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Abstract—The degree of malignancy of osteosarcoma and its tendency to metastasize/spread mainly depend on the 
pathological grade (determined by observing the morphology of the tumor under a microscope). The purpose of this 
study is to use artificial intelligence to classify osteosarcoma histological images and to assess tumor survival and 
necrosis, which will help doctors reduce their workload, improve the accuracy of osteosarcoma cancer detection, and 
make a better prognosis for patients. The study proposes a typical transformer image classification framework by 
integrating noise reduction convolutional autoencoder and feature cross fusion learning (NRCA-FCFL) to classify 
osteosarcoma histological images. Noise reduction convolutional autoencoder could well denoise histological images 
of osteosarcoma, resulting in more pure images for osteosarcoma classification. Moreover, we introduce feature cross 
fusion learning, which integrates two scale image patches, to sufficiently explore their interactions by using additional 
classification tokens. As a result, a refined fusion feature is generated, which is fed to the residual neural network for 
label predictions. We conduct extensive experiments to evaluate the performance of the proposed approach. The 
experimental results demonstrate that our method outperforms the traditional and deep learning approaches on 
various evaluation metrics, with an accuracy of 99.17% to support osteosarcoma diagnosis. 
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I. INTRODUCTION 

steosarcoma is a malignant tumor that originates from 
the bone, and grows rapidly to form tumor bone-like 

tissue [1]; it is a common orthopedics disease. Generally, 
osteosarcoma easily occurs at the lower end of the femur, upper 
end of the tibia, and the upper end of the humerus, especially 
around the knee joint. In the population, osteosarcoma tends to 
occur in adolescents and children [2], and its symptoms include 
mild local bone pain, redness, and fever at the tumor site. 
Persistent pain by osteosarcoma affects patient movement, and 
thus it is one of the most important tumors that seriously affects 
labor productivity and even threatens life. Therefore, early 
diagnosis and treatment have particular significance. 
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Existing diagnostic techniques, including MRI, ultrasound, 
computer tomography (CT) and positron emission tomography 
(PET), have a crucial role in tumor detection [3]–[6]. However, 
when these techniques cannot yield an accurate judgment, 
doctors prefer to extract tissue samples from tumor for further 
analysis. Concretely, the extracted samples will be 
transformered into slides or smears, and then stained to show 
certain details of the cells, which is usually time-consuming 
and causes great pain patients. Therefore, the development of  
automatic detection technology for osteosarcoma has great 
value.  

Recently, automatic analysis algorithms of microscopic 
images by computers have become the primary tool for cancer 
detection. These algorithms also provides a feasible solution for 
radiologists and pathologists to automatically detect benign and 
malignant tumors based on images [7]. However, compared 
with doctors’ predictions, automatic analysis algorithms 
usually have lower performance in both efficiency and 
accuracy, which greatly limits their applications. Fortunately, 
the advent of the artificial intelligence era introduces hope to 
the diagnosis of this tumor, and clinical applications have 
become more realistic [8]. Machine learning algorithms have 
been developed to extract visual features from histological 
images and to calculate similarities between two different 
images, which promotes the continuous progress of diagnostic 
models [9], [10]. 

This paper aims to explore an automatic analysis algorithm 
for the diagnosis of osteosarcoma. Instead of adopting 
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traditional image classification networks such as NB, SVM, 
and CNN [12]–[21], [23], [24], our research focuses on 
improving the structure of the vision transformer to enhance the 
image classification performance for osteosarcoma prediction. 
Vision transformers demonstrate superior performance in 
natural image classification and can support large-scale parallel 
computing. However, current transformer–based approaches 
directly receive natural images without any noise preprocessing, 
which is not suitable for histological images since noise 
information would degrade the performance for osteosarcoma 
prediction. Moreover, how to integrate multiscale image 
features in transformers has rarely been explored for 
histological image classification, which has a deep impact on 
classification accuracy. 

Motivated by this finding, this paper proposes a novel image 
classification framework that is based on vision transformers 
by integrating a noise reduction convolutional autoencoder and 
feature cross fusion learning layer (NRCA-FCFL). First, the 
approach preprocesses images by a noise reduction 
convolutional autoencoder to reduce noise in histological 
images. Second, two independent vision transformers (ViTs) 
transfer the local image information of different scales to the 
feature cross fusion learning layer, which aims to effectively 
fuse both features according to the CLS tokens for performance 
improvement. Last, a nonlinear residual neural network is 
adopted as the classifier to output labels for each histological 
image. We conducted extensive experiments on osteosarcoma 
data from UT Southwestern/UT Dallas for viable and necrotic 
tumor assessment. The experimental results demonstrate that 
our method consistently performs well. The main contributions 
are summarized below: 

1.    We propose a novel image classification framework 
NRCA-FCFL, based on a vision transformer for tumor 
survival and necrosis assessment. The integration of the 
noise reduction convolutional autoencoder could 
effectively reduce noise in histological images to boost 
the performance 

2.    We introduce the feature cross fusion learning layer to 
effectively integrate both features from an image with 
different patch scales. Two CLS tokens are adopted to 
exchange information to better extract robust visual 
features. 

3.   We fully explore the performance of existing machine 
learning methods on osteosarcoma tissue image analysis 
tasks, and offer a baseline model for scholars to carry 
out follow-up research. Extensive experiments are 
conducted and demonstrate the superiority of the 
proposed approach.  

II. RELATE WORK 

The diagnosis of osteosarcoma has always been a complex 
problem in the medical field. Many researchers use machine 
learning algorithms to explore the diagnosis methods of 
osteosarcoma [24]. Zhi et al. employed logistic regression, the 
support vector machine (SVM) and the random forest (RF) to 
classify metabolomics data of healthy controls and patients 
with benign tumors or osteosarcoma[25]. Logistic regression, 

the support vector machine and the random forest have 
accuracy rates of 88%, 90%, and 97%, respectively, which 
successfully distinguished healthy controls and tumor cases. 
The four pseudogene classifier identified by Feng et al. through 
machine learning can be applied as a new prognostic marker for 
the survival of osteosarcoma;  its AUC value reaches 0.878 [26]. 
Harish et al. utilized machine learning and deep learning 
models to evaluate viable and necrotic tumors from the entire 
slide image of osteosarcoma [27]. Bingsheng et al. proposed a 
noninvasive and accurate method to assess the necrosis of 
osteosarcoma after NACT by combining mpMRI with machine 
learning. The results show that machine learning can more 
accurately distinguish tumor necrosis and tumor survival [28]. 

With abundant computing resources, deep learning has 
gradually become the preferred method of image classification 
[29], [30]. Rashika et al. constructed a convolutional neural 
network to analyze the histopathology of osteosarcoma; its 
diagnosis accuracy rate was 92% compared with the AlexNet, 
LeNet and VGGNet models [31]. DM et al. selected six popular 
deep learning models to explore the best osteosarcoma 
classification model. Among them, the VGG19 model has an 
accuracy rate of 96% in binary and multiclass classification 
tasks [32]. Yu et al. designed a deep model with a conjoined 
network (DS-Net). Through experiments on histological slides 
of osteosarcoma stained with hematoxylin and eosin (H&E), 
DS-Net can achieve a 95.1% average accuracy rate [33]. David 
et al. designed an effective labeling method for osteosarcoma 
treatment response evaluation based on deep learning. The 
CNN model uses only 7 hours of annotation training and can 
successfully estimate the necrosis rate within the expected 
interobserver variation rate of nonstandardized manual surgical 
pathology tasks [34]. 

Because of the successful application of the transformer to 
the image classification field, the performance of the 
transformer has been better than the best neural network on a 
large-scale data set. Xiyue et al. proposed a hybrid model 
(TransPath), which is pretrained in an SSL manner on 
massively unlabeled histopathological images to discover the 
inherent image property and to capture domain-specific feature 
embedding[35]. Hang et al. presented a novel embedded-space 
MIL model that is based on a deformable transformer (DT) 
architecture and convolutional layers, termed DT-MIL[36]. 
Ziyang et al. proposed a new method for survival prediction, 
which is named SeTranSurv. SeTranSurv extracts patch 
features from WSIs through self-supervised learning and 
adaptively aggregates them according to their spatial 
information and correlation between two patches using the 
transformer[37]. Presently, the transformer model has been 
widely employed in the classification task of medical images. 
However, the transformer model still has certain shortcomings, 
mainly including ① the need for a large amount of training data; 

②  excessively large training parameters and model; ③ 
inability of  the transformer model based on the perceptron to 
surpass the model of CNN or the combination of CNN and 
transformer in terms of noise reduction and classification 
performance. 
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III.  MATERIALS AND METHODS 

A. Materials 

From 1995 to 2015, a team of clinical scientists at the 
University of Texas Southwestern Medical Center in Dallas 
collected archive samples from 50 osteosarcoma patients at 
Dallas Children's Medical Center to create this dataset. This 
dataset consists of histological images of osteosarcoma stained 
with hematoxylin and eosin (H&E). According to the primary 
cancer type in each image, the images are labeled as nontumor, 
viable tumor, and necrosis by two medical experts, where each 
image is only labeled by one expert. As a result, the dataset 
contains 1,144 images with a 1,024  1,024 resolution and 10X 
magnification, including 536 (47%) nontumor images, 263 
(23%) necrotic tumor images, and 345 (30%) surviving tumor 
images. Fig. 1 shows three examples of nontumor, necrotic 
tumors and viable tumors. To obtain additional samples, we 
split each 10X magnification image into 16 40X magnification 
images, each of which has a 256 256 resolution. As a result, 
the dataset expands to 18,304 images, where 750 slices are 
taken as the testing set, and the remaining slices are divided into 
the training set and the validation set at a ratio of 0.8:0.2. The 
raw data and their detailed descriptions can downloaded from 
the website1. 

 

 
Fig. 1 An illustration of three histological images with necrosis, 
nontumor, and viable tumor for osteosarcoma. 
 

B. Proposed method 

Fig. 2 demonstrates the framework of our NRCA-FCFL. 
Given an input image, first, a noise reduction convolutional 
autoencoder (NRCA) reduces its noise to generate a denoising 
image. Second, the denoising image is divided into two groups 
of image patches with different sizes, and then each group is 
linearly projected to a token sequence with an additional 
classification token (CLS). Third, two token sequences are fed 
to the multiscale transformer encoder to extract robust visual 
features, where each multiscale transformer consists of two 
branches to separately process each token sequence, and then 
fuses them by using the feature cross fusion learning layer. Last, 
the generated fusion feature is passed to the residual neural 
network for classification. Next, we will elaborate the details of 
the noise reduction convolutional autoencoder, multiscale 
transformer and residual neural network. 
 
1 https://wiki.cancerimagingarchive.net/pages/viewpage.actionpageId=5
2756935 

 
Fig. 2 An overview of the NRCA-FCFL framework. 
 
1) Noise reduction convolutional autoencoder  

Different from natural images, data slicing and stacking for 
histological images may lead to a large amount of information 
loss. Moreover, a histological image usually contains useless 
noise information, which significantly affects the classification 
performance for osteosarcoma prediction. Therefore, our 
framework introduces a noisy reduction convolutional 
autoencoder (NRCA) to alleviate this problem, which has been 
proven to be effective for medical image classification 
[38]–[40]. As shown in Fig. 3, the NRCA consists of two 
components: encoder and decoder. The encoder is composed of 
multiple blocks, where each block adopts a convolution 
operation to extract features from a 2D image; and then 
performs pooling and normalization to filter useless 
information. As a result, amounts of noise information are 
discarded. On this basis, the decoder adopts transposed 
convolution to recover the image by increasing the feature map 
and amplifying the dominant feature information. Therefore, 
the recovered image contains more useful information with less 
noise than the original image, which would better support the 
following steps. 

 
Fig. 3 An illustration of the details of the NRCA structure. 
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2) Multiscale attention cross fusion learning transformer  
After noise reduction, images are directly transmitted to two 

independent ViTs for feature extraction. Since the size of the 
image patch will affect the classification accuracy, we propose 
to use two different patch sizes as the inputs of the two ViTs. 
After the convolution operation, image patches of different 
sizes undergo a linear mapping to obtain their relative position 
information. The difference between image processing and 
neural networks lies in the additional classification token (CLS), 
which is the primary indicator for classification [38][39]. ViT 
uses the CLS token that interacts with the patch mark on each 
ViT encoder as the final embedding. Based on this finding, we 
introduce the dual-channel ViT to encode small and large 
tokens from two independent branches. For each marker of the 
two branches, we add a learnable position embedding in front 
of the marker to learn the position information in the ViT. We 
then propose a feature cross fusion learning layer to fuse the 
image information transmitted by both ViTs. As shown in Fig. 
4, our ViTs are mainly composed of K multiscale feature fusion 
encoders, where each encoder is primarily composed of two 
independent branches: (1) a small patch branch which employs 
many small patches with wide embedding dimensions, and (2) 
a large patch branch which works on large patches with small 
embedding dimensions. Two independent ViTs are encoded by 
the transformer by N and M times, and then the two branches 
are merged by K times; CLS tokens of the last two branches are 
utilized for prediction. 

The most important module in our framework is the feature 
cross fusion learning layer, which can integrate the CLS token 
of one branch and the patch token of the other branch. To more 
effectively integrate the feature information from two 
independent ViTs, we use the CLS token on one branch as a 
proxy exchanging information between two patch tokens from 
the other branch, and then project it back to our branch. Since 
the CLS token has learned the abstract information among all 
patch tokens in its branch, the interaction with the patch token 
on the other branch helps contain information of different 
scales [43]. After merging, the CLS token interacts with its 
patch token again at the next transformer encoder, and can 
transfer the learned information from the other branch to its 
patch token, resulting in more rich information. The CLS token 
divides the features into three parts, and conducts self-learning 
and improvement under the encouragement of self-attention. 

We select the feature cross fusion module with a small patch 
branch for analysis. First, the independent small branch collects 
the patch token and connects the CLS token to the 
corresponding patch token. Assuming that the input small patch 

token is l
patchX  and that its CLS token is h

CLSX ,  we express it as 
' [ ( ) || ]h h h l
CLS CLS patchX f X X ,                     (1) 

where ( )hf   is the projection function for dimension alignment. 

The feature cross fusion mainly consists of the information 

exchange between modules h
CLSX  and 'h

CLSX . Given the token 

information of the small branch, the ViT image is fused into the 
CLS token, and then the process of feature cross fusion is 

' ' 'max( ( ) / / )h h h T h
patch CLS x CLS y CLS zy soft X W X W C h X W  ,   (2) 

where xW , and yW are learnable parameters, and C and h are 

the embedding dimension and number of heads, respectively. 
Since we only use CLS in the query, the computational and 
memory complexity of generating the attention map in 
cross-attention is linear, rendering the whole process more 
efficient. The output after the final feature cross fusion is 
defined as 

' '( )h h h h h
CLS CLS patch patchy g X y X   ,                 (3) 

where ( )hg   is the back-projection function for dimension 

alignment. After feature cross fusion, features will become 
more complex, and the information on the CLS token carries 
multidimensional information that needs to be learned. We 
recommend adopting the self-attention mechanism to learn the 
features after cross fusion. The module is shown in Fig. 4, and 
the final output can be expressed as 

,, ,
ut max( / )

S LS L S L
self Attention V Q KO put W Soft W W d   .    (4) 

 
Fig. 4 The working principle of the feature cross fusion learning 
module. The CLS token of the small patch branch is used as the 
query token, which interacts with the patch token of the large 
patch branch. Conversely, the CLS token of the large patch 
branch is used as the query token, which can interact with the 
patch token of the small patch branch.  

The self-attention mechanism is a variant of the attention 
mechanism that reduces the dependence on external 
information, and is better at capturing the internal correlations 
of data or features [44]. The self-attention mechanism is the 
complement of convolution [45], and the CLS tokens and 
image features after feature cross fusion are irregularly 
concentrated after the attention layer. Therefore, the 
self-attention mechanism can further effectively extract image 
feature information. 



5 
 

3) Residual neural network  
A large number of experiments show that the nonlinear CNN 

classifier is better than the traditional linear MLP [46]. For the 
classification task of histological images, CLS tokens are the 
target of the classification task, and their complexity is 
relatively high. Therefore, we recommend using a residual 
neural network for classification since the residual structure 
could effectively prevent the overfitting of the model. Fig. 5 
demonstrates the structure of the residual neural network, 
where softmax is adopted to output the classification label for 
an input image.  

 

 
Fig. 5 The structure of the residual neural network. 
 
4) Training 

The cross entropy loss function is employed in our 
framework to update the parameters, which is expressed as 
follows:  

( ) ( )
cos

1

( , ) log ,
N

i i
t s d d s

i

L q q q q


                 (5) 

where sq  and dq represent predicted label probability and 

the true label probability, respectively. In our framework, all 
the components are jointly trained by using the loss function, 
and thus errors could be propagated through the whole pipeline 
to optimize each component.  

IV.  EXPERIMENTS 

A. Experimental steps 

Considering the insufficiency of histological images and the 
label imbalance, first, we use Gaussian noise and shot noise to 
expand the histological images, yielding the equality of each 
type of sample. Second, we use data augmentation technology 
to expand the training set. For example, the images are flipped 
by 90 degrees. The translation distance in width and height is 
the length or width of the image multiplied by 0.1. The cutting 
angle in the radian counterclockwise direction is 0.2. Points 
outside the input boundary are filled with abcd according to the 
given pattern. Third, NRCA-FCFL is trained on the training set 
to generate a diagnostic model. We employ RF, NB, KNN, 
SVM, VGG19, Xception, MobileNetV2, Resnet50, 
DenseNet201, InceptionV3, EfficientNetB7 and 
InceptionResNetV2 to train multiple diagnostic models. We 
then evaluate the performance of these models on the testing 
set.  

B. Implementation Details 

NRCA-FCFL: We implemented our model in PyTorch and 
trained the model on 2 GPUs (NVIDIA V100) with a batch size 
of 64. The patch sizes in NRCA-FCFL are 12 and 16, 
respectively, and the corresponding embedding dimensions are 

192 and 384. We trained the model for 500 epochs in total, and 
set the initial learning rate to be 0.0001 and decay the learning 
rate by a factor of 0.5 in every 30 epochs. AdamW is used as the 
optimizer.  

Other models: For RF, the number of trees is set to 10, the 
maximum depth is 13, and the out-of-bag samples are utilized 
to estimate the generalization score. The floating-point number 
settings of NB is smooth and the algorithm has no prior 
probability. For KNN, we set 6k   as the number of clusters. 
The SVM algorithm employs a Gaussian kernel function. NB, 
RF, KNN, SVM are required to reduce the image dataset from a 
three-dimensional array to a one-dimensional array, and then 
train the models. The image size is 224*224 for the deep 
learning approaches, and the dataset is randomly shuffled. We 
trained all the models for 500 epochs in total, and set the initial 
learning rate to be 0.0001 and decayed the learning rate by a 
factor of 0.5 in every 30 epochs. Adam is the optimizer of the 
deep learning models. All models were trained with an 
NVIDIA V100. 
 

C. Evaluation  

We employ a variety of evaluation metric to evaluate the 
performance, including precision, recall, F1, accuracy, and 
AUC. Precision represents the proportion of truly positive 
samples among all identified ones by the model, while recall 
represents the ratio of positive samples correctly identified by 
the model to the total ones. In general, the higher of recall 
indicates the more positive samples to be predicted correctly by 
the model. F1 score is also called BalancedScore, which is 
understood as the weighted average of precision and recall. The 
best value of F1 score is 1 and the worst value is 0. AUC (Area 
Under Curve) is defined as the area under the ROC curve, and 
its value is less than or equal to 1. It is widely used as the 
evaluation criterion in many cases, and the larger AUC means 
the better performance. 

In our experiment, all the experimental results are calculated 
by using cross validation, where we randomly divide the 
training set, validation set, and testing set 10 times to train and 
test a model. The performance is estimated by averaging the 
their results. 

D. Experimental Results 
1) Comparison with state-of-the-art models 

Table I demonstrates the performance among different 
approaches measured by precision, recall, F1 score, accuracy 
and AUC values. Concretely, the performance of SVM reaches 
0.9352, 0.9307, 0.9295, and 0.9307 on precision, recall, F1 
score, and accuracy, respectively, which is better than the other 
traditional algorithms including NB, RF and KNN. The 
superiority of the SVM stems from the use of kernel function 
which could map low features to a new feature space, which is 
much high for better classification. 

InceptionResNetV2 model achieves the best performance 
among the eight deep learning models, with 0.9726 on 
precision, 0.972 on recall, F1 scores and accuracy, and 0.99 on 
AUC. However, this model has a large model size of 623 MB, 
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TABLE I PERFORMANCE COMPARISON AMONG DIFFERERNT APPROACHES MEASURED BY PRECISION, RECALL, F1 SCORE, ACCURACY AND 

AUC VALUES. 

Models Precision Recall 
F1 

score 
Accuracy AUC Size(MB) 

Traditional 
algorithm 

NB 0.6102 0.585 0.5604 0.5933 0.64 7 
RF 0.7791 0.7539 0.7471 0.76 0.91 1 

KNN 0.8868 0.8758 0.8767 0.8783 0.77 2690 
SVM 0.9352 0.9307 0.9295 0.9307 0.98 2080 

Deep 
learning 

algorithm 

EfficientNetB7 0.7001 0.6187 0.5889 0.6187 0.43 734 
VGG19 0.8484 0.7973 0.8001 0.7973 0.95 230 
Xception 0.9011 0.8987 0.8987 0.8987 0.98 239 

InceptionV3 0.7811 0.7333 0.7251 0.7333 0.9 250 
MobileNetV2 0.6527 0.5933 0.5214 0.5933 0.96 26 
DenseNet201 0.6924 0.608 0.5766 0.608 0.79 210 

ResNet50 0.9085 0.8987 0.9002 0.8987 0.98 270 
InceptionResNetV2 0.9726 0.972 0.972 0.972 0.99 623 

NRCA-FCFL 0.9934 0.9893 0.9903 0.9917 0.99 130 

 
Fig. 6 Illustration of different confusion matrices by different approaches on testing dataset.
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which will significantly increase the training and testing costs. 
Moreover, it is demonstrated that the deep learning models 
usually have better performance than the traditional approaches. 
This is because the deep learning approaches could extract 
robust visual features to conduct a joint training in feature 
extraction and prediction, while the traditional methods 
separately extract hand-drafted features and then make a label 
prediction. 

Compared to the previous methods, our NRCA-FCFL 
achieves the best performance with 0.9894, 0.9893, 0.9893, 
0.9893 on precision, recall, F1 score, and accuracy, 
respectively, and the AUC value rises to 0.99, which 
demonstrates the superiority of our approach in image 
classification. This significant improvement comes from the 
use of the self-attention mechanism for visual feature extraction 
as well as the proposed noise reduction component and 
multi-scale feature fusion learning layer. Moreover, we 
discover that this high performance does not require a large 
model size, with only 130 MB, which is much less than most 
deep learning models. This is because the used transformer is a 
weight sharing structure, and thus the repetitive multiple 
transformers would not increase the model size. 

Fig. 6 and 7 adopt the confusion matrix to illustrate the 
detailed classification results on each category. Each column 
represents the sample predictions on each category by the 
model, and each row indicates the true labels of samples on 
each category. It is demonstrated that NB, EfficientNetB7, 
MobileNetV2, and DenseNet201 have serious misjudgments in 
a certain category, and KNN, SVM, Xception, ResNet50, and 
InceptionResNetV2 have better predictions. Comparatively, 
NRCA-FCFL achieves the least misclassification with only six 
nontumor samples misclassified as necrosis and one 
necrosis/viable tumor misclassified as nontumor. This is 
because our approach could filter useless noise information in 
histological images and extract robust visual features. 

 
Fig. 7 Illustration of the confusion matrix by NRCA-FCFL on testing dataset. 
 

Fig. 8 and 9 adopt the ROC curve to illustrate the 
classification performance of different approaches, where the 
steeper of the curve indicates the better performance of the 

approach. For each approach, we show five ROC curves, 
including micro-average, macro-average, necrosis, nontumor, 
and viable tumor. It is demonstrated that the ROC curve of 
nontumor by is below the diagonal, which indicates that the NB 
model is not suitable for detecting osteosarcoma. All the ROC 
curves by the SVM model are close to the upper left corner, 
indicating that the accuracy of diagnosis is quite high. For the 
deep learning model, the ROC curve of the EfficientNetB7 
model is mostly parallel to the diagonal, indicating that the 
model has a poor diagnostic effect. The ROC curves of 
Xception, ResNet50, and InceptionResNetV2 models are close 
to the upper left corner. These models certainly have good 
diagnostic performance. The other models, such as VGG19, 
InceptionV3, MobileNetV2, and DenseNet201, have partial 
ROC curves close to the upper left corner and may cause 
misjudgments for diagnosis. For our approach, all the ROC 
curves are close to the upper left corner, indicating the high 
accuracy for diagnosis. This high performance stems from the 
strong ability of vision transformer with noise reduction and 
feature fusion components. 

 
Fig. 9 Illustration of the ROC curve by NRCA-FCFL on testing dataset. 
 

2) Ablation studies 
Impact of patch size. To evaluate the influence of the patch 

size in NRCA-FCFL, we tried different patch sizes of 12 12, 
12 16, 16 16  for two independent ViTs in our approach, and 
TABLE II demonstrates the results. When the patch size is 
12 12, the accuracy of NRCA-FCFL arrives 98.93%, while 
that decreases to 98.02% and 97.56% for 12 16, and 16 16  
patch sizes. This results indicate that smaller patch size would 
result in better performance. This is because the smaller patch 
size will lead to the more patch samples for feature extraction. 
As a result, the multi-scale transformer encoder could better 
extract visual features. Moreover, the smaller patch usually 
could provide more delicate features, which is beneficial to 
performance improvement.  

TABLE II THE INFLUENCE OF THE PATCH SIZE BY THE NRCA-FCFL 

FRAMEWORK EVALUATED BY ACCURACY. 

 Patch size 
(12,12) (12,16) (16,16) 

Accuracy (%) 98.93 98.02 97.56 
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Fig. 8 Illustration of the ROC curves by different approaches on the testing dataset. 
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Impact of NRCA modules. To evaluate the effectiveness of 
NRCA, we conducted a set of controlled trials to explore the 
effect of NRCA in our approach. We trained the model 
separately by using NRCA and not using NRCA to calculate 
the accuracy. TABLE III shows the results of the two testing 
results. The accuracy of the NRCA-FCFL framework without 
using NRCA is only 97.96%, which is lower than that using 
NRCA with 0.97%. This result indicates that NRCA can help 
improve the reliability of diagnosis due to the preprocessing of 
images for noise reduction. Concretely, the noise of 
histological images is significantly reduced after convolution, 
pooling and normalization operations in the encoder. After that, 
the transposed convolution operation in the decoder restores the 
image to its original scale. As a result, the recovered 
histological images contain less noise. 

TABLE III THE INFLUENCE OF NRCA IN THE NRCA-FCFL FRAMEWORK 

TESTED BY ACCURACY. 

 NRCA 
Yes No 

Accuracy (%) 98.93 97.96 
 
Impact of residual network. In our approach, we employ a 
residual neural network to replace multilayer perceptron, which 
is widely used to perform classification in vision transformers. 
To evaluate the effectiveness of the residual network in our 
approach, we conducted a set of experiments to explore the 
impact of residual neural network. We trained two models by 
using multilayer perceptron and residual neural networks, 
respectively, and TABLE IV shows their testing results. The 
experiment found that the accuracy of the NRCA-FCFL 
framework by using multilayer perceptron is only 98.46%, 
which is lower than that of the NRCA-FCFL framework with 
the residual neural network by 0.47%. This is because the 
residual network could skip connection and set up a bridge for 
exchanging spatial information at different levels of images 
with different resolutions. It also provides a shortcut for 
back-propagating gradient shortcut descent for efficient 
training and classification. 
TABLE IV THE INFLUENCE OF RESIDUAL NETWORK IN THE NRCA-FCFL 

FRAMEWORK TESTED BY ACCURACY. 

 Residual neural network 
Yes No 

Accuracy (%) 98.93 98.46 
 

V. APPLICATIONS AND LIMITATIONS 

Benefitting from the high accuracy of 99.17% by 
NRCA-FCFL in slice prediction, we can use to the trained 
model to accurately classify osteosarcoma histological slices, 
including predicting categories of all the small sections in a 
whole tissue section, counting the number of different types of 
sections, and calculating tumor-stromal ratio (tumor section: 
stromal section) and tumor cell ratio (tumor section: All slices). 
Therefore, this approach provides a convenient tool for doctors 
to analyze the microenvironment of tumor survival, as well as 
reduce the pains of patients in biological testing.  

There are two limitations of our work. First, the number of 

publicly available osteosarcoma samples is small, and thus we 
sliced the original samples to construct the training set, 
validation set and testing set. Therefore, we have not sufficient 
samples to train the model and test the performance. The 
achieved high performance is only tested on a limited number 
of testing samples, and maybe degraded in practice. Second, 
NRCA-FCFL has a large model size, and requires much 
training time with a low detection speed on lightweight devices. 
Therefore, the hardware requirements for model’s running are 
relatively high, which brings increasing costs in real cases. 

VI. CONCLUSION 

This study proposed an image classification framework 
named NRCA-FCFL to classify histological images for 
osteosarcoma prediction. Our approach employs vision 
transformer as our backbone and focuses on filtering noisy 
information in histological images and extracting robust visual 
features for performance improvement. Technically, we design 
a novel noise reduction convolutional autoencoder for noise 
filtering, and feature cross fusion learning layer to effectively 
integrate visual features from two types of image patches. The 
architecture is an end-to-end structure, and all the components 
could be jointly trained to boost the performance. We 
conducted extensive experiments on a public dataset. The 
experimental results demonstrate that all the introduced 
components are effective, and our model consistently 
outperforms the state-of-the-art approaches.  
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