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Abstract. The wavelet representation of a signal offers
greater flexibility in de-noising astronomical spectra than
classical Fourier smoothing due to the additional wave-
length resolution of the decomposed signal. We present
here a new wavelet-based approach to noise reduction. It
is similar to an application of the splitting algorithm of
a wavelet packets analysis using non-orthogonal wavelets.
It clearly separates the signal from the noise, in particu-
lar also at the noise-dominated highest frequencies. This
allows a better suppression of the noise, so that the spec-
trum de-noised in this manner provides a closer approx-
imation of the uncorrupted signal than in the case of a
single wavelet transformation or a Fourier transform.

We test this method on intensity and circularly po-
larized spectra of the sun and compare with Fourier and
other wavelet-based de-noising algorithms. Our technique
is found to give better results than any other tested de-
noising algorithm. It is shown to be particularly successful
in recovering weak signals that are practically drowned by
the noise.
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1. Introduction

Astronomical observations are often photon starved.
Consequently many astronomical spectra have a poor
signal-to-noise ratio (SNR) and are significantly corrupted
by (white Gaussian) photon noise. This is even true for
solar observations, since high resolution measurements of
polarized light soon run out of photons (e.g., Stix 1991).
The reduction of this noise is highly desirable for a number
of reasons (cf. the papers in the volume edited by Cayrel
De Strobel & Spite 1988, for examples of the merits of
high SNR spectra).
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Fourier smoothing has long been the method of choice
to suppress noise (Brault & White 1971), but recently
methods based on the wavelet transformation have be-
come increasingly popular (Starck & Bijaoui 1994; Starck
& Murtagh 1994; Murtagh et al. 1995). In principle they
offer much greater flexibility for analyzing and processing
data. The main advantage of wavelets lies in the additional
“spatial” resolution of the transformed signal. In contrast
to the Fourier transformation, the signal is decomposed
into waves of finite length, i.e. into waves which are spa-
tially localized – hence the name wavelets. The wavelet
transform of a one-dimensional signal has two independent
variables – a frequency and a spatial location variable. It
leads to a decomposition of, say, a spectrum into a series
of spectra at finer and coarser resolutions. Indeed, there
is a close mathematical relationship between the wavelet
transformation and the multi-resolution analysis of a sig-
nal (Mallat 1989). Hence the wavelet transform furnishes
us with the frequency spectrum of a signal at every spa-
tial location. This feature, besides others, opens new and
fruitful ways of processing and analyzing data of various
kinds.

In particular, it allows the smoothing of astronomi-
cal spectra, typically composed of a continuum with in-
terspersed spectral lines, to be optimized. Since high-
frequency signals are present only at the wavelengths of
the spectral lines, only at these wavelengths need they
be kept in the de-noised spectrum. At the remaining posi-
tions, i.e. in the continuum, only the lowest frequencies are
due to the source itself. Whereas Fourier filtering affects
all data points in the same manner, wavelets allow differ-
ent parts of spectra to be filtered individually, in principle
promising a considerably refined and improved treatment.

In the present paper, we compare different wavelet
smoothing methods to each other and to Fourier smooth-
ing for the specific case of astronomical spectra. We also
present a wavelet-packets based smoothing scheme which
we find to be superior in recovering the true signal from a
combination of signal and noise, at least for the cases we
have considered.



2. Some relevant properties of wavelets

The Fourier transformation decomposes a signal into sines
and cosines of different frequencies. The wavelet transfor-
mation acts similarly, but instead of non-local, strictly pe-
riodic sines and cosines, it uses a set of spatially localized
functions ψa,b(x) called wavelets (Daubechies 1988; Meyer
1993; see Press et al. 1992 for a simple introduction to the
subject). The wavelets are constructed by translating and
dilating a mother wavelet ψ(x)

ψa,b(x) =
1√
|a|
ψ

(
x− b

a

)
(a 6= 0), (1)

where the scale parameter a plays the role of a frequency
and b is the position parameter. By increasing a, the
wavelet ψa,b(x) is broadened, while changing b translates
it along the x-axis. The set of parameters (a, b) describes
a point in the so called scale-space plane.

The continuous wavelet transform of a function f(x),
Wcf(a, b), is defined by

Wcf(a, b) = 〈ψa,b(x), f(x)〉 =

∫ ∞
−∞

f(x)ψ∗a,b(x)dx. (2)

It is invertible (Grossmann & Morlet 1984) and the func-
tion f(x) can be recovered by evaluating the double inte-
gral:

f(t) =
1

Λ

∫ ∞
−∞

∫ ∞
−∞

Wcf(a, b)ψa,b(x)
dadb

a2
. (3)

Note that, unlike the Fourier transform, the wavelet trans-
form is not its own inverse. This implies that a signal may
be transformed several times using wavelets and be fur-
ther decomposed at each transformation. Such a sheme
of repeated application of the wavelet transform leads
to the splitting algorithm of a wavelet packets analysis
(Wickerhauser 1991, 1994; Chui 1992b) which lies at the
heart of the technique we propose.

For practical applications, the continuous set of param-
eters (a, b), must be discretized (Daubechies 1988; Mallat
1989). The parameterization of the discrete (a, b) pairs is
of crucial significance to the discrete wavelet transform
and especially to the stability of the reconstruction algo-
rithm (Daubechies 1990). For most of the parameteriza-
tions of (a, b) the set of {ψa,b(x)} is highly redundant, i.e.
each subset of them can be generated by linear combina-
tions of the others (Daubechies et al. 1986). Although in
such cases the reconstruction is not exact anymore, such a
decomposition has a remarkable advantage when consid-
ering de-noising applications (Daubechies 1990).

The particular class of non-orthogonal 1-D wavelets
and the corresponding discrete wavelet transform together
with the numerical algorithm we have used was proposed
by Mallat & Zhong (1992, see their Appendix A). The
multi-level decomposition described in Sect. 3.2 is a direct
application of wavelet-packets using this particular kind of
base functions.

3. Methods

3.1. Filtering and de-noising methods based on wavelets

Most of the wavelet coefficients of the transform of a noise-
less signal are close to zero. Therefore the most obvious
way of filtering in the wavelet domain is to identify those
wavelet coefficients that are significantly non-zero against
the noisy background (Donoho & Johnstone 1994). This
motivates the method of hard thresholding according to
which only the significantly non-zero coefficients are re-
tained and all others rejected:

Wm = 0 if |wm| < kσm,
Wm = wm if |wm| ≥ kσm,

(4)

where the wm are wavelet coefficients of the noisy sig-
nal, the Wm are the filtered wavelet coefficients, σm is the
estimated standard deviation of the noise at the appropri-
ate scale m, and k is a freely selectable factor which de-
fines the level of confidence for the preserved coefficients.
Non-orthogonal wavelets reduce the σm with increasingm,
and hence we have to estimate it for each scale separately
(Starck & Bijaoui 1994).

We now briefly introduce the principles of some more
sophisticated de-noising methods with which we later
compare our own method. The first method was devel-
oped by Donoho (1992a,b). It is based on the so-called
wavelet shrinkage technique. In addition to the applica-
tion of a threshold criterion, the wavelet coefficients are
shrunk towards zero. Donoho & Johnstone (1992, 1993,
1994) provide several algorithms based on statistical ar-
guments to determine the level of shrinkage.

Another set of noise-reduction methods have been pro-
posed by Starck & Bijaoui (1994). They employ the so-
called à trous algorithm to perform the wavelet transfor-
mation based on linear or cubic spline functions. They
apply different filter criteria which include information
on wavelet coefficients of different scales (hierarchical fil-
tering). In addition, they use an iterative reconstruction
(adaptive filtering) to find a signal whose wavelet trans-
form is as close as possible to the original set of thresh-
olded coefficients (see also Starck & Murtagh 1994 and
Starck et al. 1995 for further details).

The final noise reducing technique to which we com-
pare our method was developed by Bury et al. (1996) and
is also based on the à trous algorithm. They apply an
iterative structure detection algorithm in the scale-space
plane to extract the significant coefficients from the noisy
wavelet transform.

In the next section we present a somewhat different
approach to the problem of noise reduction using wavelet-
based techniques. Instead of applying a suitable selection
criterion to determining the significant coefficients of a cer-
tain scale we extract the underlying spectral features of a
noisy scale by simply transforming it again using the same
wavelet base (wavelet-packets analysis). The transformed



Fig. 1. Two-level decomposition of a Stokes V spectrum with a noise level of σnoise = 0.0056. The corrupted signal is plotted
on the left, the coefficients of the first level of decomposition are plotted in the central column. The coefficients of the wavelet
transform of each of the scales in the central column are plotted on the right (second level of decomposition). The two-level
decomposition reveals some of the uncorrupted signal at scales 13 to 15 which is absent at scale 1. Hence truncating scales 11
to 15, instead of scale 1, can recover features of the uncorrupted signal which are lost if scale 1 is truncated



signal is then de-noised by a simple hard thresholding cri-
terion. Details are given in the next section.

3.2. De-noising using wavelet-packets

Noise is mainly concentrated at the finest scales of a signal
transformed using non-orthogonal wavelets, i.e. the signal-
to-noise ratio (SNR) decreases towards the finer scales. If
the noise level of the original signal is sufficiently high,
the finest scales are completely dominated by noise. As an
example consider the noisy signal in the left part of Fig. 1
(details about the signal are given later). The wavelet co-
efficients of the noisy signal are plotted at the center, with
frequency decreasing from top to bottom. The highest fre-
quency coefficients, i.e. the top row, are completely dom-
inated by noise. As we demonstrate later, however, there
is a considerable signal hidden in that noise. Simply trun-
cating the wavelet coefficients at these scales either rejects
the real signal along with the noise or leaves so much noise
that the signal is still not recognizable. This dilemma is
resolved using the splitting algorithm of a wavelet-packets
analysis (Wickerhauser 1991). Each scale (frequency) may
itself be considered to be a noisy signal for which we
wish to separate the noise from the signal. We do this
by transforming (decomposing) the wavelet coefficients at
each scale, again, exactly in the same manner as we trans-
formed the original signal. The coefficients resulting from
this second set of transformations are shown on the right
side of Fig. 1: each scale of the singly transformed signal
gives rise to (in this case) 5 scales in the doubly trans-
formed or twice decomposed signal.

For greater clarity we number the scales of the different
decompositions as follows: The scales after the first trans-
formation are numbered 1, 2, ... 5 (from finest to coarsest).
After the second level of decomposition we number them
as follows: 11, 12, ... 15 (transforms of scale 1), ..., 51, 52,
... 55 (transforms of scale 5). The tree-like arrangement of
the individual scales which results from a two-level decom-
position of a Stokes V (i.e. circularly polarized) spectrum
is illustrated in Fig. 1.

Consider scale 1 of Fig. 1. It is completely dominated
by noise. Simple thresholding will set each coefficient to
zero, because none lies significantly above the background
noise. Consequently the restored signal will be consider-
ably altered in the high frequency range, i.e. in the peaks
of the spectral lines. After the second transformation the
hidden signal has partially been separated from the noise
and has become clearly visible at the scales 14 and 15 and
can still be detected in scale 13, although just barely. If
we now truncate all the wavelet coefficients of the twice
decomposed signal under a hard threshold, then we can
reduce the noise by almost the same amount as after the
first transformation, while preserving much more of the
uncorrupted signal, particularly at high frequencies. It is
possible to recover even more of the original signal by
transforming scales 11-55 once more (three-level decom-

Fig. 2. a) Finest scale of the non-orthogonal wavelet trans-
form of a noisy signal (scale 1 of Fig. 1). b) Same scale of
the uncorrupted original signal. c) Reconstructed scale after a
three-level-decomposition. Clearly there is little chance of re-
covering the uncorrupted pattern out of the noisy signal a) by
simply truncating at a certain threshold value. In contrast the
reconstructed scale c) is a good approximation of the uncor-
rupted scale b)

position). The degree to which a three-level decomposition
can restore scale 1 is shown in Fig. 2. Note the remarkable
similarity of the reconstructed coefficients (Fig. 2c) to the
original, uncorrupted coefficients (Fig. 2b).

Due to its high redundancy the base of non-orthogonal
wavelets has the highly desirable property that it allows
the main features of the uncorrupted signal to be rec-
ognized even after several decompositions of the noisiest
scales. So instead of truncating the coefficients of the finest
scales directly it is worth transforming them once again
and performing the truncation on the coefficients of the
second (or third) decomposition level.

Generally, by truncating the coefficients of a higher
level of decomposition, it is possible to restore features
of the uncorrupted signal at scales of lower levels, which
were originally drowned in the noise. This is especially
effective for the finest scales whereas the coarser scales
have a larger SNR and hence can be truncated directly
at the first level of decomposition without affecting their
information content significantly.

In the present paper we truncate the coefficients on the
basis of a simple hard thresholding criterion. Since we are
dealing with non-orthogonal wavelets, we need to know
the standard deviation of noise at each scale σnoise,m. Due



to the linearity of the wavelet transformation, i.e.

W (f + g)(a, b) = < ψa,b(x), f(x) + g(x) >

= < ψa,b(x), f(x) > + < ψa,b(x), g(x) >

= Wf(a, b) +Wg(a, b), (5)

this can be obtained from the transformation of a signal
that consists purely of noise. Strictly speaking we do the
following. First we determine the standard deviation of
the noise of the corrupted signal (white Gaussian noise
in the illustrated case). Then this value is used to create
a signal of pure, e.g., white Gaussian noise to which our
splitting scheme is applied. Finally, we get an estimate of
the standard deviation of noise at scale m of the corrupted
signal, called σm, by calculating the standard deviation of
the pure noise, called σnoise,m, of that scale. Such a scheme
has already been applied by Starck & Bijaoui (1994). We
set the threshold value to k · σm. The factor k determines
the confidence level of the preserved coefficients. In general
we set k = 3, which results in a level of confidence of
99.7%.

3.3. Data and noise model

We test the various methods on intensity (Stokes I) and
net circular polarization spectra (Stokes V ) of solar fea-
tures recorded with the Fourier Transform Spectrometer
(FTS) installed at the McMath Pierce facility at Kitt
Peak. The data are ideal for testing various de-noising
techniques for a number of reasons. They have a very low
noise level (as low as 10−4Ic in some parts of the spec-
trum; Ic is the continuum intensity), so that de-noising
techniques can be tested rigorously. They have a spec-
tral resolving power of 360 000− 500 000, so that the high
frequencies present in the original solar spectrum have
not been significantly suppressed by the instrument. They
cover a broad wavelength range with different types of
spectral features. Also, both Stokes I and Stokes V spec-
tra were recorded. In the following we first concentrate on
Stokes V since it shows higher frequencies and thus poses
a larger challenge to de-noising techniques, particularly
since the data are sampled close to the Nyquist frequency.
The data are described in detail by Stenflo et al. (1984)
and Solanki (1987).

We first corrupted the spectra by adding artificial
white Gaussian noise whose standard deviation scales as
the inverse of the square root of the reference spectrum
intensity. Such a noise spectrum is a good representation
of Poisson distributed photon noise in the limit of many
photons (which is fulfilled by the present data)1. These
noisy spectra then served as input data for the de-noising
algorithms described in Sects. 3.1 and 3.2.

1 We also considered somewhat deviant noise distributions
which gave only insignificantly different results and will not be
discussed further.

Fig. 3. a) Uncorrupted Stokes V spectrum. b) Corrupted
version with artificially added noise with σnoise = 0.0014. c)
Fourier smoothed spectrum. It shows clearly the typical ran-
dom oscillations within the low frequency parts of the spec-
trum. d) Wavelet-packets de-noised version, using a three-level
decomposition. The continuum is now clean and even a number
of small features of the original spectrum are at least qualita-
tively recovered

4. Results

We compare the quality of different wavelet-based de-
noising techniques presented in Sects. 3.1 and 3.2 by ap-
plying them to originally low-noise solar spectra that
have been artificially contaminated by noise as described
in Sect. 3.3. We also compare these techniques with the
Fourier filter giving the best results, as found by trial and
error. In general the original, uncorrupted spectrum is not



known a priori and the goodness of the Fourier smoothing
will be lower than the value we obtain.

The added noise has a standard deviation of σc =
0.0014 in the continuum of the Stokes V signal and a
σc = 0.014 for the Stokes I spectrum. We first de-noise
a solar Stokes V spectrum. Later we illustrate the tech-
niques further by applying them to a Stokes I spectrum.

Fig. 4. a) Uncorrupted Stokes I spectrum. b) Corrupted
version (σnoise = 0.014). d) Fourier smoothed spectrum. d)
Wavelet-packets de-noised spectrum using a three-level decom-
position

We express the goodness of a de-noised spectrum by
the variance σ2,

σ2 =
1

N − 1

N∑
j=1

(xj − xj)
2, (6)

where {xj} , j = 1...N , represents the uncorrupted signal
and {xj} , j = 1...N stands for the de-noised version of
the signal. N is the number of spectral points. Therefore
the standard deviation of the remaining noise of a de-
noised version of a spectrum is simply the square root of
the variance.

To obtain a clearer picture of what the de-noising
algorithm does in detail we evaluate different types of
spectral features individually. In addition to the whole
spectral range we consider separately the strong lines
(four strongest features between 5247 Å and 5251 Å), the
weak lines (four strongest features between 5239 Å and
5247 Å) and the continuum regions, respectively. Note
that the “continuum” includes the (roughly 20) very weak
spectral features visible in Fig. 3a. Since the spectral lines
and in particular the amplitudes of their peaks are of spe-
cial interest in astronomical spectral analysis, the thresh-
old value for the Fourier method is adapted to the spec-
tral lines, i.e. it is chosen to restore them as well as
possible (therefore the success of the Fourier smoothing
for the weak lines must be seen in this context). Since
Fourier smoothing cannot remove noise at all frequencies
equally well it consequently fails within the continuum.
As a result, very small features, although still present in
the spectrum, are hardly recognizable, because they are
sometimes completely embedded in the random oscilla-
tions typical for Fourier smoothed signals. If the Fourier
low-pass threshold is lowered a clearer continuum results,
but the spectral lines are distorted due to missing high
frequencies.

In contrast, our wavelet-packets technique is able to
de-noise both the high frequency (spectral lines) and low
frequency (continuum) features simultaneously (Fig. 3).
Table 1 confirms this. The ratio σnoise/σ is a measure of
the reduction in the noise level over the whole signal due to
the de-noising algorithm. The Fourier method reduces the
noise of all spectral features by about the same amount, it
halves σ2

noise everywhere, whereas the wavelet techniques
reduces noise within the continuum much more strongly
and hence clearly reveals even very small features of the
uncorrupted spectrum which were completely swamped by
the noise (Fig. 3). The exception are the wavelet shrink-
age methods, whose results strongly depend on the used
statistical threshold criterion. We were however not able
to improve the result for the continuum regions without
simultaneously increasing the distortion of the spectral
lines.

Of the tested methods our wavelet-packets technique
attains the best results. Due to the additional transforma-
tions, it is able to filter out the noisy coefficients better



Table 1. Numerical evaluation of a de-noised Stokes V spectrum

Fourier Wavelet Hierarchical Structure wavelet-packets
shrinkage thresholding detection 3-level decomposition

σ2[·10−7] σ2[·10−7] σ2[·10−7] σ2[·10−7] σ2[·10−7]

Whole spectrum 9.4 9.4 7.1 7.5 6.5
Strong lines 19.2 20.0 20.0 20.0 17.2
Weak lines 7.0 8.8 8.7 8.1 8.3
“Continuum” 6.4 6.4 1.8 2.1 2.0

σnoise/σ 1.55 1.55 1.78 1.73 1.86

than every other tested de-noising algorithm, as may be
seen by scrutinizing Table 1. In the case of the Stokes V
spectrum of Fig. 3, the noise level of the continuum regions
is reduced to 4.47 10−4, which means 1.8 times better than
the value obtained by Fourier smoothing. Averaged over
the whole spectral range, the multi-level decomposition
results in a gain of about 20% compared to the classical
Fourier smoothing method.

The analysis of a Stokes I spectrum shows the same
basic results: see Fig. 4 and Table 2. This spectrum in-
cludes the strong Hα line and allows us to test the various
techniques in the presence of a strong, heavily oversampled
spectral line. Hence this spectrum was chosen, although it
isn’t quite ideal since the original spectrum already was
contaminated by roughly 10−3 Ic noise. Again, we artifi-
cially added noise with a standard deviation of σ = 0.014
(continuum). Now the advantages of wavelet-based meth-
ods are even more pronounced than in the case of the
Stokes V spectrum. The wavelet techniques are able to
significantly suppress the noise in all spectral regions and
attain an increase of the SNR over the whole signal of
about 10% to 30% relative to Fourier smoothing. Again,
our non-orthogonal multi-level decomposition leads to a
large gain in the low frequency parts of the spectrum rela-
tive to Fourier smoothing. A number of small features are
clearly recognizable in the wavelet de-noised version of the
signal whereas they are embedded in random oscillations
in the case of Fourier smoothing (Fig. 4). Note that the
wavelet-packets technique has also removed much of the
noise present in the original spectrum (top row), which
– due to its definition, Eq. (6) – results in a larger σ in
Table 2 than would be present if the original spectrum re-
ally were noise-free. Considering the whole spectral range,
our wavelet packets technique again attains the best re-
sults and leads to a roughly 30% lower σnoise than the
Fourier smoothing method.

To completely characterize the quality of the de-noised
signal we employ a multi-resolution quality criterion as
proposed by Starck & Bijaoui (1994). Both the originally
noise-free and the de-noised signal are compared in the

Fig. 5. Multi-resolution quality criterion of the Stokes V a)
and Stokes I b) spectra. The noisy signal is represented by
a solid line. Also plotted are the signal de-noised by Fourier
smoothing (dotted), hierarchical thresholding (short dashed),
structure detection (dash dotted), wavelet shrinkage (dash
triple dotted) and wavelet-packets (long dashed), respectively.
In Fig. 5b the Fourier and Wavelet shrinkage curves coincides
almost completely. For both spectra, the 3-level decomposition
gives the closest approximation of the original noise-free signal
at every resolution

scale-space plane by calculating the correlation coefficient
between corresponding scales. In this manner the signals
are compared at different resolutions. The results are pre-
sented in Fig. 5. The noisy signal (solid line) becomes al-
most identical to the original signal for scales higher than
4. This is, again, due to the fact that noise is mostly con-
centrated at high frequencies. It is therefore not necessary



Table 2. Numerical evaluation of a de-noised Stokes I spectrum

Fourier Wavelet Hierarchical Structure wavelet-packets
shrinkage thresholding detection 3-level decomposition

σ2[·10−5] σ2[·10−5] σ2[·10−5] σ2[·10−5] σ2[·10−5]

Whole spectrum 7.4 6.5 4.9 5.9 4.4
Strong lines 11.4 11.4 9.1 11.0 7.0
Weak lines 12.2 9.8 8.9 7.5 6.9
“Continuum” 5.2 1.9 2.3 3.7 2.6

σnoise/σ 1.72 1.84 2.10 1.93 2.23

to calculate more than four scales of the wavelet trans-
form. The wavelet-packets technique (long dashes) is again
found to be superior to all of the tested methods. The ad-
ditional decomposition of each scale leads to a very high
fidelity between the noise-free and the de-noised spectrum
at all resolution levels.

5. Conclusions

Provided the correct de-noising procedure is chosen,
wavelet based de-noising methods give better results than
classical Fourier filtering. Due to the additional spatial res-
olution and the frequency-adapted width of the wavelets,
they are able to preserve sharp features of a signal while
at the same time strongly suppressing noise within the
low frequency parts. Our tests demonstrate, however, that
the choice of wavelet basis and de-noising technique is
crucial. We find that, at least for the considered astro-
nomical spectra, hard thresholding using well-known or-
thogonal wavelet bases, such as the various Daubechies
wavelets, give results that are generally not better than
the best Fourier filter as far as their ability to recover
the higher SNR features (spectral lines) is concerned.
Donoho’s wavelet shrinkage technique (based on orthog-
onal wavelets) and thresholding or Wiener-filtering tech-
niques using non-orthogonal wavelets (specifically linear
or cubic spline wavelets combined with the so-called à
trous algorithm) as proposed by Starck & Bijaoui (1994)
work better and in general are more successful than
Fourier techniques in recovering the original signal. If an
efficient, quick and simple-to-use de-noising algorithm is
required then we recommend the techniques developed by
Starck & Bijaoui. The technique of Bury et al. (1996) gives
excellent results as well, but is not suited to de-noise large
sets of measurements at once since each spectrum has to
be treated separately. Their method of modelling the noise
requires that the signal is divided into different parts, each
of which contains only features of a similar size.

The most exact results, however, are achieved by our
wavelet-packets method, namely three-level decomposi-
tion coupled with simple hard thresholding. At least for

solar spectra it separates noise from the uncorrupted sig-
nal better than any other technique we have tested. In par-
ticular, it turns out to be superior to other techniques in
recovering weak signals hidden in the noise. The main dis-
advantage of our technique is that it is slow (although not
significantly slower than iterative techniques such as the
adaptive filtering methods proposed by Starck & Bijaoui
1994). We recommend it for cases in which the highest
possible accuracy is desired.

In this initial investigation we have applied the multi-
level decomposition technique in a rather crude manner.
Other wavelet bases and truncation schemes may lead to
better results. Corresponding extensions of our technique
will be presented in a following paper.
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Appendix

For the de-noising methods presented in Sect. 3.1 the fol-
lowing software packages were used: The wavelet shrink-
age technique of Donoho and co-workers is available
through anonymous ftp from playfair.stanford.edu for
the MatLab environment. The method presented by
Bury et al. (1996) is also freely accessible at location
holst.obs-nice.fr:/pub/wavelet.tar.gz.

Of special interest for astronomical data-processing is
MIDAS, the Munich Image Data Analysis System devel-
oped at ESO. It provides a number of data analysis and
de-noising routines based on different wavelet bases. In
particluar, it includes the de-noising methods of Starck &
Bijaoui.
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