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Summary.  We present a probabilistic approach to the problem of additive source 

separation characterized by wide band power spectra when one of the sources is 

deterministic and low-dimensional (regular or chaotic). The algorithm is based upon 

a probabilistic analysis of local behavior in the phase space in which the deterministic 

source is embedded. It creates a kind of time domain "filter" for the noisy data from 

a reference orbit of the system, and it then corrects the observed noisy data in an 

incremental fashion to adjust it to match this filter in the sense of having as close 

as possible the same invariant distribution in the phase space. After describing the 

general method, we demonstrate its use on three familiar chaotic systems: first, two 

examples of chaotic maps (H6non and Ikeda) in two dimensions and then a three- 

dimensional flow (the Lorenz system). The data from each of these is perturbed by 

uniformly distributed noise or by a spike signal, and we show that the method gives 

excellent results in recovering the original clean signal even when noise levels are 

quite large. Our present method appears to work even when the signal-to-noise ratio 

is quite small. The method works in cases where classical linear methods fail because 

both ,signal" and "noise" are broadband spectrally. 

Key words, signal separation in chaos, noise reduction, scaled probabilistic cleaning, 

maximum a posteriori probability methods 

1. Introduction 

One of the remarkable results of work in nonlinear dynamics and chaos over the past 

decade has been a reexamination of what we mean by "noise." The view is reasonably 

well established that "noise" is a high-dimensional system the dynamics of which are 
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probably not particularly interesting and which we characterize in some conventional 

statistical sense. The deterministic dynamics of a nonlinear system can look like 

conventional noise when displayed in conventional ways, namely, as time series or 

as the Fourier power spectrum of such time series. In experimental settings where 

deterministic chaotic signals are contaminated by high-dimensional dynamics (noise) 

of no interest to the observer, we require unconventional methods to separate the two 

types of broadband signal. This article presents a method for separating these sources 

using a recursive probabilistic, maximum likelihood approach. It appears in practice 

that the method works well even when the signal-(deterministic chaos) to-noise ratio 

is rather low. We have examined cases where the original signal-to-noise ratio is as 

low as a few dB, and see no particular barrier to applying the method to even lower 

signal-to-noise ratios. 

Earlier work on this problem by Hammel [1], Farmer and Sidorowich [2], and 

Abarbanel, Marteau, and Sidorowich [3] has concentrated on the idea of recursively 

trying to satisfy the deterministic mapping governing the evolution of the system in 

its phase space. The map may be known beforehand or have been learned from either 

"clean" data, noisy data, or "on the fly." Another approach has been presented by 

Kostelich and Yorke [4] who utilize the observed data to make a local polynomial (in 

practice, linear) fit to the evolution of neighborhoods into themselves, and then by 

adjusting parameters in the map and in the best guess for the clean signal, they achieve 

a least squares estimate of the clean signal. This paper also treats some experimental 

data where the dynamics on the attractor has to be deduced "on the fly." 

In this paper we present a quite different point of view on the problem of extracting 

a clean deterministic signal from an observed signal which is contaminated by additive 

noise. It takes into account the probabilistic properties of the attractor generated by 

the dynamical signal. These probabilistic properties are expressed in effect in terms 

of the invariant distribution of data points on the attractor [5,6]. We use the word 

probability here only in the sense that these invariant distributions act like probability 

distributions though they are sums over delta functions at the locations of the data and 

are thus quite singular in a mathematical sense. In the sense of useful quantities for 

numerical work we have no mathematical problems. Finite resolution of computations 

or observations smooths out the singular distributions quite nicely. The distributions 

are evaluated using a reference orbit which comes from earlier knowledge of the 

system or may be part of the noisy data set aside for this purpose. In this paper we 

work only with reference orbits coming from clean data and, not surprisingly, we find 

that the longer the reference orbit, the better we can do in separating the sources of 

signal and noise. In the case that the reference orbit comes from noisy data, we suggest 

that one might clean the data in sections using one section to act as the reference orbit 

and then substituting the newly cleaned orbit in its place. We have not tried this yet, 

but will return to it in the future. 

We address two main issues in this paper: 

�9 Separation of the sources which combine to produce the observed signal. In this 

case the task consists of recovering a signal which could be regular which is being 

observed in the presence of a low-dimensional chaotic signal. The contamination is 

the chaos, and we will be concerned with the case when the signal to noise ratio is 

quite low. 
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�9 Cleaning up the signal of the dynamical system itself by separating out the "noise" 

(high-dimensional dynamics). Experience demonstrates that the determination of 

invariants of the deterministic dynamics such as Lyapunov exponents [7], fractal 

dimensions, etc are quite sensitive to noise. These quantities are used to classify or 

characterize the dynamics, so if the problem at hand is identification of the system, 

the cleaning up of the signal, namely separating off the high-dimensional "noise," 

is critical. 

In addressing both issues our procedure is essentially the same. We use the prob- 

ability rules given in detail below to separate out a signal S(k); k = 1, 2 . . . . .  N,  

which satisfies some presumed, but not known, dynamics S(k + 1) = F(S(k)). The 

only knowledge of the dynamics is the observed reference orbit. In the first case listed 

we subtract the S(k) from the observations to recover the signal of interest. In the 

second case, S(k) is the signal. 

We deal solely with additive noise in this paper. This means that the observed 

signal at "time" k, O(k), is composed of the clean signal S(k) plus some "noise" 

~(k)  

O(k) = S(k) + ~q(k). (1) 

Other forms of noise are either additive in the dynamics itself or represent fluctuations 

in the parameters of the dynamics. At this time we have no methods for dealing with 

this kind of noise and restrict ourselves to additive noise. Additive noise is important 

in experimental settings as it represents the effect of the environment through which 

a signal must travel and/or the effects of the measurement instrument on the clean 

transmitted signal. 

Our paper is organized as follows: In Section 2 we discuss the procedure in some 

generality with reference to and motivation from the application we have outlined. 

In Section 3 we give some details of the application of the method to the problem 

at hand. In Section 3 we also address the important issue of how we estimate the 

probabilities required for the algorithm. In Section 4 we present the details of our 

numerical experiments on two chaotic maps in two dimensions and on the Lorenz 

flow in three dimensions. In the final section we summarize this work and stress the 

open questions not addressed by our results. 

It is useful to note now that the methods we describe here are likely to be comple- 

mentary to the more precise methods which follow the stable and unstable manifolds of 

the dynamics [1,2,3]. Our present techniques will probably be useful when the signal- 

to-noise ratio of the observed data is rather low, and after these probabilistic algorithms 

have cleaned up the signal significantly, the sharper methods can take over and make 

the job as accurate as can be achieved by the machines available for the task. 

2. Recursive Maximum Likelihood Principle for Noise Reduction 

As indicated we are interested in a multivariate signal S(k) to be measured at a set of 

times to + kAt .  The signal is in general a vector in a d-dimensional space 

S(to + kAt)  = S(k) 
(2) 

= [ S l ( k ) ,  S2(k)  . . . . .  Sd(k)], 
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which, following standard practice in dynamical systems, we will usually reconstruct 

by time delay embedding from a scalar observation [5]. The full set of signals for 

k = 1, 2 . . . . .  N we call b ~ = [S(1), S(2) . . . . .  S(N)]. We assume that underlying 

the sequence of points S(k) is a deterministic evolution equation which is a map from 

R d to itself 

S(k + 1) = F(S(k)), (3) 

though we do not actually know the map or need to know it in what follows. 

Our instruments do not report the sequence b ~ since the observations are con- 

taminated by noise rl(k). The actual observations are the d-dimensional vectors O(k) 

related to the clean signal by O(k) = S(k) + ~q(k). In what follows we assume the 

noise to be bounded by some magnitude o- n for all times, and we take the noise to 

be uniformly distributed and of zero mean. This assumption can easily be replaced 

by other assumptions about the distribution of the noise, but the boundedness, which 

is physically sensible, is critical. Further we assume the lq(k) represent identical but 

statistically independent quantities at each "time" k. Our noise is what is usually 

called iid. For measurement time step At large compared to response times of the 

medium which contaminates the signal or large compared to the recovery time of 

an instrument, this iid assumption is quite sensible. It will become clear that the iid 

assumption could be relaxed, but we would need to specify something like correlation 

times among the measurements in order to proceed. 

Now we are interested in analyzing the conditional probability of the state of the 

system actually being 9Pl N when the observations are reported as 01N. We call this 

conditional probability P(fT N ] 0N), and we seek the maximum of this conditional 

probability over the possible values of the states fiN. That is, we are seeking the most 

probable state sequence ~N which satisfies 

P(Y.~ I 0~)= max P(5~ (4) 

To determine the maximally likely sequence we use the definition of conditional 

probability to write 

p(5~ ) = P(ON[~N)P(~N) 

p(0N) (5) 
_ p ( ~ N ,  0N) 

p(0N) ' 

where the joint probability for the observations and the actual sequence has been 

written as p(~oN, 01N). Since the observations are given, we require expressions for 

the two probabilities P (0  N ] 5~ N) and P(s N) which enter p(~CN, ON), and it is this 

joint probability we seek to maximize over the possible choices for 9 ~  to find Z N. 

For this purpose we require two properties for the process we are considering. 

First we note that the probability of the sequence ~~ which is just the invariant 

distribution on the attractor evaluated on the orbit ~o~, can be written, by definition, 

a s  

P(~T)  = P(S(m) ] ~fT-1)P(~r~-t),  (6) 
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and by the assumption that the clean data sequence satisfies the deterministic recursion 

relation we see that the conditional probability here takes the simpler form 

P(S(m) I ~ -1) = P(S(m) lS(m - 1)), (7) 

so we have 

P(~r = P ( S ( m )  l S (m  - 1))P(5~ (8) 

Second, by the assumption of additivity of the noise to the signal and the iid nature 

of the noise we may write 

p (~n  ] 9 ~ )  = P(O(1), O(2) . . . . .  O(m) [ S(1), S(2) . . . . .  S(m)) 

= ~ I  P ( O ( k l l S ( k ) )  

= l (9) 
m 

=IF- [  Po (S(k) - O(k)) 
k = l  

= P(O(rn) lS(m))P(~T -1 19~ -1) 

where Pn is the probability distribution assumed for the noise. 

These properties lead us to the recursion relation for the joint probabilities 

P(5~ ~ )  -- {P(O(m) I S(m))P(S(m) I S(m - 1))}n(5~ -~, (~-1) ,  (10) 

and it is this we use to maximize over the 5o~ n to find the most likely state ~n .  

Now we divide the optimization procedure over the allowed states ffl N into the 

effect at "time" rn due to states in the past and the effect due to states at later times. 

Since we are using properties of the stationary time series which defines the time 

independent geometric structure of the attractor, this allows us to provide a balanced 

sense of the effect of all points on the transition probabilities at time m. To this end 

we define the optimal forward probability ending at state S(m) 

PF(S(m)) = maxP(S(m) l S(m - 1))P(9~T -1, ~n-1),  (11) 
~~ 

and using the recursion relation derived above among the joint probabilities 

P(SDT, ~T), we can derive the recursion relation for the forward probabilities 

P F ( S ( m ) )  = max  [{P(S(m)  l S (m  - 1))P(O(m - 1) ] S(m - 1 ) ) } P F ( S ( m  - 1))], 
~(m-1) (12) 

From these forward probabilities we find the maximized joint probability as 

P (ET, ~?)  = max [P(O(m)[S(m))PF(S(m))] .  (13) 
S(m) 

The identification of PF(S(m)) has allowed us to decompose the search among Nd 

variables into a sequence of searches over local d-dimensional spaces. This is the 

essence of the procedures called dynamic programming by Bellman [8]. 

Similarly, we can define the optimal backward state sequence probabilities 

PB(S(m)) as a recursion relation starting from state N and moving backward to state 

m. This reads 
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PB(S(m)) = max [{P(S(m) IS(m + 1))P(O(m + 1) I S(m + 1))}PB(S(m + 1))], 
S(m + 1) (14) 

and the joint probability arises from PB(S(m)) as 

N N 
P (~m, ~m) ~- max [P(O(m) I S(m))PB(S(m))]. 

S(m) 
(15) 

We will actually use a combination of these two methods and derive the maximum 

likelihood state sequence ~N from the forward-backward algorithm which maximizes 

at each "time" m the product 

P (O(m) lS(m))PF(S(m))PB (S(m)), (16) 

and the maximum over this gives p(EN, ~N). 

The use of the forward and backward information is motivated by two aspects of 

the dynamics we are studying: 

�9 The geometric structure of the attractor which defines the invariant probability distri- 

bution is a time independent quantity. Information about local structure in the state 

space comes from the neighbors of points along the orbits, and those neighbors 

have no particular temporal order to their appearance in a neighborhood. Iterating 

forward and backward to a "time" m to determine the optimal value of S(m) makes 

use of all the data which is important for the neighborhood of S(m). This would 

not be the case if we used only forward or only backward iterations. It may be 

that combinations other than the one we choose of forward and backward infor- 

mation are as useful or even more so in this regard, and they are certainly worth 

exploring. 

�9 In dynamical systems which exhibit chaos and strange attractors forward and back- 

ward iterations are not equivalent. The Lyapunov exponents which govern the growth 

of perturbations forward and backward are generally different. Since we must, as 

we shall see in the next Section, make an explicit choice on how we discretize 

the phase space in order to carry out our procedures in practice, the errors which 

inevitably result from this finite resolution behave differently under forward and 

under backward iterations. The quantity which determines the ability to accurately 

predict ahead is the Kolmogorov-Sinai entropy, and its relation to Lyapunov expo- 

nents is discussed by Pesin and by Ruelle [5, 9, 10]. Our present choice is a kind 

of compromise between the forward and backward procedures. 

The three methods--forward, backward and both--for passing through the data 

are formally the same in the sense they represent rearrangements of the same overall 

formula for P(E~, ~N). Nonetheless, one might suspect that they could give different 

answers, if the the data set is not very long. In the limit that the data set is very long, 

N ~ 0% they should all agree, since any dependence on "end" effects should go 

away. We used the forward/backward algorithm in all the work reported in this paper, 

but have used both the forward and the backward in some of our investigations, and 

cannot report any significant differences in their performance. Of course, if the data 
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set is too short, the effects of  the beginning points are important, and then the three 

methods may give substantially different results. 

3. Implementing the Algorithm for Observed Time Series of Dynamical Systems 

3.1 Estimating the Probabilities 

To apply our method to a time series from a dynamical system we require a way 

to estimate the two ingredients in the recursion formulae. These are the conditional 

probability for the state S(m) given S(m _ 1) and the conditional probability for 

the observation O(m) given the state S(m). The latter, P(O(m) I S(m)), we have 

discussed above and indicated how it is just the distribution for the noise evaluated at 

S(m) - O(m) 

P (O(m) ] S(m)) = Pn (O(m) - S(m)),  (17) 

since the noise is additive. 

For the conditional probability P(S(m) f S(m - 1)) we require a way to evaluate 

the joint probability for finding S(m) on the attractor at time m and finding S(m - 1) 

on the attractor at time m - 1. This is to be determined from the definition of  the 

invariant distribution on the attractor which states that at a point x the density is 

NR 

1 Z 6 d (  x -  R(j ) )  (18) 
p(x) = ~R j = l  

as the number of  points on the reference orbit NR ---> 0% that is, becomes very large. 

R ( j )  is a reference observed orbit of  the system. The joint probability would then 

be 

NR 

p(x, y) oc ~ 6 d (x - R(j))6 d (y - R( j ' ) ) .  

j ' , j=l 
(19) 

In practice, we cannot use the delta functions to evaluate these probability dis- 

tributions, so we estimate them using a kernel density estimate [11] which replaces 

the delta function by a smooth "kernel" K(x) which has the same integral and has 

some width which is in the hands of  the user. This width reflects the graininess of our 

knowledge of  phase space. The joint density then becomes proportional to 

Ne 

R 'p K ( x - R ( j ) ) K ( y -  (j )), 
j ' , j=l 

(20) 

and the conditional probability we need to estimate is 

NR 
~' j ' , j=l  K (S(m) - R ( j ) ) K  (S(m -+ 1) - R( j ' ) )  

P(S(m) lS(m +- 1)) oc NR (21) 
Z n = ~  K (S(m - 1) - R(n)) 



320 E E Marteau and H. D. I. Abarbanel 

The main contribution to the sum in this numerator will come when m is near one of  

the "t imes" j ,  and the "time" j is near m -+ 1. 

We have chosen to use for our kernel the exponential function of  distance 

K(x  - y) = exp , (22) 

where e is a scaling of  the rms error size o- n as we will discuss in a moment.  The 

normalization of  this kernel is absorbed in the constant of  proportionality above. 

Now we have assumed that the noise level is bounded which, while not true for 

a Gaussian distribution of  noise, must be true physically. Our choice of  a uniform 

distribution of  noise is not particularly limiting, but clearly may be exchanged for 

other assumptions as the circumstance warrants. The boundedness is critical for us. 

Because of  this boundedness we can easily discretize the phase space locally and 

capture the effects of  noise while making sufficient opportunity for choice among 

possible actual states of  the system. We establish a region or ball  Bk centered around 

the observed data point O(k) .  It has radius o" n, and we divide it into M subballs of  

size e = O'n /M 1/a in d-dimensional phase space. The centers of  these �9 sized balls 

are the possible values S(k ,  i); k = 1, 2 . . . . .  N ;  i = 1, 2 . . . . .  M allowed to the states 

of the system. 

3.2 Details of the Algorithm 

We implement the algorithm described in the previous section as follows. 

�9 First we evaluate the set of  M ( N  - 1) forward probabilities P F  (S(k, i)) using the 

recursion relation 

P F ( S ( k ,  i)) 

= max,  [{n(S(k, i) [ S(k - 1, i ' ) ) n ( O ( k  - 1, i ' )  I S(k - 1, i ' ) ) } P F ( S ( k  - 1, i ' ) ) ] .  
S(k-  1,i ) (23) 

We have to start with an assumed distribution P F ( S ( 1 ,  i)) at the initial time k = 1, 

and we take this to be uniform over the i = 1, 2 . . . . .  M subballs around the 

observation point O(1). Now we evaluate M 2 connection probabilities from the M 

subballs near O(1) at locations S(1, i); i = 1, 2 . . . . .  M to the subballs near 0 (2 )  

at locations S(2, i ' ) ; i '  = 1 ,2  . . . . .  M.  For each of  the M, S(2, i ' )  we record the 

maximum values and then have our P F ( S ( 2 ,  i ' ) ) ,  which we tabulate and proceed. 

This set of  actions is represented in a pictorial fashion in Figure 0. 

�9 The backward probabilities P B ( S ( k ,  i)) are computed by starting at t ime k = N 

with an assumed uniform distribution in the subballs near O(N).  Using the backward 

recursion formula 

P B ( S ( k ,  i)) 

= max [{P(S(k, i) l S(k + 1, i ' ) ) P ( O ( k  + 1, i') I S(k § 1, i ' ) ) } P B ( S ( k  + 1, i ' ) ) ] ,  
S(k + 1,i') (24) 

step by step leads to M ( N  - 1) probabilities P B ( S ( N  - 1, i)) . . . . .  PB(S(1,  i ' ) ) .  
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�9 Altogether now we have recorded 2 M ( N  - 1) probabilities counting the forward and 

backward lists. So far we have made two passes through the time series. 

�9 Our final pass through the time series now looks at each time not equal to the 

forward starting time k = 1 or the backward starting time k = N. We establish 

the most likely set of  S(k, i); k = 2, 3 . . . . .  N - 1; i = 1, 2 . . . . .  M by maximizing 

the product 

P ( O ( k  ) l S (k ,  i ) ) P F ( S ( k ,  i)) P B ( S ( k ,  i)), (25) 

over the set of  M ,  S(k ,  i); i = 1, 2 . . . . .  M at each k = 2, 3 . . . . .  N - 1. This will 

give us the optimum or maximum likelihood value ~(k).  The collection of  these 

vectors for k = 2, 3 . . . . .  N - 1 is our cleaned up orbit, ]~(k). 

This completes one pass through the data. Now the procedure is repeated with the 

original data O(k) replaced by the values E~ with ~(1) = O(1) and ~(N) = O(N),  

since no cleaning was done on the ends. In this pass through the algorithm we scale 

the noise level trn by a factor we call s which we have chosen to slowly reduce the 

size of  our estimate of  o-, 7 as we repeat the procedure. Typically we have chosen s to 

be 1.1, so our reduction in the size of  the phase space in which we allow the clean 

data point to be located only slowly decreases. If  we took larger values of  s in an 

attempt to decrease the number of  iterations of  the recursion relations, we found that 

there was a tendency to get stuck in a corner of  phase space not much connected with 

the original orbit. Slowly approaching smaller and smaller noise balls worked quite 

well as we shall report in the next section. 

The search algorithm outlined is thus repeated with a new set of  O(k) as the 

observations, namely the set of  cleaned data except for the end points, and the size of  

the noise is scaled down o-n ----> t r n / s .  We repeat this scaled probabilistic procedure 

until an acceptable level of  clean data is achieved or until changes in the cleaned orbit 

E(k) are small from pass to pass. In this paper we fixed the number of  passes by trial 

and error and did not investigate the possibility of  varying the scaling factor and the 

number of  passes. Our choice was more than adequate, as we shall see. 

This sequence of  steps we call scaled probabilist ic noise reduction. 

3.3 Phase Space Reconstruction and Markov Properties of the Method 

It is often true that we are given only measurements of  a single scalar variable, x(k),  

from the system. We must then reconstruct the phase space or state space of  the d- 

dimensional vectors S(k), and we do this in the familiar fashion suggested by Ruelle 

and given firm mathematical foundations by Takens and Marl6 [12, 13, 5] using a 

time delay embedding method which gives S(k) as 

S(k) = [x(k), x ( k  - T)  . . . . .  x (k - T (d  - 1))]. (26) 

In this paper we do not address methods for choosing either the time delay T or the 

embedding dimension d. A thorough discussion can be found in [7] and the references 

there. 
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This choice means that the one step transition probability P(S(k)  [ S(k - 1)) as 

seen in d-dimensional space is (setting T = 1) 

P ( S ( k ) l S ( k  - 1)) = P ( x ( k ) ,  x ( k  - 1) . . . . .  x ( k  - d + 1)]x(k - 1) . . . . .  x ( k  - d))  

= P ( x ( k ) [ x ( k  - 1), x ( k  - 2) . . . . .  x ( k  - d ) ) ,  (27) 

and this makes the probability P(5  ~ factorize as a d-step Markov process as seen 

in the space of the scalar variables x (k ) .  This causes no special problem, of course, 

and needs to be tracked when we are making our search. 

If  the embedding dimension is too small to capture the geometry of  the attractor, 

that is, to unfold it completely, then we will be misled as far as distances go in 

computing the kernels required for the probability distributions. There is, of  course, 

the sufficient condition (for clean data) that d be the integer greater than or equal to 

twice the dimension of  the attractor plus unity, but this may often be larger than is 

required. Indeed, it is clear that as the embedding dimension approaches the correct 

minimum dimension to unfold the attractor completely, the part of phase space where 

distances are being computed incorrectly becomes quite small, so it may be that 

reaching even this minimum dimension is not required for practical results. In our 

work on the Ikeda map, for example, it is known that the minimum embedding 

dimension should be d = 4 [7], but at d = 2 significant noise reduction is achieved, 

and at d = 3 nearly 70% of the full noise reduction at d >- 4 is achieved. In this 

paper we are working with known systems, and we do not independently determine 

the value of  d here but take it from previous work on these systems. 

In practice, the real "clean" data does not exactly satisfy the deterministic mapping 

S(k + 1) = F(S(k)), and correlations among the data points beyond that introduced by 

the dynamics surely exist. A clear future direction of  investigation would be to relax 

the strict one-step Markov property of the strictly deterministic data and to investigate 

how well one can do by allowing it to be two-step, three-step, and so forth. 

4. Numerical Experiments 

Our procedure in each of  the cases we present now has been to generate a clean 

reference orbit, R ( j ) ,  which we need for the estimates of  the conditional probabilities 

or transition probabilities required in the algorithm. Then we generate another orbit 

which we call the clean orbit, Sc(k), starting from different initial conditions. To this 

clean orbit we add a second source signal, the contaminant, which is our iid bounded 

noise or either a "spike" or pulse or similar regular signal. In the case of  the iid noise 

our goal is to remove it from the observed signal, now Sc(k) + aq(k), and find ~(k) 

which is our approximation to the original clean signal. In the case of  a spike or other 

regular signal, the "noise" is the chaotic signal. The task we set ourselves is the same 

in each case: Separate the two sources when only the sum has been observed, given 

the reference orbit. 

4.1 The Comput ing Cost o f  the Algorithm 

In estimating the transition or conditional probabilities we require a computation of  the 

distances in d-dimensional space between reference vectors and our candidates S(k,  i) 
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for the optimum state vector. We are using an exponential kernel for estimating the 

probabilities, and we retain in the sum involving the kernel only those terms with 

points in the immediate neighborhood of  the S(k). We used a kd-tree algorithm [14] 

for identifying these neighborhoods of  the reference orbit, and this allows us to make 

the search for neighbors in logarithmic time. 

The local state space is partitioned by M = L d subballs where L is the number of  

subdivisions in each of  the d dimensions of the space. If  o- is the radius of  the noisy 

ball around each noisy point, the subballs are of  radius e = o'/L. 

The most time-consuming part of  the procedure is the estimation of  the transition 

probabilities. If  the time series is of  length N, then about dN log(N) time is spent in 

the search for neighbors. We must evaluate M 2 transition probabilities at each stage, 

but we only have to search the neighbors for M states. If  we want to clean N' <-- N 

points on the orbit, the computation time will be proportional to 2N'LadN log(N), 

with the factor of  two coming because we search backward and forward. The most 

costly factor in this estimate is the term L d which may prevent the use of  our method 

in very large dimensions since, obviously, L > 1. In this paper we are working with 

d -< 4, and small L, so this has not been an issue. 

4.2 Various Parameters, Error Measures, and Cleaning Criteria 

In all the numerical work which follows we chose the following values for various 

parameters in the algorithm: 

� 9  

�9 The number of neighbors used to estimate the transition probabilities is set at 20. 

�9 The noise ~/(k) is uniformly distributed and has zero mean. 

�9 The scale factor used in reducing the size of  the search region in state space after 

each pass through the algorithm was s = 1.1 We have used 35 passes through the 

data to allow this small scaling factor to have its effect. We have not systematically 

explored the possibility of  increasing s and decreasing the number of  passes to 

achieve the same level of  cleaning. As we noted above, however, larger values of  

s tend to trap one in unwanted parts of  local phase space too early in the recursion 

procedure, and escape from these traps appears infrequent. 

�9 Unless specified otherwise we use 10,000 points on our reference orbits. In practice, 

we expect one could easily use far fewer points, but we have not experimented with 

the behavior of  the procedure as this number is reduced. 

To test how well we have done in cleaning the noisy data we evaluate two kinds 

of  deviation from known values. Because we know the original dynamics S(k + 1) = 

F(S(k)), we can ask how well the cleaned data satisfies this map. The error here we 

call the deterministic error. Locally in "time" it is 

DE(k) = ]E(k + 1) - F(E(k))I ,  (28) 

and Euclidian distance in d-dimensional space is used. We evaluate the average of  

this error over the whole data set, or, equivalently, across the whole attractor. The 
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experience we have had with our cleaning procedure and the experience we and others 

[1, 2, 3] have had with more dynamically based methods produces deterministic errors 

which are very small except at a few locations around the attractor. This means that 

the usual arithmetic average 

N 

l k~__lDE(k ) (29) 

can be quite misleading about how well we have done in our cleaning process, so we 

also compute the geometric average 

1. 

DE(k) , (30) 

which tells us much more about the trend of series such as DE(k) which has enormous 

excursions from its general behavior. We shall actually report the logarithms of these 

averages 

GDE = log DE(k) (31) 

k = l  

1 ~-,U 
- g ~ log[DE(k)]. 

k = l  

We are also in the fortunate situation in these numerical experiments of knowing 

the clean data So(k), so we can compare the cleaned orbit ]~(k) with the original clean 

data using the local absolute error 

AE(k) = I~(k) - Se(k) I , (32) 

and its averages 

] AAE = log ~ AE(k) 

G A E =  log [{ kN__~ AE(k)} ~ ] (33) 

N 



Noise Reduction in Chaotic Time Series Using Scaled Probabilistic Methods 325 

To give a quantitative statement about the success of  the cleaning method we 

evaluate the following as a measure of  how much noise is removed. Define the local 

deterministic error of  the noise DEN(k) = [Sn(k + 1) - F(Sn(k))[, where Sn(k) = 

So(k) + r/(k), and the local absolute error of  the noise AEN(k) = [Sc(k) - Sn(k) I. 

The latter is just the original noise level. Now we report the following numbers [4] 

~kZ=l AE(k)2 

RAE = 1 -  , (34) 

~k ~=AEN(k)21 

which is the measure of  how the absolute error has been improved, and 

k = l  
RDE = 1 -  , (35) 

~kZ=DEN(k) 2 

which is a measure of  the effectiveness of  the cleaning in removing deterministic 

error. 

4.3 Results of Computations 

4.3.1 H6non M a p  The H6non map [15] of  the plane to itself is 

x(k + 1) = 1 + y(k)- ax(k) 2 
(36) 

y(k + 1) = bx(k), 

where we use the traditional values a = 1.4 and b = 0.3. The phase portrait of  the 

attractor is familiar, and we show it in Figure 1 for convenient comparison with our 

noisy orbit and our optimally cleaned orbit. 

We added noise uniformly distributed in the interval [ - 0 . 2 ,  0.2], which means 

a 15.8% noise perturbation, computed as the ratio of  the rms value of  this noise 

sequence (0.115) and the rms value of  the clean data sequence (0.73). This is a signal 

to noise ratio of  about 8 dB. We compute dB values as 10 lOgl0 of  the ratio of  relevant 

amplitudes. Power dB values are gotten by multiplication by 2. Figure 2 shows the 

orbit after the noise has been added, this is Sn(k), and Figure 3 shows the phase plot 

after we have applied the cleaning algorithm our standard 35 times. In the cleaning 

process used here we worked directly with the two-vectors [x(k), y(k)] rather than 

using phase space reconstruction vectors Ix(k), x(k + 1)]. This is a trivial difference 

for the H6non map since y(k + 1) = bx(k). 
In Figure 4 we show the absolute error and the deterministic error after the 35 clean- 

ing passes for a limited section of  the 1000 step data sequence which we cleaned. 

Again we worked here with the original two-vectors from the H6non data. The com- 

parison between the two kinds of  error shows that even when the absolute error (shown 

with a solid line) is large, the deterministic error can remain quite small. In Figure 5 
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we exhibit the local absolute error AE(k) which results from the cleaning procedure, 

and in Figure 6 is the local deterministic error DE(k). The various averaged error 

measures for this process are ADE = - 3 . 6 1 ;  GDE = - 2 . 5 1 ;  AAE = - 3 . 0 9 ;  

GAE = - 2 . 4 1 ;  RDE = 97.3%; and RAE = 78.3%. We can translate the numbers 

AAE, and GAE into more familiar terms recognizing that they are measures of  the 

residual error. For AAE = - 3 . 0 9  as here, this means the residual error is 0.000813 

compared to the original error of  0.115. This is a noise reduction or gain in signal- 

to-noise ratio of  21.5 dB, so the final signal to noise ratio is 29.5 dB compared to 

the original 8.0 dB. If  we use the geometric mean as the measure of  noise reduction, 

the noise reduction or gain in signal against noise is found to be 14.7 dB for a final 

signal to noise ratio of  22.7 dB. Recall we use 10 log10 in amplitude as our measure 

of dB. The RAE figure of  merit is discussed in [4]. 

Next we perturbed the Hrnon map with a spike signal of  magnitude 0.2 localized 

around time step 50. In Figure 7 we show as a solid line the original spike, which 

was then used as an additive contamination of  the x(n) part of  the HEnon orbit, and 

as a solid line with stars we have in the same Figure the spike reconstructed after our 

cleaning process. The reconstructed spike is found by cleaning the "observed" spike 

plus clean Hrnon data using our algorithm and then subtracting the cleaned data from 

the observations. In Figure 8 we show the time series for the Hrnon data without the 

spike and with the spike of amplitude 0.2 at step 50 added to the clean data. Clearly 

in the vicinity of  step 50 there is a small but visible perturbation of  the original 

signal. Considering the spike as the signal and the Hrnon orbit as the noise gives an 

original signal-to-noise ratio of  - 5 . 6  dB, using the maximum signal strength of  0.2 

as the amplitude of the signal and the rms level of the Hrnon orbit as the "noise" 

level. Even lower signal-to-noise ratios give much the same result as long as the 

reference orbit is long enough to yield a good representation of  the attractor at small 

scales in the phase space. The various averaged error measures for this process are 

ADE = - 3 . 0 1 ; G D E  = - 3 . 2 9 ; A A E  = - 3 . 1 7 ; G A E  = - 3 . 9 9 ; R D E  = 91.1%; 

and RAE = 80.0%. Using the AAE as the measure of  the accuracy with which we 

recover the spike, we could now say that the signal to noise level is 23.1 dB at the 

end of  our cleaning process. This means a gain of 28.7 dB in the signal against the 

Hrnon "noise." 

In the next test of  our algorithm on the Hrnon map we added a pulse signal to one 

generated from the Hrnon map. Again the pulse was added to the x(n) component of 

the Hrnon data. This pulse was localized around "time" step 40 and had amplitude 

0.2. In Figure 9 we show the original pulse as a solid line, and the resulting pulse 

after the usual 35 passes through our cleaning algorithm is shown as the solid line 

with stars. In this case we used only x(n) data from the Hrnon orbit and reconstructed 

the attractor using time delay embedding in a dimension of  2. We also used 20,000 

points on the reference orbit. The original signal to noise ratio was, as above, - 5 . 6  

dB and, after cleaning the signal strength relative to the residual error, is 32.9 dB 

for a gain in signal to noise ratio of  38.5 dB. In terms of  the error measures defined 

above we find after cleaning: AAE = - 3 . 9 9 ;  GAE = - 3 . 1 8 ;  and RAE = 84%. The 

measures of  error or improvement for deterministic error for a pulse or spike are not 

so relevant as when we are cleaning up a chaotic signal to see how we are doing in 

satisfying the map. We could, of  course, evaluate how well we recovered the original 
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Hrnon "noise" source, but our emphasis in this set of  experiments is in recovering 

the spike signal. 

For an illustration of  the importance of  the quality of  the reference orbit used in 

determining the conditional probability densities we show in Figure 10 the same pulse 

as an original (solid line) and cleaned pulse (solid line plus stars) when only 10,000 

points on the reference orbit are used. Clearly one does much better when more points 

on the reference orbit are available. 

4.3.2 The Ikeda  Map  The Ikeda [16] map of the plane to itself arose in studies of  

properties of  a laser in a cavity. It is given in terms of  a complex number z ( k )  at each 

time step 

a 

z ( k  + 1) = p + B z ( k ) e x p [ i ( K  1 + ]z(k)l 2)]' (37) 

and we have used the parameter values p = 1.0, B = 0.9, a --= 0.4, and K = 6.0. 

This attractor is much richer than the Hrnon attractor, and provides a more complex 

challenge for our cleaning algorithm. The dimension of  the attractor is about 1.7, 

and the dimension of  the embedding space required using time delay embedding is 

at least 4 [7]. Again for convenience we show the original orbit in Figure 11. This 

figure is not original, of course, and is here for ease of  comparison with our cleaning 

results. 

To this clean orbit we added uniform noise with maximum magnitude 0.1. This is 

a noise perturbation of  about 11.8% when rms levels of  clean data (0.489) and rms 

levels of noise (0.0577) are compared, or an original signal-to-noise ratio of  about 9.3 

dB. Figure 12 and Figure 13 show respectively the noisy phase portrait and the phase 

portrait resulting from 35 passes of  the cleaning procedure. In this cleaning procedure 

we used the original two-vectors [x(k), y(k)] from the Ikeda map. In Figure 13 we have 

cleaned 3000 data points rather than our usual 1000 to be able to expose the way in 

which the cleaning procedure reveals the details of the structure of  the Ikeda attractor. In 

Figure 14 we have the local absolute error and in Figure 15, the local deterministic error. 

The various averaged error measures for this process are A D E  = - 1.71 ; G D E  = 

- 2 . 2 1  ; AAE = - 3 . 2 3  ; GAE = - 1 . 9 1  ; R D E  = 88.6% ; a n d R A E  = 60.8%. 

The final signal-to-residual error ratio is now 29.1 dB (using AAE) for a gain in the 

signal to noise ratio of  19.9 dB. 

To an orbit of the Ikeda map we added to x ( n )  our pulse of  magnitude 0.2 localized 

near time step 40. This is an original signal to noise ratio of - 3 . 9  dB. In Figure 16 we 

reproduce the original pulse as the solid line and the reconstructed pulse after the scaled 

probabilistic cleaning has been done as the solid line with stars. This calculation was 

done using the real part of  the Ikeda orbit (x (k ) )  with a phase space reconstruction done 

in d --- 4 to calculate the distances required in the conditional probability estimations 

[7], and 20,000 points on the reference orbit were used. The error measures indicated 

above were AAE = - 3 . 0 6 ;  G A E  = - 3 . 9 6 ;  and RAE = 79.7%. Using AAE as the 

measure of  the improvement in the noise level we compute a final signal to noise ratio 

of 23.6 dB or a gain in this ratio of  27.5 dB. 



328 P. E Marteau and H. D. I. Abarbanel 

4.3.3 The Lorenz Attractor As our final example we studied the usefulness of  

our algorithm in recapturing an orbit on the Lorenz attractor [17]. The orbits are the 

solution of  the three ordinary differential equations 

d x 1  . . 

--d-[(t) = o ' [ x 2 ( t ) - - X l ( t ) ]  

d x 2 . .  
-d-[ tt) = - x l ( t ) x 3 ( t )  + r x l ( t )  - x2(t) (38) 

d x 3  . , 

--d-[(t) = x l ( t ) x 2 ( t )  - b x 3 ( t )  

and we take ~ = 16, b = 4, and r = 45.92. We integrated the equations using a 

fourth-order Runge-Kutta method and a time step At = 0.02, which means that the 

orbit goes about 400 times around the attractor. The dimension of the attractor is 2.06. 

Again for convenient comparison with our results we show the attractor projected onto 

the ( x ( n ) ,  y ( n ) )  plane in Figure 17. In this case we worked directly with the (x, y, z) 

data from the Lorenz system rather than create three-vectors from x ( n )  alone by phase 

space reconstruction. 

To this orbit we added uniform noise in the interval [ - 5 . 0 ,  5.0], which gives a noise 

level of  23% comparing rms levels of  the clean orbit and of  the noise, or a signal-to- 

noise ratio of  6.4 dB. The noisy orbit is shown in Figure 18, and one can see that the 

attractor is quite thoroughly masked. In Figure 19 we show the result of  applying our 

algorithm 35 times. The recovery of  the geometric structure is quite striking. Again 

we display the local absolute error (Figure 20) and the local deterministic error (Figure 

21). The various averaged error measures for this process are ADE = - 0 . 9 3 ;  G D E  = 

- 0 . 9 9 ; A A E  = - 1 .49;GAE = - 0 . 2 4 ; R D E  = 93.5%; and R A E  = 79.8%. Using 

AAE as a measure of  the residual noise level we have a final signal-to-noise level of  

25.9 dB for a gain in this ratio of  19.5 dB. This is a substantial gain against noise 

and clearly manifests itself in the visual images of  the figures. 

To a signal from the Lorenz attractor we added to x ( n )  a pulse localized around 

time step 50 of magnitude 5.2, and then using a phase space reconstruction to find 

vectors on the attractor in an embedding space of  d = 3, we cleaned the Lorenz 

plus pulse data to extract the regular pulse signal. In Figure 22 we show the original 

pulse as a solid line and the cleaned pulse as the solid line plus stars. The original 

signal-to-noise level was - 3 . 9  dB. In terms of  the error measures we have defined, 

this cleaning procedure led to AAE = - 1 . 6 4 ;  GAE = - 2 . 0 6 ;  and RAE = 78.1%. 

In our usual way we compute a final signal-to-noise ratio of  27.4 dB or a gain of  31.3 

dB against the original signal-to-noise ratio. 

5. Discussion and Conclusions 

This paper has presented a method for separating two signals using a scaled prob-  

abilist ic procedure. We outlined the procedure in Section 2 with motivation for our 

detailed assumptions coming from our planned application to having one of  the signals 
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being a deterministic system with chaotic, and thus spectrally broadband orbits, and 

the other signal being lid noise. In Section 3 we discussed the details of implementing 

the algorithm in the phase or state space of the dynamics, and then in Section 4 we 

gave several examples with error measures for applying the procedure to two different 

kinds of settings: 

�9 a chaotic signal immersed in uniformly distributed iid random noise. The job of the 

cleaning algorithm is to extract the chaotic signal from the noisy environment; 

�9 a pulse signal--taken as typical of a regular signal--immersed in a signal from a 

chaotic source. The job of the cleaning algorithm is to extract the pulse from within 

the chaotic background. Equivalently one can view this as removing the pulse (a 

contaminant) from the good chaotic data. The point of these examples is to indicate 

that a message (the pulse) can be reliably extracted from the background of a chaotic 

signal when a good reference orbit of the chaotic signal is available. In some sense 

we have thus demonstrated a probabilistic matched filter method. 

The algorithm works the same in each of these settings. We separate the part of 

the observations O(k) which "best" satisfies some (unknown) dynamics S(k + 1) = 

F(S(k)). "Best" is determined by our reference orbit and the stated probability rules. 

In the first case the signal S(k) is our goal. In the second case we subtract S(k) from 

O(k) to reconstruct the pulse O(k) - S(k). 

In each instance we were able to demonstrate quite cleanly that the separation of 

two sources can be accomplished with our scaled probabilistic algorithm even when 

the signal-to-noise ratio is quite small. In the case of the pulse or spike embedded in 

a chaotic signal we dealt with original signal-to-noise ratios of - 4  dB or less, and 

were able to recover the input pulse or spike with a final signal-to-noise ratio which 

was quite large. In some quite loose sense this is a gain against "noise"--namely, the 

unwanted source--of  about 25 to 30 dB (in amplitude). In each instance where we 

explored the working of the algorithm, we were able to deal with even lower original 

sign~-to-noise ratios and successfully extract the desired signal from the observations. 

It was quite critical to have a long reference orbit to be able to achieve this high gain 

against noise. 

The methods presented here are cruder that those which use details of the dynamics 

[1, 2, 3] in the sense that they have no hope of achieving machine accuracy, and we 

cannot guarantee they converge in an exponential fashion. This leads us to think of 

the present scaled probabilistic methods as the first pass one would take on noisy data. 

One would follow that first pass with the highly convergent dynamical methods. In 

our work here we require a rather good reference orbit to achieve the large gains in 

signal-to-noise ratio we have observed. 

Our use of the reference orbit is reminiscent of matched filtering in familiar linear 

theory. We use the density in phase space provided by the reference orbit as a template 

against which to test our local meanders in the vicinity of the observations O(k) as 

we seek the maximum likelihood for our probabilities. The matched filtering in linear 

theory is formulated in Fourier domain. Of course, in nonlinear problems Fourier 

space is generally not an improvement, so our matched filters have been presented 

in time-domain, and in the phase space of the system, to be precise. A most important 
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property of the filter is that it represents the invariant density [5, 6], so our observation 

of it by any orbit of the system tells us all we need to know. The details of the orbit 

itself are not important. If  they were, we would be stopped by the usual positive 

Lyapunov exponents or sensitivity to initial conditions, and this method would be of 

little use. 

By no means have we explored all possibilities for implementing the general scheme 

we outlined in Section 2. Section 3 of this paper represents our best numerical efforts to 

date, but we can imagine various kinds of improvements, including scaling strategies 

that are different in different parts of phase space, and generalizations of the basic 

one-step Markov assumption on the distributions of the clean state space vectors. The 

latter, in particular, may give degrees of freedom which allow greater gains in signal 

strength in the presence of non-white noise. 

Other issues not explored by us but well worth investigation based on the pleasant 

success of the method as reported here include (1) exploration of the dependence of 

the method on the length and quality of the reference orbit (for too short a reference 

orbit, we surely must be defeated by relatively low noise levels); (2) exploration of the 

dependence of the method on the dimension and time lag used for embedding the scalar 

observed data into a multivariate phase space; (3) exploration of the dependence of 

the method on the number of subballs which we use to divide the noise neighborhood 

o- n at each iteration of the cleaning procedure; (4) exploration of the sensitivity to 

the number of passes through the algorithm and scale factor used at each pass; and 

(5) exploration of adaptive scaling methods which scale down the noise ball size in 

different regions of phase space in different fashions. 

Even at the stage of development we have presented in this paper, we are able 

to envision applying these methods to quite noisy laboratory and field data where 

we suspect there is a chaotic signal buried in environmental or instrumental noise. 

We shall do that with fluid dynamics data and report on this in the future. One can 

also envision the transmission of a regular "message" covertly located in a chaotic 

environment which can be retrieved by the methods we have used. We shall explore 

some of the limits of this as well. 
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Fig. 0. An illustration of the M 2 connections to be evaluated in determining 

the PF(S(k + 1, i)) for i = 1, 2 . . . . .  M from the earlier values PF(S(k, i)) 
for i '  = 1, 2 . . . . .  M.  In this figure we show the local phase space for 

M = 9, d = 2. Each of the 9 squares around the observed points O(k) 

and O(k + 1) is a possible location for a 'cleaned'  data point. We must 

evaluate the 81 connection probabilities from "time" k to "time" k + 1. The 

probabilities PF(S(k,  i)) are known, and we maximize at each S(k + 1, i ' )  

over the values at S(k, i) .to determine the values of PF(S(k + 1, i ' )) .  

Equation (12) with m = k + 1 is used to determine the PF(S(k + 1, i')). 
A similar picture holds for the backward recursion to evaluate PB(S(k, i)). 
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Fig. 1. The phase portrait for the H6non map constructed from data on x(n) only. 

Two-vectors Ix(n), x(n + 1)] are plotted. These data have no noise except machine 

error. This figure is found in numerous places, and is reproduced here for ease of 

comparison with the noisy and cleaned H6non data to follow. 
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Fig. 2. Phase portrait for the H6non map with noise uniformly distributed in 

[ - 0 . 2 ,  0.2] added to the data. 
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Fig. 3. Phase portrait of the H~non map after 35 passes though the scaled proba- 

bilistic cleaning algorithm starting with a noise level of 0.2, as in Figure 2. 1000 

points on the orbit have been cleaned. 
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rig. 4. The absolute error (AE(k)) and the deterministic error (DE(k)) in the 

cleaned data after the application of 35 passes of the scaled probabilistic cleaning 

procedure on H6non map data. It is important to note that the deterministic error 

[how well the dynamics is satisfied] can remain small even when the absolute error 
[how close the cleaned data is to the original data] makes large excursions. 



334 R E Marteau and H. D. I. Abarbanel 

Cleaned Henon Data; Noise Level 0.2 

DeLerminisLic Error 
10 -1"~ 

10-~.5 

10 -~'~ 

10 -z'~ 

o 

.~_ tO -~.o 

E 
10 -~'5 

10 -4.0 

10 -4"s 

10-5.o 

0 10(3 200 .300 400 500 600 700 800 900 1000 

'T ime ' - -S tep  in Data 

Fig. 5. The absolute error, AE(k), for the cleaned H6non data for 2 - k --- 999 for 

the cleaned orbit shown in Figure 3. 
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Fig. 6. The deterministic error, DE(k), for the cleaned H6non data for 2 --< k ~< 999 

for the cleaned orbit shown in Figure 3. 
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Fig. 7. The original (clean) spike signal--solid line--which is added to a signal from 

the H6non map shown with the reconstructed signal--solid line with stars--from the 

scaled probabilistic noise reduction procedure. 
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Fig. 8. The "noisy signal" which is the spike of amplitude 0.2 added to the signal 
from the H6non map shown simultaneously with the H6non signal alone. The time 

series differ only slightly in the neighborhood of time step 40 where the spike is 
localized. 
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Fig. 9. The original pulse signal of amplitude 0.2 localized around time step 50--  

solid line--and the reconstructed signal--solid line with stars--from the scaled prob- 

abilistic noise reduction procedure. The noisy signal was an H6non map orbit plus 

pulse signal. In this cleaning procedure 20,000 points for the reference orbit were 

used. 

0.25 

Spike Data (Henon Noise) 
Original Spike (Solid); S p i k e  a f t e r  c l e a n i n g  (Salid+Star) 
i i i i 

0.15 

"& 0.05 
v3 

"5 

~- -0 .05  
E 
< 

--0.15 

- 0 . 2 5  ~ ~ ~ 

0.0 20.0 4-0.0 60.0 80.0 100.0 

' T i m e ' - - - S t e p  in Data 

Fig. 10. The original pulse signal of amplitude 0.2 localized around time step 50-- 
solid line--and the reconstructed signal--solid line with stars--from the scaled prob- 

abilistic noise reduction procedure. The noisy signal was an H6non map orbit plus 
pulse signal. In this cleaning procedure 10,000 points for the reference orbit were 

used. 
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Fig. 11. The phase portrait for the lkeda map. Two-vectors which are the real, 

x(n), and imaginary part, y(n), of the complex Ikeda amplitude are plotted. This 

data has no noise except for machine error. This figure is found in numerous places, 

and is reproduced here for ease of comparison with the noisy and cleaned lkeda 

data to follow. 
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Fig. 12. Phase portrait for the Ikeda map with noise uniformly distributed in 

[-0.1, 0.1] added to the data. 
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Fig. 13. Phase portrait of the Ikeda map after 35 passes though the scaled proba- 

bilistic cleaning algorithm starting with a noise level of  0.1, as in Figure 12. 1000 

points on the orbit have been cleaned. 
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Fig. 14. The absolute error, AE(k),  for the cleaned Ikeda data for 2 --< k --- 999 for 

the cleaned orbit shown in Figure 13. 
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Fig. 15. The deterministic error, DE(k), for the cleaned Ikeda data for 2 - k <- 999 

for the cleaned orbit shown in Figure 13. 
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Fig. 16. The original pulse signal of amplitude 0.2 localized around time step 50-- 

solid line--and the reconstructed signal--solid line with stars--from the scaled prob- 

abilistic noise reduction procedure. The noisy signal was an Ikeda map orbit plus 

pulse signal. In this cleaning procedure 20,000 points for the reference orbit were 

used. 
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Fig. 17. The projected phase portrait of the Lorenz attractor. The projection is on the 

[x(n), y(n)] plane. This figure is found in numerous places, and is reproduced here 

for ease of comparison with the noisy and cleaned Lorenz data to follow. Only 1000 

points on the attractor are shown for comparison with what follows. 
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Fig. 18. The projected phase portrait of the Lorenz attractor with noise uniformly 

distributed in [ - 5 . 0 ,  5.0] added to each component [x(n), y(n), z(n)].  The projec- 

tion is on the Ix(n), y(n)] plane. Clearly with this noise level the Lorenz attractor 

has become quite obscured. 
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Fig. 19. The projected phase portrait for the data cleaned by our scaled probabilistic 

procedure starting from the data shown in Figure 18 for the Lorenz attractor. The 

projection is on the Ix(n), y(n)] plane. 
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Fig. 20. The absolute error, AE(k), for the cleaned Lorenz data for 2 --< k --< 999 

for the cleaned orbit shown in Figure 19. 
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Fig. 21. The deterministic error, DE(k), for the cleaned Lorenz data for 2 <- k -< 999 

for the cleaned orbit shown in Figure 19. 
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Fig. 22. The original pulse signal of amplitude 5.2 localized around time step 50--  

solid l ine--and the reconstructed signal--solid line with stars--from the scaled 

probabilisfic noise reduction procedure. The noisy signal was a Lorenz attractor 

orbit plus pulse signal. In this cleaning procedure 10,000 points for the reference 

orbit were used. 
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