of which common calls were measured. We

measured common calls for all non-songbirds. For the 30 species

considered here, a mean of 15.1762.33 SE (min = 5, max = 55)

individuals were sampled per species to describe a typical species-

specific vocalization in our study area.

Because urban-adapted birds may be predisposed to occupy

noisy areas [10], we also used species classifications as urban-

tolerant or non-urban as a categorical explanatory variable for

bird responses to noise in our non-urban study area. Birds were

classified as urban-tolerant or non-urban as found in Hu and

Cardoso [10] or Bonier et al. [11], and for species not considered

in those studies, we classified species using the criteria used by Hu

and Cardoso [10]. Here, ‘‘urban-tolerant’’ reflects species known

to breed in urban environments, but they are not necessarily urban

Figure 2. Examples of background noise on a noisy treatment (A) and quiet control site (B). Spectrograms are on the outside panels and
power spectra are located on the center panels. Darker shades in spectrograms indicate more acoustic energy located at those frequencies, which is
reflected by higher amplitude values in the power spectra. On noisy treatment sites, acoustic energy from compressors increases at lower frequencies
and represents a greater masking potential for species with low-frequency vocalizations. This masking potential is absent on quiet control sites.
Horizontal lines denote approximate minimum and maximum vocal frequencies of birds considered in this study (see also Audio S1 and S2 for sample
recordings of background noise on treatment and control sites).
doi:10.1371/journal.pone.0027052.g002
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specialists. Thirteen species were classified as urban-tolerant, and

17 were classified as non-urban.

Analyses
Because vocal features were highly correlated, we used principal

components analysis (PCA) to reduce log-transformed frequency

and duration measures to fewer explanatory variables. These data

were suited for reduction (Kaiser-Meyer-Olkin measure of

sampling adequacy: 0.68; Bartlett’s test of sphericity, x2 = 53.41,

d.f. = 5, p,0.001). PCA yielded two components with eigenvalues

greater than 1 and collectively explained 89.11% of the total

variance in the data (Table 1). The first principal component was

negatively associated with all four measures of frequency

(henceforth ‘‘PCFreq’’). The second principal component was

negatively associated with vocalization length and number of notes

(henceforth ‘‘PCDur’’). The scores for PCFreq and PCDur were then

used as composite measures of signal frequency and signal

duration, respectively, in subsequent analyses.

We used generalized linear models (GLMs) to investigate the

effects of PCFreq, PCDur and urban-tolerance classification on

species’ nesting and abundance responses to noise. For our model

selection procedure, we used an information-theoretic approach to

evaluate support for competing candidate models with Akaike’s

Information Criterion corrected for small sample sizes (AICc) [22].

We ranked models based on differences in AICc scores (LAICc).

Models with LAICc,4 were considered to have support and

assigned Akaike weights (wi). When more than one model received

support (LAICc,4), we used Akaike weights to calculate model-

averaged variable coefficient estimates, unconditional standard

errors (SE) and 95% confidence intervals (95% CIs). We

concluded that there was little evidence for the effect of an

explanatory variable on response to noise when the 95% CIs

included or overlapped zero. We also reran these analyses at the

genus level and once restricted to songbirds (Passeriformes). In all

cases, the results remained equivalent to those presented for the

full datasets and are not presented here.

In birds, vocal features often co-vary with body size [23–26];

therefore, we used linear regression to relate PCFreq and PCDur to

the natural log of body mass and concluded there was evidence for

a relationship between body mass and vocal features if the 95%

CIs of the coefficient estimates did not overlapped zero. This was

necessary in order to compare our findings to well known

relationships between body size and species’ traits that may

influence sensitivity to noise (see discussion). Body mass data were

gathered from The Birds of North America Online [27]. Finally,

we used two-sample t-tests to determine whether vocal features

differed between urban-tolerant and non-urban birds. We also

compared body mass between these groups to determine whether

any differences in vocal features could be explained by differences

in body size. All analyses were completed in program R [28].

Results

Candidate models with PCFreq and the urban-tolerance

classification received the most support from both the nesting

and abundance data sets and received clear support over null

models (Table 2). However, models including PCDur were also

among those with support (LAICc,4; Table 2). Yet among the

model-averaged coefficient estimates, PCFreq had a strong effect on

the nesting and abundance responses to noise (Fig. 3), but there

was no support for the influence of PCDur and urban-tolerance

classification on either response to noise because the 95% CIs

overlapped zero (Table 3, Fig. 3). The negative relationship

between PCFreq and response to noise reflected that species with

lower frequency vocalizations (including frequencies ,2.0 kHz),

such as the western tanager (Piranga ludoviciana), black-headed

grosbeak (Pheucticus melanocephalus), and mourning dove (Zenaida

macroura), had strong negative responses to noise, but species with

higher frequency vocalizations (primarily.3.0 kHz), such as the

chipping sparrow (Spizella passerina), tended to have neutral

Table 1. Factor loadings on two principal components for
acoustic measures taken from bird vocalizations.

Factor loadings

PCFreq PCDur

Eigenvalue 1.864 1.368

Percent variance 57.926 31.186

Peak frequency 20.515

Lowest note peak frequency 20.493 0.173

Minimum frequency 20.471 0.101

Maximum frequency 20.498 0.106

Song length 20.700

Number of notes 20.148 20.677

A blank value indicates that the variables did not load strongly on that principal
component axis.
doi:10.1371/journal.pone.0027052.t001

Table 2. Model-selection results for full dataset examining
the influence of vocal features and urban classification in
explaining responses to noise.

Candidate models K AICc DAICc wi

Nesting response

PCFreq, urban 4 79.590 0.000 0.51

PCFreq 3 81.050 1.460 0.24

PCFreq, PCDur, urban 5 82.049 2.459 0.15

PCFreq, PCDur 4 82.758 3.168 0.10

Null 2 89.211 9.621

Urban 3 90.730 11.140

PCDur 3 91.010 11.420

PCDur, urban 4 92.960 13.370

Abundance response

PCFreq, urban 4 53.650 0.000 0.51

PCFreq 3 58.302 1.181 0.28

PCFreq, PCDur, urban 5 58.504 2.845 0.12

PCFreq, PCDur 4 60.929 3.526 0.09

Null 2 64.011 9.643

Urban 3 64.030 11.290

PCDur 3 66.450 11.890

PCDur, urban 4 66.690 13.860

PCFreq was negatively associated with signal frequency, PCDur was negatively
associated with signal duration, and urban reflects species classification as
urban-tolerant (breeding in urban areas) or non-urban. All candidate models are
shown, including the null (intercept only model). K represents the number of
parameters in the model, AICc values are Akaike’s information criteria for small
sample size and LAICc is the difference in AICc values from the top-ranking
model. Models with LAICc,4 are considered to have support and used to
calculate Akaike weights (wi) for model-averaging coefficient estimates.
doi:10.1371/journal.pone.0027052.t002

Noise Pollution Filters Birds Nonrandomly
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responses to noise. Still, other species with high-frequency

vocalizations, such as the house finch (Carpodacus mexicanus),

black-chinned hummingbird, and bushtit, tended to respond

positively (Fig. 3).

There was no evidence for an influence of body mass on PCDur

values (bMass = 0.07460.293, 95% CI = 20.527, 0.675). However,

there was a strong positive influence of body mass on PCFreq

(bMass = 1.47060.288, 95% CI = 0.880, 2.059; Fig. 4), supporting

previous findings that frequency is negatively related to body size

[23–26] and suggesting that larger birds with lower frequency

signals may be more sensitive to noise than smaller birds with

signals located at higher frequencies. In contrast, neither vocal

features nor body mass differed between urban-tolerant and non-

urban species (PCFreq, two-tailed-t28 = 1.150, p = 0.260; PCDur,

two-tailed-t28 = 0.990, p = 0.331; loge body mass, two-tailed-

t28 = 0.659, p = 0.515), suggesting no differences in signal duration,

signal frequency or body mass between the two classifications.

Discussion

Our finding that signal frequency (PCFreq) explained variation in

responses to noise for two data sets provides evidence for a causal

relationship between sensitivity to noise and vocal frequency. In

contrast, increased signal duration (PCDur), which may improve

signal detection in noisy environments [17–19], and urban

tolerance failed to explain responses to noise. Although there

may be a link between vocal frequency and sensitivity to noise, the

relationship should only explain negative or neutral responses to

noise in terms of habitat use. It is less clear why smaller species

with high-frequency vocalizations responded positively to noise.

Figure 3. Influence of vocal frequency (PCFreq) on response to noise. PCFreq (negatively associated with four vocalization frequency features)
had a strong effect on species’ (A) nesting and (B) abundance responses to noise (both panels, n = 30). Y-axis values reflect the natural log of the
ratios reflecting response to noise: (A) mean number of nests per treatment vs. control site and (B) mean number of individuals per survey location
on treatment vs. control sites. Values above zero (dashed horizontal lines) indicate greater abundance on treatment sites (positive response to noise),
and values below zero indicate greater abundance on control sites (negative response to noise). Distance from zero reflects the relative strength of
the response. (C) Sample spectrograms of species vocalizations (black) and anthropogenic noise with decreasing acoustic energy at higher
frequencies (grey; included for display only). For all panels, symbols other than solid circles are as follows: asterisk = black-chinned hummingbird, solid
square = bushtit, open diamond = chipping sparrow, crossed diamond = house finch, open circle = black-headed grosbeak, open triangle = western
tanager, open square = mourning dove (see also Audio S3, S4, S5, S6, S7, S8, S9 for samples of each species).
doi:10.1371/journal.pone.0027052.g003

Table 3. Estimates for the influence of explanatory variables
on responses to noise.

Model set/explanatory variables effect size ± SE lower, upper CIs

Nesting response

PCFreq 20.31460.085 20.487, 20.140a

PCDur 0.02260.069 20.118, 0.161

urban status – tolerant 0.39760.384 20.370, 1.160

Abundance response

PCFreq 20.20560.055 20.317, 20.093a

PCDur 0.00660.036 20.068, 0.079

urban status – tolerant 0.24260.245 20.248, 0.733

GLM model-averaged coefficient estimates, plus unconditional standard errors
(SE), and lower and upper 95% confidence intervals (CIs) are presented for all
explanatory variables in supported models (LAICc,4).
aEffects with confidence intervals that do not overlap zero, indicating a strong
effect.

doi:10.1371/journal.pone.0027052.t003
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These positive responses to noise likely depend on species’ abilities

to successfully dispatch critical signals, but also may represent

habitat selection and use based on other cues. For example, in our

study area species richness is lower in noisy areas and a key nest

predator is less abundant than in quiet areas [6]. It is possible that

some species recognize cues indicative of lower interspecific

competition or lower nest predation risk and preferentially settle in

noisy areas.

Two previous studies support our finding that vocal frequency

may influence sensitivity to noise [7,29]; however, their findings had

been somewhat limited due to complications associated with road

noise and lack of repetition in the study [7] or due to a small sample

of species [29]. However, taken collectively with our findings, they

suggest that higher frequency signals are important for species

persistence in noisy environments and are in line with the mounting

number of studies suggesting that some birds regularly inhabiting

noisy areas sing at a higher frequency to reduce masking by noise

(e.g., refs. [8,19,20,30,31], but see ref. [32] for a non-adaptive

explanation for frequency changes in noise) and that higher

frequency songs are advantageous for male-female communication

under noisy conditions [31]. Whether species-specific frequency

features and noise-dependent signal adjustments interact, permit-

ting species to remain in noisy environments, is not yet known, but

may depend on the degree of spectral overlap between the signal

and background noise. For example, noise-dependent increases in

signal frequency are often fairly small (approximately 200 to

900 Hz) [8,19,20,30,32]; therefore, frequency increases for species

with low-frequency signals may not increase the contrast between

the signal and noise because noise may have considerable energy at

frequencies well above low-frequency signals. Instead, species with

low-frequency vocalizations may need to rely on other noise-

dependent vocal adjustments or abandon noisy areas.

One limitation of our study was that we were unable to examine

the influence of vocal amplitude on different species’ responses to

noise because of the many complications associated with

measuring vocal amplitude in free-living birds [32,33]. Commu-

nication theory and empirical data support the notion that

signaling with greater amplitude increases signal detection by a

receiver [17,18,32]. Additionally, the increase in vocal amplitude

in response to noise (the Lombard effect) appears to be a

widespread strategy employed by birds and mammals to overcome

noisy signaling conditions (reviewed in ref. [34]), and it is probable

that individuals included in this study were responding to noise

exposure with increases in vocal amplitude.

Despite potential increases in amplitude by individual birds

vocalizing in noise, species-specific differences in vocal amplitude

could also affect their sensitivities to masking by noise. Yet because

avian body mass is positively related to vocal amplitude [35] or

loudness [24], but negatively related to vocalization frequency

[23,25,26], expectations of how vocal amplitude and frequency

trade-off to affect vocal communication in areas with low-

frequency noise is less clear. On one hand, the ability to effectively

communicate should increase with body size via higher signal

amplitudes. On the other hand, communication should become

progressively more difficult with increases in body size due to

decreases in signal frequency. Although we did not explicitly test

for an influence of vocal amplitude, we found a strong negative

relationship between body mass and PCFreq. This implies that

higher vocal amplitudes of larger species may not be sufficient to

overcome the masking potential of noise, but the frequency

content of the signal may be more important. That is, larger birds

may be able to vocalize more loudly, but they also vocalize at

lower frequencies where noise has more acoustic energy. This

problem for larger birds may be further compounded by their

defense of larger territories [36], whereby communication

distances are greater between individuals.

Although noise may exclude species with low-frequency vocali-

zations from noisy environments, this does not necessarily mean

there are no costs for those that remain. Many of the negative nesting

responses to noise were stronger than the negative abundance

responses, which could represent a greater proportion of unpaired

males on treatment sites relative to control sites, a pattern previously

observed for reed buntings (Emberiza schoeniclus) and ovenbirds (Seiurus

aurocapilla) breeding in noisy and quiet areas [30,37]. Whether

patterns of pairing success within noisy areas depend on the degree

to which males’ signals are masked by low-frequency noise is

unknown; however, within established pairs, masking can impair

male-female communication by masking low-frequency songs that

are preferred by female great tits (Parus major) [31]. Masking of low-

frequency signals that are reliable cues of male quality and condition

[38,39] could also explain patterns of reduced clutch sizes for great

tits nesting in noisy areas, whereby females’ song-based assessments

of male quality are compromised and females invest less energy in

egg production [40]. It is also possible that masking of low-frequency

signals could compromise females’ abilities to discriminate among

males, leading to maladaptive mating decisions by pairing with

smaller or lower quality males whose higher frequency signals are

masked less by noise. Key to understanding the full costs of breeding

in noisy areas will require studies that integrate data on individual

pairing success, body size, and signal features.

Previous findings suggest that urban birds are predisposed to

noisy conditions with higher frequency songs [10], yet we did not

find vocal features to differ between urban-tolerant and non-urban

birds, nor did body mass or response to noise differ between these

groups. One potential explanation for these conflicting results is

that we did not use within-genus species pairs as did Hu and

Cardoso [10]; however our study had the advantage of examining

species-specific responses to noise in the absence of corollaries of

urbanization; thus, we were limited to the species that regularly

breed in our study region. Regardless of urban-tolerance classifi-

cation, we found that most species tended to respond negatively to

Figure 4. Relationship between body mass and PCFreq. Because
frequency features are negatively associated with PCFreq, the positive
relationship depicted reflects a negative relationship between body
mass and vocal frequency.
doi:10.1371/journal.pone.0027052.g004
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noise. This suggests that even urban-adapted species that may have

broad tolerances to a variety of environmental conditions may still

be sensitive to noise. Instead, their ubiquity in urban areas may

depend more on access to foraging and nesting resources [12] or

potentially depend on the absence of key predators or competitors

that avoid urban areas [6]. Still needed are studies that aim to

understand how these forces interact with noise exposure to

influence settlement and habitat use patterns within cities.

Our findings provide strong evidence that chronic noise filters

bird communities by masking acoustic communication and

strengthens the growing body of evidence that human-generated

acoustics represent a selective force shaping the ecology of birds in

noisy landscapes. Those species most likely to abandon noisy areas

are birds with low-frequency signals, which also tend to have

larger bodies. In contrast, smaller species may not only persist in

noisy environments through transmission of higher frequency

signals, but benefit from increased reproductive success relative to

those nesting in less noisy areas due to reduced predation risk [6].

Yet the benefit associated with reduced predation may be a fitness

tradeoff balanced by costs related to male-female communication,

pairing success, and reproductive success in the absence of

predation [30,31,37,40]. Given that increases in noise exposure

is a global phenomenon, more attention is needed to evaluate

individual and population-level tradeoffs associated with breeding

in noisy areas, even among urban-tolerant species that may also

respond negatively to noise. At the community-level, we must still

determine whether noise is an agent of ecological filtering for other

taxa that rely on acoustic communication.

Supporting Information

Audio S1 Sample recording of background noise on a
treatment site at a distance of 100 m from the compres-
sor exhaust. See Fig. 2 in the main text for spectrogram and

power spectra displaying the distribution of acoustic energy.

(WAV)

Audio S2 Sample recording of background noise on a
control site at a distance of 100 m from the natural gas
wellhead. See Fig. 2 in the main text for spectrogram and power

spectra displaying the distribution of acoustic energy.

(WAV)

Audio S3 Sample recording of black-chinned humming-
bird vocalizations. See Fig. 3(C) in main text for
spectrogram.

(WAV)

Audio S4 Sample recording of bushtit vocalizations. See

Fig. 3(C) in main text for spectrogram.

(WAV)

Audio S5 Sample recording of chipping sparrow vocal-
izations. See Fig. 3(C) in main text for spectrogram.

(WAV)

Audio S6 Sample recording of house finch vocaliza-
tions. See Fig. 3(C) in main text for spectrogram.

(WAV)

Audio S7 Sample recording of black-headed grosbeak
vocalizations. See Fig. 3(C) in main text for spectrogram.

(WAV)

Audio S8 Sample recording of western tanager vocali-
zations. See Fig. 3(C) in main text for spectrogram.

(WAV)

Audio S9 Sample recording of mourning dove vocaliza-
tions. See Fig. 3(C) in main text for spectrogram.

(WAV)
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