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SUMMARY

The application of a new aircraft noise prediction program (ANOPP) to
CTOL noise prediction is outlined. Noise prediction is based on semi-
empirical methods for each of the propulsive system noise sources, such
as the fan, the combustor, the turbine, and jet mixing, with noise-critical
parameter values derived from the thermodynamic cycle of the engine. Com-
parisons of measured and predicted noise levels for existing CTOL aircraft
indicate an acceptable level of accuracy.

INTRODUCTION

The noise produced by jet-powered aircraft has become an increasingly
important consideration since their introduction to the commercial fleet in
the late 1950's. The noise of aircraft operating near airports seriously
affects over six million people in the United States alone. Aircraft noise
has, therefore, become, as indicated in figure 1, an important consideration
in the design of CTOL aircraft. Consequently, methods for calculating, with
known accuracy, the environmental noise that a proposed new aircraft will
produce are being developed. Although not indicated in figure 1, noise
minimization is at odds with other design considerations such as weight
minimization, propulsion plant efficiency, and direct operating cost minimi-
zation and thus increases the number of interactions to be juggled by the
preliminary design team for a new aircraft.

In order to predict the noise that an aircraft will produce, the specifics
of its aerodynamic and propulsion cycle characteristics must be known and
values of the noise-critical parameters supplied as input data to the noise
prediction algorithms. Furthermore, the computer implementation of the noise
prediction algorithms must be compatible with the requirements mandated by the
preliminary design activity; namely, it must be complete, responsive, and
accurate.

The purpose of this paper is to describe a state-of-the-art aircraft
noise prediction program (ANOPP) recently developed by NASA. This program
is presently being used by NASA's supersonic cruise aircraft research (SCAR)
project and by NASA in an international study to determine expected noise
levels of future supersonic cruise aircraft.



SYMBOLS AND ABBREVIATIONS

A atmospheric absorption factor

c ambient speed of sound
a

D drag

D(6) directivity factor

f frequency

G ground effects factor

g gravitational acceleration

h altitude (see fig. 2)

I source noise intensity

L lift

M aircraft Mach number

m mass flow rate

m(9) forward speed exponent

2
p mean-squared pressure at observer

R gas constant

R(t) aircraft position vector

r(t) observer position vector relative to aircraft

r reference distance
o

S entropy

S(f) frequency factor

T temperature

T ambient temperature

T(h,V,n ) engine thrust

t time



U universal power function for jet noise

V aircraft velocity

V aircraft acceleration

W aircraft weight

x,y reference coordinates (see fig. 2)

a coefficient of absorption

F reflected wave factor

Y thrust angle

6,< j> aircraft orientation angles

II acoustic power

p density

p ambient air density
3.

fi corrected engine rotor speed

(A) density exponent

EPNL effective perceived noise level

PNL perceived noise level

PNLT tone-corrected perceived noise level

OASPL overall sound pressure level

SPL sound pressure level

NOISE PREDICTION METHODOLOGY: ANOPP

The essential ingredients to aircraft noise prediction (see fig. 2)
are (1) the source intensity I, (2) the aircraft position given by the
vector R(t) , (3) the aircraft orientation given by 0 and <j>, and (4) the
location of the observer given by the vector r(t). In addition, the
atmospheric and ground-impedance characteristics indicated by A and G
must be specified. The source intensity I is the sum of the individual



noise sources and their associated directivity D.(6,<|>) and spectral
S.(f) factors: 1

All
Sources „

—lj D.(6,<j>) S.(f) (1)
. -. 47rr X 1

1=1 O

The mean-squared pressure at the observer is given by

where A accounts for atmospheric absorption and G accounts for ground
effects. When the source intensity is specified as the mean-squared
pressure in, say, 1/3-octave frequency bands, the resulting mean-squared
pressure at an observer in these same frequency bands can then be calcu-
lated and converted to sound pressure level (SPL) in decibels. Subsequent
computation of perceived noise level (PNL), tone-corrected perceived noise
level (PNLT), effective perceived noise level (EPNL), or some other
logarithmic noise scale may then be accomplished (ref. 1).

Generation of Noise-Critical Parameters

Aircraft flyover noise depends on the aircraft flight trajectory and on
the throttle setting (thermodynamic state of the engine) during flight. The
noise prediction algorithms implemented in ANOPP require as input data, values
of specific propulsion cycle parameters together with the resulting flight
trajectory of the aircraft.

Propulsion cycle.- The noise generated by aircraft engines is related
to the thermodynamic state of the engine during the flight. For example,
the combustion noise depends on pressures and temperatures at the combustor
inlet and exit stations, and the fan noise is correlated with the total
temperature rise across the fan. These variables are obtained from a
temperature-entropy diagram for the engine cycle, as shown in figure 3
(ref. 2). This diagram represents the thermodynamic state of the engine
and contains the information which is necessary for the prediction of
propulsion noise. Presently, ANOPP accepts data from an externally
generated T-S diagram as input; however, since the aircraft trajectory
also depends on these data, a capability is being added for computing the
engine cycle within the ANOPP system.



Flight dynamics and aircraft trajectory.- Noise prediction requires
a knowledge of the position of both the aircraft and the observer. Since
ANOPP accounts for directivity effects, the aircraft orientation must also
be known. For the purpose of this paper, a simple two-degree-of-freedom
analysis of the trajectory is adequate. Figure 4 shows typical flight-path
segments for a take-off and for a landing maneuver. The take-off has a
ground roll, a lift-off, an acceleration, and a pull-up segment; the
landing has approach, flare, and roll-out segments.

The basic equations controlling the trajectory are the conditions of
dynamic equilibrium tangent to and normal to the flight path. The tangential
equation is

W "
- V = -W sin y + T - D (3)
O

where W is the aircraft weight; T, the thrust, which is a function of
altitude, aircraft velocity, and corrected rotor speed; D, the aerodynamic
drag; V, the aircraft velocity; and y» the thrust angle. The normal
equation is

L = W cos

where L is the aerodynamic lift. Combining these equations gives

V T cos Y . xcx
I= w - 075) - sin Y - . (5)

Note that different aircraft may have the same trajectories if the similarity
parameters T/W and L/D in equation (5) are equal and if the aircraft are
operated in the same fashion.

Component Noise Sources: Jet Noise

Typical noise-generating components of a fan jet engine are indicated
in figure 5. The ANOPP library of prediction modules contains methods for
computing the acoustic power II for most of the significant component
noise sources on modern jet-powered CTOL aircraft, including jet noise
(refs. 3 and 4), fan and compressor noise (ref. 5), combustion noise
(ref. 6), turbine noise (ref. 7), and airframe noise (refs. 8 and 9).
The procedure for predicting the acoustic power of a propulsion noise source
using parameter values from the engine cycle is outlined below for jet
noise. The procedures for other propulsion noise sources are similar and
are described by Zorumski (ref. 10).



The noise from a single circular jet (see fig. 6) is predicted by
using the semiempirical formulae proposed by the Society of Automotive
Engineers aircraft noise standards committee (ref. 3). The SAE proce-
dure gives the total acoustic power from the jet as

w - 1

. 6.67 x M-> f „ -SI

/ J E T \where U( - 1 is the universal power curve for jet noise, which follows
\ ca '

1 JTFT
approximately a V law in the velocity range up to - = 2 and a

J ij J. c
a

lower exponential value at higher velocities. The density exponent w varies
from -1 at low jet velocities to +2 at high jet velocities. The intensity
of a static jet noise source is given by

= D(8) S ( f ) (7)
STATIC , 247Tr

o

where D(0) and S(f) are directivity and frequency factors peculiar
to jet noise, and directivity dependence on the angle <j) has been dropped.
The intensity of a moving jet noise source is given by

-1 r -.m(B)

'FLIGHT - (1 - M cos e) |(VJET-V)/VJET1 STATIC (8)[(VJET-V)/VJET"|

where the additional terms account for observed effects for an aircraft in
forward flight.

Finally, the mean-squared pressure at an observer location is cal-
culated using

The jet noise prediction procedure is summarized in figure 7.

CTOL NOISE PREDICTION

The ANOPP flow chart for a typical CTOL noise prediction is given in
figure 8. The aircraft performance section of the program consists of



subprograms for the engine cycle analysis and for the aircraft trajectory
analysis. The engine cycle analysis is used to predict the thermodynamic state
of the engine, that is, pressures, temperatures, and flows at points within the
engine, from engine component data. These data are necessary inputs to the
noise source prediction modules of ANOPP. The aircraft trajectory subprogram
predicts the distance, altitude, and pitch of the aircraft as functions of
time from an input of the thrust setting and angle-of-attack scheduling, the
aerodynamic data, and the weight of the aircraft. Alternately, the cycle and
trajectory data may be input as time-dependent tables. Once the cycle and
trajectory computations are complete, the source noise power II, directivity D,
and spectrum S are evaluated for each noise source. Shielding effects may
then be introduced by modifying the directivity. The noise from different
sources is then added and the effects of spherical spreading and atmospheric
attenuation are introduced to obtain the time history of the acoustic spectrum
at a selected observer position. With this spectrum history, the subjective
effects of the noise, such as perceived noise level (PNL) and effective
perceived noise level (EPNL), may be computed.

ANOPP ARCHITECTURE

ANOPP architecture provides for the efficient generation, handling, and
storage of the large quantities of data required by the aircraft noise
prediction process through an extremely flexible data base management scheme.
Noise prediction methodologies are implemented in independent functional
modules that are scheduled by the executive system at execution time in
accordance with simple control instructions provided by the user. Job progress
may be inspected or protected from computer failure by a checkpoint-restart
provision. A typical CTOL noise prediction including trajectory analysis,
atmospheric modeling, propagation and ground effects, and calculation of
component and total noise levels at selected observer positions can all be
accomplished in one computer run with turnaround time on the order of an
hour or two.

ANOPP VALIDATION STATUS

Validation of ANOPP commences at the module level. The circular jet noise
module, for example, implements the equations of reference 2, which are the
result of correlation with a data base of approximately 30 000 measurements.
The inverted flow (coannular) jet noise equations implemented in a separate
module have been correlated against nearly 200 000 measurements on subscale
model jets. Prediction methodologies for other component noise sources are
to a lesser degree also validated at the module level but far less high-
quality data are available. In particular, much more data are required for
turbomachinery noise sources, which can dominate or contribute significantly



to aircraft noise levels for certain operating conditions. Although ANOPP
incorporates the best available prediction technology, much work is required
in order to achieve the highest possible level of confidence in each component
noise source prediction method.

Measured aircraft flyover data together with the required values of engine
cycle parameters have recently become available which permit comparison with
predicted noise levels. In figure 9 measured data for a Learjet airplane
in level flight at an altitude of 122 m (400 ft) are compared with ANOPP
predicted levels. The ANOPP computations were made using only jet,
shock cell, and combustion noise, since contributions from other sources
were judged to be negligible (see fig. 8). The predicted perceived noise
level as a function of angle to engine inlet averaged about 3 dB low. The
spectrum at 0 = 120° was, however, well predicted.

In figure 10 measured data for a Concorde aircraft in level flight
at an altitude of 300 m (1000 ft) are compared with ANOPP predicted
levels, again using only the jet, shock cell, and combustion noise modules.
The predicted perceived noise level agreement with data is good as is the
spectrum agreement at 6 = 130°. The difference between measured and predicted
levels for the spectrum at frequencies above 2000 Hz may be due to contributions
of turbomachinery noise sources, which were not included in the ANOPP prediction.
For both these examples the measured and predicted effective perceived noise
levels (EPNL) were in excellent agreement.

In a recent informal study which involved measured data for several
aircraft with each operating at power settings corresponding to both take-
off and landing, the ANOPP results, which included predictions for turbo-
machinery and airframe noise, averaged 2 to 3 dB below the measured per-
ceived noise levels. The accuracy of ANOPP predictions was generally good
and indicated that ANOPP is a viable system and acceptable for use in the
preliminary design process.

Present validation plans call for detailed comparison of measured and
predicted noise levels for high-bypass-ratio, wide-body aircraft. Every
attempt will be made to identify component noise sources through spectral
analysis and other techniques. Data for low power settings for which
jet noise is not the dominant source will be included in order to
validate turbomachinery, combustion, and airframe noise prediction
methods.

CONCLUDING REMARKS

A comprehensive, efficient, user-oriented aircraft noise prediction
program (ANOPP) developed by NASA has been described. The program implements
semiempirical methods for predicting aircraft noise from a knowledge of the



trajectory and the thermodynamic cycle of an existing or proposed aircraft.
Comparisons of measured and predicted noise levels for existing CTOL aircraft
indicate an acceptable level of accuracy. Other comparisons, not presented
in this paper, also corroborate this conclusion. Further validation studies
involving high-bypass-ratio propulsion systems together with continued
improvements and application of the ANOPP system to NASA projects are
anticipated.

Langley Research Center
National Aeronautics and Space Administration
Hampton, VA 23665
April 28, 1978
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Figure 1.- Noise is an aircraft design constraint.
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Figure 2.- Required ingredients for aircraft noise prediction.
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Figure 4.- Flight trajectories.
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Figure 9.- ANOPP flyover noise validation — Learjet.

10 dB

PNL,
dB

O DATA
ANOPP

j i

10 dB 0 = 130U

20 60 100
0, deg

140
l

180 .063 .250 1 2 4 8
FREQUENCY, kHz

Figure 10.- ANOPP flyover noise validation — Concorde.
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