
International Journal of Computer Vision 60(1), 25–44, 2004

c© 2004 Kluwer Academic Publishers. Manufactured in The Netherlands.

Noise Reduction in Surface Reconstruction from a Given Gradient Field

B. KARAÇALI
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Abstract. We present a gradient space technique for noise reduction in surfaces reconstructed from a noisy

gradient field. We first analyze the error sources in the recovered gradient field of a surface using a three-image

photometric stereo method. Based on this analysis, we propose an additive noise model to describe the errors in

the surface gradient estimates. We then use a vector space formulation and construct a multiscale orthonormal

expansion for gradient fields. Using the sparse representation properties of this expansion, we develop techniques

for reducing the gradient field noise by coefficient selection with thresholding. The simulation results indicate that

the proposed technique provides significant improvement on the noise levels of both the estimated gradient fields and

the reconstructed surfaces under heavy noise levels. Furthermore, the experiments using noisy photometric stereo

image triplets of real range data suggest that the additive model remains viable after the nonlinear photometric

stereo operation to provide accurate noise removal.

Keywords: surface reconstruction, gradient field, noise reduction, thresholding, projection, gradient space,

orthonormal representation, multiscale analysis

1. Introduction

Reconstruction of a three-dimensional scene is a well

studied problem in computer vision literature. Methods

for reconstructing a three-dimensional surface topog-

raphy from one or more brightness images are referred

as “shape-from-shading” methods (Deift and Sylvester,

1981; Horn and Brooks, 1989; Hurt, 1991; Zhang et al.,

1999). Shape-from-shading can be posed as the prob-

lem of finding a surface directly that would result in the

observed images, or can be attempted in two steps: ob-

tainment of a gradient field characterizing the surface

normals at every pixel, and reconstruction of a surface

that corresponds to this gradient field.

A common technique to infer the surface normal at

a given pixel based on the observed brightness val-

ues is the “photometric stereo” method (Woodham,

1978; Ikeuchi, 1981; Hayakawa, 1994). Given three im-

ages Ei (x, y), i = 1, 2, 3, taken from the same viewing

angles, it solves the system of equations represented by

Ei (x, y) = Ri (p(x, y), q(x, y)), i = 1, 2, 3 (1)

for p(x, y) and q(x, y), for all (x, y) in the surface

domain. The imaging conditions for each image are

summarized by the reflectance maps Ri (p, q), which

determine the brightness value to be observed at the

i’th image, at pixels where the surface gradient is
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equal to [p q]T . Woodham (1978) shows that for non-

degenerate Ri (p, q), the surface gradient at a given

pixel (x, y) may be found as the unique intersection

of the three curves representing the system of Eq. (1)

in the p − q space. Tagare and de Figueiredo (1991)

show that for a large class of non-Lambertian diffuse

surfaces, three light sources are indeed sufficient for

unique representation of the set of surface orientations.

Kozera (1991) studies the existence and uniqueness

of photometric stereo for Lambertian surfaces in two

views.

Aside from the photometric stereo technique, there

are other attempts to invert the reflectance map.

Rajaram et al. (1995) train a feed-forward neural net-

work over a set of brightness value triplets obtained

from pictures of a sphere in order to generate a needle

map, which they use to reconstruct the surface topog-

raphy. Iwahori et al. (1994) construct two radial ba-

sis function neural networks to model the surface nor-

mal estimation and image generation processes. They

train and use these networks over three images to esti-

mate Phong (1975) and Lambertian (1760) reflectance

model parameters. Later, the same approach is gener-

alized to use multiple images obtained by light sources

that are rotationally symmetrical around the viewing

direction (Iwahori et al., 1997).

There are several different approaches to generate

a surface corresponding to a given gradient field. If

the field is not integrable, plain integration yields am-

biguous results depending on the path of integration

(Horn, 1986). One approach is to use variational cal-

culus to minimize a cost function resulting in an inte-

grable surface with a gradient field as close to the given

field as possible (Ikeuchi and Horn, 1981; Horn and

Brooks, 1986). Frankot and Chellappa (1988, 1989)

show that in continuous settings, it is possible to char-

acterize integrable gradient fields as a closed subspace

in the space of all gradient fields. They first express

the (band-limited) surface as a linear combination of

exponential elementary surfaces as

z(x, y) =
∑

fx , fy

α( fx , fy) exp( j( fx x + fy y)). (2)

Differentiating both sides with respect to x and y, one

obtains

∂z

∂x
(x, y) =

∑

fx , fy

j fxα( fx , fy) exp( j( fx x + fy y))

(3)

and

∂z

∂y
(x, y) =

∑

fx , fy

j fyα( fx , fy) exp( j( fx x + fy y)).

(4)

It is then clear that the gradient field (p, q) corre-

sponding to the surface z resides in a subspace of the

space of all gradient fields, which is spanned by the

set

{( j fx exp( j( fx x + fy y)), j fy exp( j( fx x + fy y))}.

Furthermore, since the only requirement on z is that

it be integrable, the subspace spanned by this set of

elementary gradient fields is indeed the space of all

integrable gradient fields. Consequently, the integrable

surface closest to a given (possibly non-integrable) gra-

dient field can be computed by projecting the given gra-

dient field onto the integrable subspace, and finding the

corresponding surface using Fourier transform tech-

niques. Later, other authors followed the same argu-

ment and developed similar techniques using wavelets

(Hsieh et al., 1995) and Legendre polynomials (Kim

and Park, 1997). Simchony et al. (1990) arrive at a

similar solution by considering the Laplacian that cor-

responds to the non-integrable gradient field using di-

rect Poisson methods (Buzbee et al., 1970). Noakes

et al. (1999) and Noakes and Kozera (1999), formu-

late a least-squares approach to solve a linear system

of equations to calculate the integrable gradient field

closest to a given, possibly non-integrable one. The

optimization, however, fails for images of size 32 × 32

or larger, and block processing techniques are imple-

mented that eventually converge to the global optimum

(Noakes and Kozera, 2001).

Recently, Karaçalı and Snyder (2002) formulated an

adaptive approach to reconstruct surfaces that corre-

spond to non-integrable gradient fields, such as sur-

faces containing edges or occluding boundaries. Using

discrete approximations to surface gradients, they con-

struct an orthonormal set of gradient fields spanning a

feasible subspace of the gradient space, in which the

gradient fields of surfaces with (adaptively detected)

edges reside.

In this paper, we investigate noise reduction capa-

bilities of the technique proposed by Karaçalı (2002)

and Karaçalı and Snyder (2002). In general settings,

noise reduction in photometric stereo refers to finding
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a surface that produces brightness images as close

to the given photometric stereo triplet as possible.

Noakes and Kozera (2003b) follow this strategy by

iteratively optimizing an energy function that penal-

izes the deviation of the produced brightness im-

ages from the given ones. This entails solving a non-

quadratic optimization problem in many variables. We

follow a different approach that solves the problem

in two steps. We first consider gradient fields ob-

tained by solving the quadratic photometric stereo

problem. We then employ another quadratic approach

to eliminate the noise in the gradient field obtained as

such.

We begin by analyzing the sparsity properties of

the multi-scale gradient field representation. Next, we

implement a gradient field noise removal method by

means of coefficient trimming on the corresponding or-

thonormal gradient field expansion, using an additive

noise model. Using experiments on both synthetically

generated gradient fields and photometric stereo image

triples from real range data, we show that the proposed

method achieves high levels of noise reduction under

heavy noise.

The next section is devoted to a brief overview of

this method. In Section 3, we analyze the sources of

noise and distortion in the gradient field obtained using

three-image photometric stereo. Section 4 presents the

results of the proposed noise reduction technique on

synthetic and real data.

2. Overview

A surface z over a set of (uniformly sampled with unit

distance) grid points [1, 2, . . . , m] × [1, 2, . . . , n] is

represented as one element of the set

Z = {z | z : [1, 2, . . . , m] × [1, 2, . . . , n] → R}.

Define the inner product 〈·, ·〉Z on Z by

〈z1, z2〉Z =
∑

x

∑

y

z1(x, y)z2(x, y). (5)

The discrete surface gradient may be given by the finite

difference approximation to partial derivatives

▽z = [p q]T

where p and q may be derived by an linear estimation

of derivatives. For example,

p(x, y) =





z(x + 1, y) − z(x, y) if x = 1

z(x, y) − z(x − 1, y) if x = m

(z(x + 1, y) − z(x − 1, y))/2 otherwise

(6)

and

q(x, y) =





z(x, y + 1) − z(x, y) if y = 1

z(x, y) − z(x, y − 1) if y = n

(z(x, y + 1) − z(x, y − 1))/2 otherwise

(7)

The coupled pair (p, q) is then referred to as a gradient

field. Let the inner product 〈·, ·〉P×Q on the gradient

space P × Q be defined by

〈(p, q)1, (p, q)2〉P×Q =
∑

x

∑

y

p1(x, y)p2(x, y)

+ q1(x, y)q2(x, y) (8)

Note that the gradient field (p, q) obtained from a sur-

face z by Eqs. (6) and (7) can be considered as the

image of z under a linear operator O : Z → P × Q
(Karaçalı, 2002).

Let zi , i = 1, . . . , mn, be the Kronecker delta func-

tions defined over the grid [1, . . . , m]×[1, . . . , n], i.e.,

zi (x, y) =
{

1 if (x − 1)n + y = i

0 otherwise
, (9)

x ∈ [1, . . . , m] , y ∈ [1, . . . , n]. Clearly, the elements

of the set {zi } span Z , which can be shown to be a

Hilbert space with the inner product 〈·, ·〉Z . Define

the gradient fields (p, q)i
△= O(zi ) for i = 1, . . . , mn.

Since P × Q can also be shown to be a Hilbert space

with 〈·, ·〉P×Q, the set of gradient fields span a mn − 1-

dimensional subspace S of P ×Q, referred as the fea-

sible subspace (Karaçalı, 2002).

Let (p, q) j , j = 1, . . . , mn − 1, be the set of gra-

dient fields obtained by applying the Gram-Schmidt

orthonormalization procedure on the (p, q)i . Now, sup-

pose a gradient field (p, q) is given. If (p, q) ∈ S, then
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the surface ẑ defined as

ẑ =
k∑

j=1

〈(p, q)(p, q) j 〉P×Q
z̄ j . (10)

solves the equation O(z) = (p, q) for z. Moreover, this

solution is unique up to an equivalence class of surfaces

which have the same image under the operator O . If

(p, q) /∈ S, the gradient field (p, q) given by

(p, q) =
k∑

j=1

〈(p, q), (p, q) j 〉P×Q(p, q) j (11)

is, by construction, the projection of (p, q) onto S, and

thus, ẑ is a surface with gradient field closest to (p, q)

in the sense of the gradient space norm induced by

〈·, ·〉P×Q.

Minimum norm inversion of linear transformations

by means of projections as such is a well known tech-

nique, which is also mentioned in Noakes and Kozera

(2001). Instead of a direct approach as presented above,

however, the authors propose solving a correspond-

ing large system of linear equations using an iterative

scheme.

Karaçalı and Snyder (2002) show, in addition, that it

is possible to characterize the subspace S in such a way

to allow discontinuities in the reconstructed surface by

modifying the operator O and the definitions of p and

q around the discontinuities. Using proper adjustments

to the operator O which reflects to the sets {(p, q) j } and

{z̄ j }, they achieve adequate reconstruction of surfaces

that correspond to non-integrable gradient fields. In the

present paper, however, we will assume that the true

gradient fields are integrable, keeping in mind that the

results also apply to the partially integrable case.

3. Error Sources in Photometric Stereo

The error in the reconstructed surface is an aggre-

gation of misrepresentations and misdetections along

the process of imaging, photometric stereo inversion

of estimated reflectance maps, and surface reconstruc-

tion based on the obtained gradient field. Suppose the

true surface is continuous except across discontinuity

such as a step edge or an occluding boundary. Further-

more, suppose that each pixel on the surface is obtained

under the same viewing direction but different light-

ing yielding non-degenerate three-image photometric

stereo. The steps of the reconstruction process and cor-

responding error sources can then be summarized as

follows.

– Imaging: This step represents the acquisition of the

three brightness images of the unknown surface. The

main error source is the measurement error and the

internal thermal noise of the imaging device. Both

these errors are often aggregated in one additive

Gaussian white noise component, while a more ac-

curate model for the former is a signal-dependent

Poisson distribution (Jain, 1989).

Another source of error involved in the imaging

process is the orthographic projection assumption,

postulating that the detected light rays from each

pixel were traveling in parallel trajectories on their

way to the imaging device. The true nature of im-

age acquisition, however, is characterized by the per-

spective projection which manifests itself in geo-

metric distortions (Grossberg and Nayar, 2001). As

a result of these distortions, not only the general

perceived geometry of the surface changes, but also

the invariant viewing direction assumption becomes

invalid.

– Three-image photometric stereo: The main compo-

nent of error in the application of photometric stereo

originates from the reflectance maps. In theory, re-

flectance maps can be approximated to have a partic-

ular closed form expression (Woodham, 1978; Horn,

1986), but real surface reflectances deviate from such

approximations quite often (Horn, 1986). The re-

flectance maps are therefore constructed as look-up

tables, specifying brightness values on a finite dis-

crete grid in the p − q plane, introducing sampling

errors to the surface gradient representations.

The estimation of reflectance maps is typically

done by imaging objects of known shapes, such

as spheres and cylinders, whose surface reflectivity

properties match the surface of interest (Jones and

Taylor, 1994). This introduces additional errors di-

rectly into the values stored in the reflectance maps,

through the involved imaging, gradient matching and

interpolation steps of the estimation process.

Another error component involved with the use

of reflectance maps is the implied assumptions. The

reflectance maps characterize the dependence of the

surface brightness on the surface normal, by keep-

ing all other dependences fixed. This corresponds to

globally (over the surface domain) invariant viewing

direction (hence, orthographic projection), albedo
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and illumination strength (in terms of distances to

and incidence angles of the light sources).

– Surface reconstruction: The surface reconstruction

technique of Karaçalı and Snyder (2002) summa-

rized in Section 2 represents the partial derivatives of

the surface by the discrete approximations in Eqs. (6)

and (7). The accuracy of these approximations, how-

ever, downgrades at regions where the surface ex-

hibits rapid changes. In fact, to say that the first

partial derivative may be represented by these ap-

proximations is the same as saying the surface is of

order no more than two. This suggests adding yet

another non-stationary noise component to the gra-

dient field, based on how the surface reconstruction

is done.

Geometric distortions due to perspective projection

can be alleviated to a degree by applying various ortho-

rectification techniques frequently used in remote sens-

ing (Shevlin, 1994; Zheng et al., 1997; Kiang, 1997).

Surface reconstruction techniques that attempt to ac-

count for the effects of perspective projection have also

been suggested (Lee and Kuo, 1994; Galo and Tozzi,

1996). In general, however, the orthographic projection

assumption is sufficiently accurate when the observa-

tion distance is a few orders larger than the surface

size.

3.1. Effect of Noise on Photometric Stereo

Suppose the orthographic projection reflectance map

assumptions hold. An additive noise model for the pho-

tometric stereo image irradiance equation in Eq. (1)

becomes

Ei (x, y) + En
i (x, y) = Ri (p(x, y), q(x, y))

+ Rn
i (p(x, y), q(x, y)) (12)

where En
i (x, y) represents the image noise and

Rn
i (p(x, y), q(x, y)) represents the estimation and

quantization errors in the reflectance maps at pix-

els (x, y) and gradient (p(x, y), q(x, y)) respectively.

Consider pixel (x, y). Let

Ci = {(φ, ψ) | Ẽ i (x, y) = R̃i (φ, ψ)} for i = 1, 2, 3,

(13)

where

Ẽ i (x, y) = Ei (x, y) + En
i (x, y) (14)

and

R̃i (p(x, y), q(x, y)) = Ri (p(x, y), q(x, y))

+ Rn
i (p(x, y), q(x, y)). (15)

In ideal three-image photometric stereo, the curves C1,

C2 and C3 intersect at exactly one point in the p − q

space (for a general class of reflectance maps (Tagare

and deFigueiredo, 1991)), which is the solution of (1)

and is the surface gradient at pixel (x, y). In the general

noisy case, however, this is not necessarily true. The

noise terms En
i (x, y) and Rn

i (p(x, y), q(x, y)) cause

the curves C1, C2 and C3 to change shape and position.

As a result, the system in Eq. (12) may not have a

solution at all. Several illustrations of the system in

Eq. (12) for various cases of noise effects are displayed

in Fig. 1.

One way of processing the noisy curves that do not

intersect is to introduce slack variables δi to the system

of equations in Eq. (12)

Ẽ i (x, y) + δi = R̃i (p(x, y), q(x, y)) (16)

and to minimize a cost function penalizing large values

of δi (in absolute value) such as

H (δ1, δ2, δ3) =
1

2

3∑

i=1

δ2
i . (17)

Geometrically, this corresponds to enlarging or shrink-

ing C1, C2 and C3 according to their respective re-

flectance maps so that they intersect at a unique point.

Since the curves do not possess closed form expressions

(the reflectance maps are determined empirically), this

optimization cannot be carried out using functional

optimization tools such as the calculus of variations

(Courant and Hilbert, 1962). Various search techniques

such as line search and random search can, however,

be implemented in the slack parameters δi to obtain

acceptable solutions.
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Figure 1. (a) Curves C1, C2 and C3 in ideal three-image photometric stereo, (b), (c), (d) examples of noisy cases.

4. Noise Reduction Using Sparse Gradient

Field Representations

The formulation in the discussion above suggests rep-

resenting the overall noise in the estimated surface gra-

dients by an additive component such as

(p(x, y), q(x, y)) = (pt (x, y), q t (x, y))

+ (pn(x, y), qn(x, y)) (18)

where (pt (x, y), q t (x, y)) denotes the true surface

gradient, (pn(x, y), qn(x, y)) the additive noise, and

(p(x, y), q(x, y)) the estimated gradient at the pixel

(x, y). Thus, the gradient field becomes

(p, q) = (p, q)t + (p, q)n (19)

with (p, q), (p, q)t and (p, q)n denoting the observed,

true and noise gradient fields respectively.

In reality, it is well known that the photometric stereo

method to recover surface gradients from the brightness

image triplets is a nonlinear operation which breaks

the additive and white nature of the brightness image

noise (Noakes and Kozera, 2003b). In fact, after the

photometric stereo operation, the gradient field noise

not only changes distribution, but also becomes signal

dependent: regions of the surface with larger gradi-

ents suffer more than relatively flat regions from the

modified gradient noise. The illumination of the un-

known surface determined by the source directions

also play an important role on the characteristics of

the resulting gradient noise. We adopt such an additive

noise model for essentially three reasons. First, with-

out any prior information on the surface, the signal

dependent characteristics of the gradient noise can-

not be inferred. White Gaussian gradient noise as-

sumption thus becomes reasonable since it maximizes

the entropy. Secondly, this particular model allows

incorporating well-known noise reduction techniques

from the signal recovery literature into the problem

of gradient field denoising in surface reconstruction.

Finally, the experiments we have conducted on photo-

metric stereo image triplets of real range data corrupted
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with heavy noise indicate that the additive model in

Eq. (18) remains valid to a large degree so that sig-

nificant noise reductions can be achieved by such

methods.

Karaçalı and Snyder (2002) develop an orthonormal

multiscale representation for the gradient fields in the

feasible subspace and use it to do adaptive edge detec-

tion. The wavelet-based representation they propose is

of the form

(p, q)S =
k∑

j=1

w j (p, q) j (20)

with

w j = 〈(p, q), (p, q) j 〉P×Q
(21)

so that (p, q)S is the projection of (p, q) onto the

feasible subspace S spanned by the gradient fields

{(p, q) j }, j = 1, . . . , k. The gradient fields {(p, q) j }
have the additional property that the information con-

tent of (p, q) j1
is at a strictly higher scale than (p, q) j2

if j1 > j2.

Multiscale orthonormal transformations such as

wavelet decomposition are known to provide sparsity

in signal representations (Mallat, 1989, 1998). Sparse

signal representations where a large portion of signal

energy is concentrated on a small number of terms have

been widely studied in noise reduction applications

(Mallat, 1998; Donoho and Johnstone, 1994; Krim

et al., 1995; Karaçalı, 1999; Chang et al., 2000). We

follow the same philosophy and exploit the sparsity

properties of the representation in Eq. (21) for noise

reduction in the gradient fields (p, q) through the use

of coefficient thresholding.

Thresholding on the representation coefficients is a

tool commonly used in wavelet analysis for coefficient

selection in signal denoising, particularly using wavelet

decomposition (Donoho and Johnstone, 1994; Krim

et al., 1995; Karaçalı, 1999; Chang et al., 2000). The

main rationale behind coefficient trimming with respect

to a (previously or adaptively determined) threshold is

the uncorrelated nature of the independent and identi-

cally distributed (iid) additive noise in the sparse signal

representation. For simplicity, suppose that the gradi-

ent field (p, q) ∈ S. Evaluating Eq. (21) on the noise

model in Eq. (19), we obtain

(p, q) =
k∑

j=1

〈(p, q), (p, q) j 〉P×Q
(p, q) j (22)

=
k∑

j=1

〈((p, q)t + (p, q)n), (p, q) j 〉P×Q
(p, q) j

(23)

=
k∑

j=1

(〈(p, q)t , (p, q) j 〉P×Q

+ 〈(p, q)n, (p, q) j 〉P×Q
)(p, q) j . (24)

Defining wt
j , and wn

j as

wt
j = 〈 ̂(p, q)t , (p, q) j 〉P×Q (25)

wn
j = 〈(p, q)n, (p, q) j 〉P×Q (26)

and noting the orthonormality of {(p, q) j }, Eq. (19)

becomes equivalent to

w j = wt
j + wn

j (27)

for all j = 1, . . . , k. Furthermore, if the additive noise

term (p, q)n is assumed to be iid Gaussian with zero

mean and variance σ 2, by the orthonormality of the

expansion in Eq. (20), the coefficients wn
j become iid

with zero mean and variance σ 2.

The thresholding estimate ŵ = [ŵ1 ŵ2 . . . ŵk] of the

true set of coefficients wt with respect to a threshold T

is defined as

ŵ j =
{
w j if |w j | > T

0 otherwise
(28)

The risk, R, the error in the recovered gradient field
̂(p, q), is

R = ‖(p, q)t − ̂(p, q)‖2
P×Q =

k∑

j=1

(
wt

j − ŵ j

)2
(29)

noting the orthonormality of {(p, q) j } and that (p, q) ∈
S, where

̂(p, q) =
k∑

j=1

ŵ j (p, q) j . (30)
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The ideal coefficient selection for the optimal (in the

mean squared error sense) estimate ŵid of wt is given

by

ŵid
j =

{
w j if

∣∣wt
j

∣∣ > σ

0 otherwise
(31)

with minimal error

Rid =
k∑

j=1

min
{∣∣wt

j

∣∣, σ
}2

. (32)

Note that this is not a thresholding method, since

there may not be a threshold for which the Eq. (28)

would produce ŵid . In fact, ŵid is not computable

since whether |wt
j | > σ holds or not is not known

for any j . We will, however, use ŵid in our simula-

tions as a benchmark estimate to compare with the

other estimated gradient fields and corresponding sur-

face reconstructions.

The variants of basic thresholding method in Eq. (28)

in noise reduction applications are numerous (Chang

et al., 2000). We will, however, confine ourselves with

the basic method and study two types of threshold se-

lection schemes.

The first threshold selection approach is originally

proposed by Donoho and Johnstone (1994) in the con-

text of wavelet shrinkage, and is based on the follow-

ing limiting property of a zero mean Gaussian distri-

bution. Let N be a random variable with distribution

N (0, σ 2). Let N (k) denote a total of K realizations

of N , k = 1, . . . , K . It can be shown (Donoho and

Johnstone, 1994; Krim et al., 1995) that

lim
K→∞

Pr
{

max
k=1,...,K

|N (k)| < σ
√

2 log2 K
}

= 1 (33)

This threshold can be computed separately for each

scale s = 1, . . . , J where the image to be reconstructed

is of size 2J × 2J . Since (p, q) j corresponds to scale

⌊(log2 j)/2⌋ + 1, and since there are 3 · 22(s−1) coeffi-

cients at scale s, the resulting thresholding scheme is

therefore given by

ŵws
j =

{
w j if |w j | > T ws

0 otherwise
(34)

where

T ws = σ

√
2 log2

(
3 · 22⌊(log2 j)/2⌋

)

= σ
√

2(log2 3 + 2⌊(log2 j)/2⌋) (35)

and σ is the standard deviation of wn
j . We will refer to

this particular choice of threshold as wavelet threshold-

ing because of its origins in wavelet analysis (Donoho

and Johnstone, 1994).

We obtain another thresholding rule using results

from Extreme Value Theory (EVT) (Embrechts et al.,

1997) which studies the statistical properties of ex-

tremal events. Let P(w) denote the probability distri-

bution of wn
j , i.e.,

P(w) =
∫ w

−∞

1
√

2πσ
e
− w2

2σ2 . (36)

Since wn
j are iid, the probability Pr{max j=1,...,k(wn

j ) ≤
w} is given by

Pr
{

max
j=1,...,k

(
wn

j

)
≤ w

}

= Pr
{
wn

1 ≤ w, . . . , wn
k ≤ w

}

= Pr
{
wn

1 ≤ w
}
. . . Pr

{
wn

k ≤ w
}

= Pr
{
wn

1 ≤ w
}k

= (P(w))k . (37)

Similarly,

Pr
{

min
j=1,...,k

(
wn

j

)
≤ w

}

= Pr
{
− max

j=1,...,k

(
−wn

j

)
≤ w

}

= Pr
{

max
j=1,...,k

(
−wn

j

)
≥ −w

}

= 1 − Pr
{

max
j=1,...,k

(
−wn

j

)
≤ −w

}

= 1 − Pr
{
−wn

1 ≤ −w
}
. . . Pr

{
−wn

k ≤ −w
}

= 1 − Pr
{
−wn

1 ≤ −w
}k

= 1 − (P(−w))k

= 1 − (1 − P(w))k . (38)

Given a threshold T , the probability of all noise coef-

ficients wn
j to be in the interval [−T, T ] is therefore

Pr
{∣∣wn

j

∣∣ ≤ T
}

= Pr
{

max
j=1,...,k

(
wn

j

)
≤ T

}

· Pr
{

min
j=1,...,k

(
wn

j

)
≥ −T

}
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= (P(T ))k(1 − P(−T ))k

= (P(T ))2k . (39)

Let α ∈ [0, 1] be such that Pr{|wn
j | ≤ T } = 1 − α.

Solving Eq. (39) for T , we obtain

1 − α = (P(T ))2k

2k
√

1 − α = P(T )

T = P−1(
2k
√

1 − α). (40)

Setting α to

α =
1

3 · 22(s−1)
, (41)

yields the thresholding rule

ŵevt
j =

{
w j if |w j | > T evt

0 otherwise
(42)

where

T evt = P−1
(
(1 − α)(2−2⌊(log2 j)/2⌋)/6

)
(43)

We will refer to this thresholding rule as EVT thresh-

olding. The particular choice of α in Eq. (41) reflects

the allowance of roughly one noise coefficient into the

estimate at every scale. Note that the computation of

P−1 can be done numerically to an arbitrary level of

precision.

5. Simulation Results

5.1. Simulation Results on Synthetic Data

We have generated a synthetic surface, and computed

reconstructions using the techniques discussed in the

previous section on the corresponding gradient fields

corrupted by additive noise at various levels. The gen-

erated surface bears the analytic form

15

15.5947

(
2 − cos

(
2π (x − 1)

31

)

− cos

(
2π3(x − 1)

31

))(
2 − cos

(
2π (y − 1)

31

)

− cos

(
2π3(y − 1)

31

))

Figure 2. True surface.

where x, y ∈ {1, 2, . . . , 32}. The true surface and

its gradient field are shown in Figs. 2 and 3. The

zero-mean white Gaussian gradient space noise at

signal-to-noise (SNR) levels 20, 10 and 0 dB are

added to the gradient field prior to noise reduction

techniques followed by reconstruction of a surface.

Simulation results consist of four separate surface

reconstructions:

– plain reconstruction: Surface reconstruction with

no noise reduction; the surface that corresponds to

the projection of (p, q) onto the feasible subspace

S

– ideal reconstruction: Surface reconstruction using

the coefficientsw j over which the true gradients have

more power than the additive noise

– wavelet thresholding reconstruction: Surface recon-

struction following thresholding of w j by the rule in

Eq. (34)

– EVT thresholding reconstruction: Surface recon-

struction following thresholding of w j by the rule

in Eq. (42)

We have generated the sets {(p, q) j } and {z̄ j } provid-

ing a multiscale representation of the feasible sub-

space from a Coiflet basis for the surface space Z
(Daubechies, 1988). In the simulations below, we as-

sume the noise variance is known. In a more general

setting, it can be estimated given a noisy gradient field.

For the purposes of the analysis presented here, the ab-

solute accuracy of this estimate is not relevant, since

the main objective is to study the relative performance

of the proposed techniques. The individual noise per-

formances will evidently be dependent on the accuracy

of the noise variance estimate.
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Figure 3. Gradient field of the surface in Fig. 2: (a) p and (b) q .

The resulting surfaces for 20 dB SNR are shown in

Fig. 4. Figures 5 and 6 show the reconstructions at noise

levels 10 and 0 dB SNR respectively. The coefficients

ŵ j that produce these reconstructions are displayed in

Figs. 7–9.

We quantify the performance of these reconstruc-

tions in both the gradient space and the surface space

by measuring the mean squared errors and the corre-

sponding achieved SNR levels at the reconstructions.

The error analysis of the reconstruction results shown

in Table 1 indicate that all methods yield significant

improvements on the noise level in both the gradi-

ent field and the reconstructed surface. The wavelet

and EVT thresholding schemes consistently provide

over 5 dB of improvement in the gradient space, and

even challenge the statistically optimal ideal coeffi-

cient selection result at 20 dB SNR case. Addition-

ally, the EVT-based thresholding rule consistently per-

forms better than the wavelet-based rule in all cases.

The coefficient plots in Figs. 7–9 demonstrate that

the EVT-based rule achieves this performance by in-

cluding additional valuable coefficients to the recon-

struction that are shrunk by the wavelet-based thresh-

old. This suggests that the threshold in Eq. (35) is

superfluous, and the threshold in Eq. (43) provides a

more appropriate alternative in the case of additive

white Gaussian noise. Moreover, while the wavelet-

based threshold explicitly relies on the Gaussian noise

assumption, the EVT-based threshold can be com-

puted for different types of noise distributions such

as Laplacian or Poisson, using appropriate distribution

functions.

Note that the plain surface reconstruction algo-

rithm with no additional noise processing produces

an improvement of approximately 3 dB in the re-

constructed surface gradient field. The projection

of (p, q) from the 2mn-dimensional gradient space

onto the (mn − 1)-dimensional feasible subspace ef-

fectively reduces the noise energy by a half, pro-

ducing roughly a 3 dB increase in the resulting

SNR.

Table 1. Error statistics of noise reduction techniques.

Surface error Gradient field error

Method MSE SNR (dB) MSE SNR (dB)

20 dB SNR

Plain 0.0165 27.1990 0.0039 23.2124

Ideal 0.0081 30.3248 0.0013 27.9142

Wavelet 0.0095 29.6215 0.0022 25.6371

EVT 0.0095 29.6140 0.0020 26.1629

10 dB SNR

Plain 0.1415 17.8751 0.0408 12.9653

Ideal 0.0260 25.2407 0.0070 20.5924

Wavelet 0.0693 20.9755 0.0244 15.2080

EVT 0.0552 21.9666 0.0174 16.6762

0 dB SNR

Plain 1.6756 7.1422 0.4081 2.9665

Ideal 0.2333 15.7051 0.0521 11.9014

Wavelet 0.8582 10.0482 0.1651 6.8974

EVT 0.6699 11.1236 0.1366 7.7177
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Figure 4. Surface reconstruction at 20 dB SNR, reconstructed surfaces and the error surfaces; (a) plain, (b) ideal, (c) wavelet thresholding, and

(d) EVT thresholding.
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Figure 5. Surface reconstruction at 10 dB SNR, reconstructed surfaces and the error surfaces; (a) plain, (b) ideal, (c) wavelet thresholding, and

(d) EVT thresholding.
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Figure 6. Surface reconstruction at 0 dB SNR, reconstructed surfaces and the error surfaces; (a) plain, (b) ideal, (c) wavelet thresholding, and

(d) EVT thresholding.
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Figure 7. Coefficients ŵ j at 20 dB SNR, (a) plain, (b) ideal, (c) wavelet thresholding, and (d) EVT thresholding.

Another observation on the results of Table 1 is the

noise levels of gradient fields and those of correspond-

ing reconstructed surfaces. Since the surfaces are com-

puted by virtually integrating the gradient fields pro-

jected onto the feasible subspace, the noise reduction

properties of integration provides improved SNR lev-

els in the surface space. The effects of noise reduction

in the gradient space, therefore, manifest further im-

provements in the surface space.

5.2. Simulation Results on Real Data

We have also applied our gradient field noise reduction

method on 64×64 blocks extracted from real range im-

ages obtained from the USC Range Image Database1

(Stein and Medioni, 1992). For each range image, we

have computed three brightness images assuming Lam-

bertian reflectance illuminated by three sources with

illumination directions v1, v2, and v3 given by

v1 =
1

√
5




0

1

2


 , v2 =

1
√

5




−
√

3
2

− 1
2

2


 , and

v3 =
1

√
5




√
3

2

− 1
2

2


 .

The true brightness images Ei are then given by

Ei (x, y) = Ri (n(x, y)) = vT
i n(x, y), i = 1, 2, 3,

(44)

where n(x, y) denotes the normal of the surface at

the point (x, y). We have then added white Gaussian

noise to these brightness images to obtain the noisy
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Figure 8. Coefficients ŵ j at 10 dB SNR, (a) plain, (b) ideal, (c) wavelet thresholding, and (d) EVT thresholding.

photometric stereo image triplets Ii at 0 dB SNR to

be used in the experiments. The original range im-

ages and the noisy brightness images are shown in

Fig. 10.

Given three noisy brightness images I1, I2, and

I3, we have implemented a photometric stereo algo-

rithm to find the surface normal at a point (x, y) by

minimizing

H (n) =
1

2

3∑

i=1

(
Ii (x, y) − vT

i n
)2

(45)

subject to the constraint nT n = 1. Using the method of

Lagrange multipliers, Eq. (45) becomes

L(n, λ) =
1

2

3∑

i=1

(
Ii (x, y) − vT

i n
)2 − λ(nT n − 1). (46)

Taking the derivative and equating to zero at the solu-

tion n = n⋆ provides

∂L

∂n

∣∣∣∣
n=n⋆

=
3∑

i=1

(
Ii (x, y) − vT

i n⋆
)
vi − λn⋆ = 0. (47)

Solving the above equation for n⋆ and replacing in

Eq. (46) results in a function L(n⋆, λ) having a deriva-

tive with respect to λ of form

∂L

∂λ

∣∣∣∣
n=n⋆

=
P(λ)

Q(λ)
(48)

where P(λ) is a polynomial in λ of third order. The pho-

tometric stereo solution to the surface normal at (x, y)

is then obtained by solving P(λ) = 0 for λ which is

guaranteed to have at least one real root, and computing

n⋆ accordingly.
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Figure 9. Coefficients ŵ j at 0 dB SNR, (a) plain, (b) ideal, (c) wavelet thresholding, and (d) EVT thresholding.

It should be noted that the estimate for the sur-

face normal obtained by the method described above

may provide unrealistic solutions under heavy noise

such as normals nearly parallel to the x − y plane

or even normals pointing in the negative z direction.

Such normals correspond to very large surface gradi-

ents which then cause wild fluctuations in the recon-

structed surfaces. Examples of such instances are pre-

sented in Noakes and Kozera (2003a, 2003b). For this

reason, we have implemented the photometric stereo

method above with an additional step that checks for

surface normal estimates making an angle larger then

80◦ with the z axis, and replacing them with a closest

acceptable normal. This step effectively removes the

unrealistic surface normal estimates for more agree-

able alternatives. The ratio of corrected surface nor-

mal estimates for each case is shown in Table 2.

Note that the number of surface normal estimates

that require the correction described above is propor-

tional to the standard deviation of the brightness image

noise.

The surface reconstruction results are shown in

Fig. 11. Both the wavelet thresholding and the EVT

thresholding filter most of the noise present in the plain

surface reconstruction while retaining the major fea-

tures of the true surfaces. More importantly, these re-

sults indicate that even though the additive, white and

Table 2. Standard deviation of the additive measurement

noise in the photometric stereo brightness image triplets and

the ratio of the corrected surface normal estimates.

Standard deviation of Ratio of corrected

measurement noise surface normal estimates

Bach 0.3169 470/4096

Brahms 0.2419 35/4096

Chopin 0.2576 45/4096
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Figure 10. Real range images and corresponding photometric stereo triplets. In order to simulate measurement error, white Gaussian noise at

0 dB SNR is added to the calculated brightness images.

independent character of the brightness image noise is

lost by the photometric stereo method when the sur-

face normals and the gradients are computed, the noise

model set forth in Eq. (18) still holds to a large extent

to allow accurate noise reduction by quadratic means.

This result suggests that even under heavy noise, sur-

face reconstruction by first solving the photometric

stereo problem and then integrating the noisy gradients
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Figure 11. Surfaces reconstructed from the noisy photometric stereo triplets. Both the wavelet and EVT based thresholding strategies success-

fully remove most of the degenerative noise present in the plain reconstruction.

by performing noise reduction as shown here is a cost-

effective and powerful alternative to solving iteratively

for a surface that would otherwise correspond to the

given photometric stereo image triplet as closely as

possible.

6. Conclusion

We have presented an analysis of error sources affect-

ing the accuracy of the surface gradient estimates of

a three-image photometric stereo method in a noisy

environment. We have discussed both the structural er-

rors, caused by the deviations from the involved as-

sumptions, and the measurement noise related with the

imaging conditions and the estimation of reflectance

maps. Based on this analysis, we have proposed an ad-

ditive noise model to represent the aggregate errors in

the process of estimating surface gradients from inten-

sity images.

We then exploited noise reduction techniques us-

ing the surface reconstruction method proposed by

Karaçalı (2002) and Karaçalı and Snyder (2002). We

show empirically that the multiscale gradient field rep-

resentation is in fact a sparse othonormal expansion

in the space of possible gradient fields. Simulation re-

sults indicate that coefficient selection using thresholds

from wavelet analysis and extreme value theory pro-

vides significant improvements on the noise levels of

both the given noisy gradient fields and the surfaces

reconstructed subsequently, large enough to challenge

the unachievable statistically optimal reconstruction in

some cases. Furthermore, the experiments on photo-

metric stereo images of real range data corrupted by
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additive noise indicate that the additive noise model

remains viable for noise reduction purposes even un-

der adverse noise conditions, even though the addi-

tive white Gaussian gradient noise model is broken

by the nonlinear response of the photometric stereo

method.

Note

1. USC Institute for Robotics and Intelligent Systems, Fridtjof Stein.
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