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Noise Reduction of Image Sequences Using Motion 
Compensation and Signal Decomposition 

Richard P. Kleihorst, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAStudent Member, IEEE, Reginald L. Lagendijk, Member, IEEE. and Jan Biemond, Fellow, IEEE 

AbsCracf4n this paper, a new spatio-temporal filtering method 
for removing noise from image sequences is proposed. This 
method combines the use of motion compensation and signal 
decomposition to account for the effects of object motion. 

Because of object motion, image sequences are temporally non- 
stationary, which requires the use of adaptive filters. By motion 
compensating the sequence prior to filtering, nonstationarities, 
i.e., parts of the signal that are momentarily not stationary, can 
be reduced significantly. However, since not all nonstationarities 
can be accounted for by motion, a motion-compensated signal 
still contains nonstationarities. 

An adaptive algorithm based on order statistics is described 
that decomposes the motion-compensated signal into a noise-free 
nonstationary part and a noisy stationary part. An RLS filter is 
then used to filter the noise from the stationary signal. Our new 
method is experimentally compared with various noise filtering 
approaches from literature. 

I. INTRODUCTION 

MAGE sequences, consisting of digitized recordings of a I time-varying scene, may be corrupted by noise for various 
reasons, such as imperfections of the scanner, transmission, or 
recording medium. Noise filtering not only improves the visual 
quality but also increases the performance of subsequent image 
processing tasks, such as coding, analysis, or interpretation. 

The observed noisy sequence zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg ( i , j ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk )  is modeled as 

where f ( i l j ,  k )  is the original signal and n(i, j l  k )  is the 
observation noise. The indices for horizontal, vertical, and 
temporal directions are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi, j ,  and k ,  respectively. The noise 
is assumed to be independent of f(z,j, k ) ,  spatio-temporally 
invariant, and uncorrelated. In this paper, no assumption is 
made about the specific probability density function of the 
noise. The purpose of filtering is to estimate f ( Z l  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj, k )  from its 
noisy version g(Zlj, k ) .  

Most methods for image sequence filtering operate in the 
temporal direction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ I]-[3] to avoid introducing artifacts, such 
as the blurring of object boundaries in the spatial domain, and 
to exploit the high temporal correlation in stationary regions. 
This means that the sequence is regarded as a set of 1-D time 
series or pixel trajectories g(k) for every position i, j. 
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Movements in the scene yield temporal edges. Therefore, 
the temporal signal g(k) cannot be regarded as a stationary 
signal. Since most linear stochastic filters are designed to work 
on stationary signals, they blur moving objects. Nonlinear or 
adaptive filters can avoid these blurring effects. 

A popular adaptive filter structure used for image sequence 
filtering is [4] 

Here a ( k )  controls the amount of filtering and is typically 
determined by a function of I f ( k  - 1) - g(k ) I .  The signal 
dependency of a ( k )  makes the filter nonlinear. More recently, 
Arce zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 5 ] ,  Alp and Neuvo [6], and Kleihorst et al. [7] employed 
spatio-temporal order statistic (OS) filters, such as median 
filters that preserve spatio-temporal edges to deal with the 
nonstationary signals. 

Another way zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto take temporal edges into account is to 
perform motion estimation and then filter along the motion 
trajectories as done by Sezan et al. [3], Chan and Sullivan [8], 
Katsaggelos et al. [9], [IO], Dubois and Sabri [2], Dubois [ 1 I], 
and Efstratiadis [12]. The motion estimator has to be able to 
produce consistent vector fields in the presence of observation 
noise. In particular, in low-detail areas where the local signal- 
to-noise-ratio is low, the vector field must be consistent [13], 
[14]. For filtering image sequences, motion estimators that 
show good noise behavior are preferred, such as those used by 
Sezan etal.  [3], Boyce [15], Kleihorst er al. [13], [14], Ozkan 
et al. [16], and Woods and Kim [17]. 

Most motion estimators assume translational locally station- 
ary motion. Since this model is only an approximation of the 
true motion, the compensated sequence may still exhibit tem- 
porally nonstationary parts, e.g., in occluding areas. Therefore, 
even if motion-compensated filtering is used, a nonlinear or 
adaptive filtering approach is still required. 

In this paper, we propose a new method for filtering image 
sequences that is based on a combination of motion compen- 
sation, signal decomposition, and adaptive temporal filtering 
(Fig. 1). First, a motion estimator that produces consistent 
motion estimates is used to create a motion-compensated 
version of g(k) that is (temporally) more stationary than the 
signal g(k) itself. Next, this signal is adaptively decomposed 
into a location signal and a residual signal. The residual 
signal is finally normalized in its variance. The aim of the 
decomposition is to map the noise-free nonstationary part of 
the signal into the location signal and the noisy but stationary 
part into the residual. Ordered statistics are used to estimate the 
required local signal statistics. After noise filtering the residual 
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signal with an adaptive filter. the result is combined with the 
location signal to produce the filtered sequence. 

The outline of thi\ paper is as follows. In Section I1 the 
motion estimator used is presented. This is a recursive block- 
matching algorithm that produces consistent vector fields in the 
presence of noise, I n  Section 111. the compensated temporal 
signal is modeled by a time-varying model incorporating 
current signal location and residu'il signal. Then, we derive 
adaptive estimators to ob t in  the required local statistics. In 
Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIV we describe [he adaptive noise filter used. In 
Section V .  the proposed method is evaluated on sequences 
w i t h  different noise levels. cwmprising Gaussian and Laplacian 
noise. We compare our results w,ith several methods from 
1 i terature. 

possible displacemcnts and uses spatial and temporal recur- 
sion, Therefore. i t  i 4  more robust to noise than a standard 
block-matching algorithm. I t  was shown that the motion 
estimation algorithm used is robust to noise for SNR's of I O  
tiB or more [ 131. 1131. The algorithm is described briefly in 
the following. 

The current frame is divided into nonoverlapping square 
blocks. For each block. in a scanning manner. the displacement 
relative to the previous frame i \  estimated. Instead of evaluat- 
ing all possible di5placements within a search region as a full- 
search block-matching algorithm does. the recursive block- 
matching algorithm evaluates only fine adjustments around a 
predicted value. For the prediction of the displacement of the 
current block. the estimated displacement of a neighboring 
block is used. 

This neighboring block can be taken from the same image 
yielding spatial recursion or from the previous image yielding 
spatio-temporal recursion. Predictions from different directions 
can be used to produce additional candidate vectors for dis- 
placement. The spatial predictions at position zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi ,  , j ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk are given 
by the estimation results of two previous blocks from the same 
frame. yielding the following two candidates: 

f ( / . / . X J = /  /+il,./t//, b -  I )  ( 3 )  

U here zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( t l ,  , rl, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA) f  is the displacement vector to be estimated. 
hote that with ( 3 )  we assume that all motion is translational. 
no occlusion occurs. and no frame-to-frame intensity variations 
ot' objects occur. In addition to this we will assume that the mo- 
tion can be described reasonably well by integer displacement 
vectors. 

Motion estimation is performed on noisy observed se- 
quences. Therefore. the motion estimator has to be insensitive 
to noise. Several robust motion estimation algorithms are pro- 
posed in literature. More complex methods take the presence zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
01' noise directly into account. such a s  the method using the 
generalized maximum likelihood criterion by Namazi and Lee 
[ I XI.  the method using cumulants by Anderson and Giannakkis 
[ 191 for Gaussian noise. and the method based on a vector 
coupled Gauss-Markov random field model by Brailean and 
Katsaggelos [ZO].  Methods that are tuned to give consistent 
vector fields are used with good results in noise filtering 
schemes. Among them are the algorithm by Fogel [21]  used by 
Sezan et U / .  131. the hierarchical bloch-matching algorithm by 
Bierling zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[XI used by Woods and Kim [ 171. and the switching 
block-matching algorithm used by Boyce 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIS]. 

We have used a moditied 3-1) recursive search block- 
matching algorithm from [le Haan r t  d. 12.31. This method 
ensures a consistent behavior because i t  limits the number of 

Spatio-temporal recursion is introduced by using the displace- 
ment estimate of two blocks from the previous image as 
predictions for the displacement of the current block: 

and 

The total number of candidate displacement vectors that has 
to be evaluated i n  the above estimator is 12. From these 
displacement vectors. the candidate that gives rise to the 
smallest .ryirur.c3 ~ ~ r w r  matching the block to the previous frame 
is selected as the final estimate. The resultant vector field, with 
one integer vector per block is interpolated using a median 
filter to one integer vector per pixel. 

In our experiments. the block sire was set to .V = 8. which 
gave the best results for several noise levels. The specific 
locations of the previous blocks stated for the recursion in 
(4), ( 5 ) .  (7). and (8) are found by experimental optimization 
using a number of  video sequences [23]. They are located ;it 

offset positions from the current block to be able to notice and 
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track motion sooner. In effect, four directions are guarded for 
moving objects in the scene. Of course, the spatial recursion 
has to be The reader can refer to [231 for a more 
thorough discussion of the motion estimation algorithm used. 

B .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADerivation of the Estimators 

order to obtain zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAan estimate of the residual signal y(k) by 
( I I ) ,  the location ~ ( k )  and scale a ( k )  have to be estimated 
from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg(k). Estimators of local scale and location based on the 
class of order statistic (OS) estimators have been successfully 
applied in digital signal processing [28], [29], [7]. In our 
application, they have the form zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA111. SIGNAL DECOMFUSITION WITH 

ESTIMATORS BASED ON ORDER STATISTICS 

In general, the use of motion compensation yields a signal 
that is temporally more stationary. However, the signal is still 
not sufficiently stationary to be suitable for temporal linear 
filtering. This is because of the finite accuracy of the motion 
estimates and the incompleteness of the translational motion 
model underlying block-matching and most other motion 
estimation algorithms. 

A classical way to cope with nonstationary signals is trend 
removal and normalization [24]. The aim is to decompose the 
signal in a noisy stationary and noiseless nonstationary part. 
Therefore, a regular noise filter can be applied to filter the 
stationary signal [25], [26]. Here, we focus on temporal trend 
estimation and scale estimation using ordered statistics. 

i ( k )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= CZ()(IC) (13) 

where 2,) ( k )  = [ z ( ~ ) ,  . . . , x : ( ~ ) ] ~ .  The ranks zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx ( T )  with z ( ~ )  5 
. . .  5 are the ordered realizations of the signal value 

g(k). The subscripts () will denote that the vector d ( ) ( k )  is 
ordered. Note that (1 3) refers to an ensemble operation; the 
relation with spatio-temporal filtering is addressed in Section 
111-c. 

Altematively, (13) can also be written as 

A set of optimal coefficients e; needs to be calculated for 
estimating p ( k )  and o ( k )  from g(k). To this end, we first 
assume that g ( k )  is distributed according to 

A. Signal Decomposition 

follows [27], [ I O ] :  
The nonstationary observed temporal signal is modeled as 

where p ( k )  is a slowly changing function known as the 
ensemble location at position IC and o ( k )  is the ensemble 
scale, which is the amplification factor of the signal y(k). The 

mean and a time invariant unity variance. If the observation 
noise has zero mean, then p ( k )  is noise free. 

This connects to each observation g ( k )  a parent distribution 
Q ( )  and a particular ~ ( k )  and .(IC). By normalizing g(k) as 

(16) 

y( k )  has Q ( )  as probability density function with zero location 
and unity scale. Let us for the moment assume that the parent 

g(k) - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP ( k )  residual signal y(k) is modeled to have a time invariant, zero 
d k )  = g ( k )  

The signal y(k) can be written using (1) and (9) as 

distribution Q ( )  is known. 
The following relations exists between the ranks x ( ~ ) ,  (1 5 

T 5 m) and the ranks qT) of an ordered vector q ) ( k )  with 
realizations of y(k)  after taking expectations: 

f(k) + 4 k )  - P ( k )  - - f ( k )  - P ( k )  n ( k )  
4 k )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv(k) = o ( k )  

= .(IC) + v(k) (10) 

where all signals are now along the motion trajectory. For 
instance, f ( k )  is the original temporal signal along the motion 
trajectory. We assume that v(k) is a zero mean, uncorrelated, 
and independent signal. 

In practice, signal y(k) is estimated from g ( k )  in the 
following way: 

where j i ( k )  and & ( k )  are estimated from g ( k ) .  
The signal $(k ) ,  stationary in mean and variance, can then 

be filtered by a regular noise filter to estimate ~ ( k ) .  Finally 
an estimate of the original image sequence is established by 
combining ? ( I C )  with the estimated location and scale 

E{x(m) I = ~ ( k )  + o(k) . E{y(m) I. (17) 

The expectations of the ranks of f()(lc), E { ~ I ( ~ ) }  depend on 
&(). If Q ( )  is known apriori, they can be calculated. Equation 
(17) shows that for ordered realizations of g(k), we expect 
to find a set of m linear relations. From this set, @ ( k )  and 
&( k )  can be found using generalized weighted least-squares 
estimation [30], as illustrated in Fig. 2 for m = 5. 

With the definition of A as 



F l y .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
vcclor from the parent di\tribution. 

There exists a linear reldtion between the observation vector and a 

u e  rewrite (17) as follows: 

This inner product is weighted with the inverse variance matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
h' of for decorrelation purposes. The solution zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto (20) is 
given by 

Equation ( 2  I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA) comprises the two OS estimators for location 
and scale. The coefficients of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc' can be interpreted as follows: 
The upper row are the wcights t o  find zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi ( k )  and the lower 
row are the weights to find C;(k ) .  When the elements of the 
upper row r l 1 .  c 1 2 .  . . . . r l r , ,  are equal in value, the estimator 
ol' location is the sample acerage. This is the case for Gaussian 
distributed samples, when the sample average is the maximum 
likelihood estimator of location. For the exponential distri- 
bution. the coefficients represent the sample median that is 
optimal for this distribution [28]. [ 3 I ] .  For other distributions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
( I ( ) .  the coefficients are optimal in a minimum variance sense. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

L 
residual signal 

Fig. 3 .  Update process of L?( ,,'I and E{  q ,  } for the OS estimator. 

which proved in a number of experiments to be a good trade- 
off between low estimate variance and correctness of the 
assumption of local ergodicity. 

By extending the displacement estimates to find correspond- 
ing pixels in the future frame, we have assumed that the 
object velocity is constant within these frames. As described 
in Section 11, the displacement vectors are estimated from the 
current frame relative to the previous frame. 

So far we have assumed that the parent distribution (20 was 
known zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa priori. The-shape and properties of this distribution 
are reflected by E{l i l }  and the inverse variance matrix B-' 
which determine the optimal estimators. 

In general, the parent distribution is not known U prior-i 
and may vary spatio-temporally. However, the residual signal 
y ( k )  is distributed according to the parent distribution zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC)() 
with p ( k )  = 0 and ~ ( k )  = 1. which means that B-' and 

E {  } can be estimated from the residual signal itself in order 
to describe 00. The recursive estimation procedure used is 
illustrated in Fig. 3. 

We have used the matrix inversion lemma 1321, [33]  to 
estimate B-l directly in inverted form. A forgetting factor 
A was used in the usual way to be able to adapt to signal 
variations. 

The recurrent formula used to  estimate E {  q i } ( k )  is 

c'. lniplcmcntutror? A s p c c t ~  

The estimation of location and scale is performed on the 
motion-compensated observed signal. We make the assump- 
tion that an image sequence is locally ergodic, making it 
feasible to replace the ensemble statistics by thejocal spatio- 
temporal \tatistic$. This means that the sample X ( k )  is given 
by the values within a spatio-temporal window of size 'rn along 
a motion trajectory. This window is chosen to incorporate the 
current pixel in combination with its six nearest neighbors. 
This motion-compensated window contains the pixels 

The forgetting factor used was set at X = 0.97. which was 
found by experimental tuning for maximum achievement on a 
number of representative image sequences. 

As initial estimates of R-' and E{?() } ,  the inverse variance 
matrix and the average vector of the distribution of ordered 
samples of observation noise are used. For more information 
regarding the adaptation of the estimators, the reader is referred 
to 171. 

1V. THE NOISE FILTER 

After the motion compensation and decomposition step, the 
residual signal ! j (  k )  is stationary in mean and variance. The 
noise ?),(A:) is mapped into this signal according to ( I O ) .  Noise 
filtering this residual signal and combining the result with the 
estimated location and scale renders an estimate of the original 
signal f (  A. ) .  
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Fig. 4. Original and noisy (10 dB) image from the “Trevor White” sequence. 

SNRi (dB) 

2 .5  3*01 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/ 

0 . 5 4  frame 
I I I I I I 

20 25  30  35 a0 45 5 0  
- MC+decomposition - --. decomposition 

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5.  Motion-compensated and nonmotion-compensated results of the pro- 
posed decomposition method for 20 dB zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS N R  on the “Trevor White” sequence. 

Because only the first two moments of the residual signal 
were normalized, its autocorrelation still changes. Therefore, 
we have used an adaptive recursive least-squares (RLS) filter 
to estimate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr ( k )  from j j (k):  

2 

i ( k )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 w;(k)ij(k - 2 ) .  (24) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
i =O 

Here zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwi(k) are the components of the weight vector G(k) ,  
which is defined by recurrently minimizing the cumulative 
square error 

Again, X serves as a forgetting factor [32] and is given the 
same value as used for the update of the estimators, i.e., 
A = 0.97. The support of the RLS filter was motivated by 
experimental evaluation on a number of image sequences. 

5 . 8  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI f m k  
I I I I I I 

20 25 30 35 40 45 5 0  
- MC+decomposition - --. decomposition 

Fig. 6. Motion-compensated and nonmotion-compensated results of the pro- 
posed decomposition method for 10 dEi SNR on the “Trevor White” sequence. 

\ 
frame 

I I I I I I 

6.5 

20  25  30 35 40 45  5 0  
- MCAecomposition - - -. decomposition 

I 

Fig. 7. Motion-compensated and nonmotion-compensated results of the pro- 
posed decomposition method for 0 dB S N R  on the “Trevor White” sequence. 

V. EXPERIMENTS 

In this section, the proposed algorithm, shown in Fig. 1, is 
evaluated on noisy image sequences. We test its performance 
for several noise levels comprising Gaussian and Laplacian 
noise. 

The sequences used are parts of the luminance components 



Fi,:. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX. 1.ocation a i d  “ x e d  rl,ridual \ignal ot thc “Trevor Whitc” sequencc with I O  dB noisc without motion cornpenation 

of the “Trevor White“ secluence (images 21 to 50) and the 
“(’alendar Train” sequence (images 1 to 40). The level of 
corruption by the noise is specified by the signal-to-noise ratio 
(SNR).  which is the ratio between the original signal variance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
n< and the noise variance 0:: 

SNR = 1 0  logl,)( f l ;  $}(dB). 

The improvement i n  quality as a result of a filtering strategy 
is expressed as the improvement i n  SNR. The SNRi (dB) for 
image zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk is defined a5 

SNRi( X. )  

where the scalars .I and I are the number of rows and the 
number of columns in one image of the sequence. 

First, wc illustrate the efl’ect of using motion compensation 
for different noise levels. In Fig. 4. a frame from the “Trevor 
Uhite” sequence is shown in both original and corrupted 
form with Gaussian noise added IO  an SNR of 10 dB. For 
each noise level, the filtering is performed with and without 
motion compensation. In Figs. 5-7. the results are shown for 
20. IO. and 0 dB noise levels. respectively. For high SNR’s (20 
dI3). motion compensation I\ a useful preprocessing step. For 
moderate levels ( I O  dB). [he two curves are approximately 
identical, while for low SNR‘s (0 dB) the motion estima- 
tor fails. Therefore. the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo\ erall noise filtering becomes less 
5uccessful. 

To illustrate the signals cxated by the estimator, we show 
the location signal [ ~ ( i . , ; .  X ) and the residual signal ! j ( / . j .  A:) 
for a single frame in Fig. 8 .  These frames are taken from the 

experiment on I O  dB data without motion compensation. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIt 

can be seen that the location and essentially noise-free signal 
is very smooth. The residual signal is stretched and an offset 
is added for maximum visibility. 

The location and residual signal from the experiment with 
motion compensation are shown in Fig. 9. I t  can be seen 
that the motion-compensated location signal is sharper and 
the residual signal contains fewer spatio-temporal edges. The 
residual signal is scaled with the same parameters used for the 
residual signal ir? Fig. 8. 

The final results of applying the proposed algorithm without 
and with motion compensation are shown in Fig. IO for an 
SNR of 10 dB. 

To deal with the nonstationarities in the temporal signal, two 
approaches are proposed in literature: first, the use of nonlinear 
filters [4]-161, and second, the use of motion compensation 
191, [ IO].  [3 ] .  We compare our algorithm with some well- 
performing methods from these two categories. First, we 
compare our results with the algorithm based on 3-D median 
filters presented by Arce in [SI. 

Arce uses bidirectional multistage median filters (MMF’s). 
which is a method of combining the output of median subfil- 
ters. In a spatio-temporal cube, four bidirectional median filters 
with 4Nf 1 points are constructed. They are shown for AT = I 
in Fig. 1 I .  The final result for the center pixel is defined as 

j ( i . j .  X.J = Irietii;tii{iiiax ( m l ,  1/12.  rrL:j .  m4).  

g ( i . j .  A.). 111i r1( r r~~1.  r n 2 .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi n J .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 1 / . 4 ) }  

where r u 1 ~  / t / , 2 .  r / i : $ .  and r u 4  are the output of the four bidirec- 
tional median filters. 

We evaluated the MMF on the “Trevor White’’ sequence 
corrupted with Gaussian noire to a level of I O  dB for AT = 
I ,  2 .  and 3. The SNRi curves are shown. together with the 
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Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9. Location and stretched residual signal of the “Trevor White” sequence with 10 dB noise with motion compensation. 

Fig. 10. Filtered frames with the proposed decomposition method without (left) and with (right) motion compensation for an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASNR of 10 dB. 

proposed motion compensated and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOS decomposition result 

in Fig. 12. From the relatively flat appearance it can be seen 

that Arce’s filters preserve motion very well, but they are (at 

least for small N )  not very effective in reducing noise. Note 

that Arce proposed to use N zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[5 ] .  

The second algorithm we consider is a motion-compensated 

filter proposed by Katsaggelos zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al. [lo]. A pel-recursive 

motion estimator is used. The motion-compensated signal is 

filtered by a 3-D recursive filter, which is a concatenation of 

three 1 -D first-order recursive filters 

j(i!j,IC) = [l - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFk]Pkj(i,j,k - 1) + F k f j ( i , j J G ) >  

j’(i,j, I C )  = [I - Fj]p’j(i,j - 1, k)  + Fjji(i,j, k), 

& , j ,  k)  = [l - Fi]pif̂ (i - l,j, k) + Fig(z, j ,  I C ) .  

Here, F;, F’, and FI, are the horizontal, vertical, and temporal 
filter gains respectively, and pi, p j ,  and pk  are the horizontal, 
vertical, and temporal correlations. This filter is used in a non- 
adaptive version and an adaptive version. In the nonadaptive 
version, the correlations were estimated off-line and the gains 

I 
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were calculated from the d'ita in order to be globally optimal. 
A \  this tends to blur spatio-temporal edges. an adaptive version 
b a s  designed where the correlation\ and gains were controlled 
b!, edge detectors in the spatial direction\ and by the motion 
compensation error in the temporal direction [ I O ] .  

The results are evaluated lor  "Trevor White" at a noise level 
ol IO tIB (shown in Fig. 1 3 )  and at  ;I level of 20 dR (shown 
in Fig. 14). 
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- Laplacian -.-. Gaussian 

As a third comparilon. we consider thc adaptive motion- 
compensated tilter described by Sezan zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAct t r l .  131. Instead of 
using their proposed motion eltiinator, we have used the 
3-D recursive search block-matching algorithm described in 
Section 11. The noise filter used is composed as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A !!/I;.,/. k i  ~ j / ( /- . , ; .x.)) 

Here, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6: is the e\tiniated noise variance. We have used our 
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Fig. 17. Observed image of “Calendar Train” at 10 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdB Gaussian noise and result image of the proposed decomposition method with motion compensation. 

Fig. 18. Observed image of “Calendar Train” at 10 dB Laplacian noise and result image of the decomposition method with motion compensation. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
adaptive zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOS estimator from (21) to estimate the parameters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
f i(z!j! zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI C )  and 8(z! j ,  I C )  for this filter. 

The SNRi curves yielded by filtering the “Calendar Train” 
sequence at a noise level of 10 dB are shown in Fig. 15. 

Finally, to illustrate that our estimator is able to decompose 
a signal with other noise distributions we have corrupted 
the “Calendar-Train” sequence with Gaussian and Laplacian 
noise at a level of 10 dB. The results of this experiment are 
presented in Fig. 16. An observed and result image of the 
sequence corrupted with Gaussian noise is shown in Fig. 17. 

An observed and result image of the sequence corrupted with 
Laplacian noise is shown in Fig. 18. 

From a subjective point of view regarding our method, the 
noise is substantially removed without affecting the sharpness. 
It was found that the use of motion compensation is necessary 
at higher SNR’s to avoid annoying blurring of spatio-temporal 
edges. For very low SNR’s, the results look better without 
motion compensation. 

Using a motion estimator that is more robust to noise as the 
algorithm proposed in this paper, lower noise levels can be 
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