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In the measurement of impulse response, ambient noise is included leading to a decrease
in measurement quality. To solve this problem the use of several measurement signals (or
excitation signals) has been proposed. However, the relationship between measurement signals
and the noise reduction performance (NRP) has not been quantitatively examined thus far. In
this study the NRP characteristics of different measurement signals were theoretically examined
to derive equations that can determine NRP from the spectra of the measurement signal and
noise. From the theoretical and experimental examinations the following results were obtained.
The NRP for white signals and noise-whitening signals is actually the same. Only the minimum
noise (MN) signal that minimizes the noise component showed a significant improvement in
NRP. A pink spectrum measurement signal showed good NRP in the presence of 1/k2 spectrum
noise, where k is the discrete frequency number, but worse performance with other types of
noise. This supports the conclusion that using the MN signal, which has a power spectrum that
is the square root of the power spectrum of the noise, is the best method of reducing the effect
of noise on the measured impulse response.

0 INTRODUCTION

Impulse response, as well as its Fourier transform, i.e.,
frequency response, is a basic characteristic of acoustic sys-
tems. Various characteristics related to architectural acous-
tics including the reverberation time and speech transmis-
sion index (STI) are calculated using the impulse response
[1]. In addition, simulations in the studies of sound field
reproduction and architectural acoustics have been carried
out using the measured impulse response [2]. The impulse
response is also used directly or indirectly for sound field
control and active noise control [3]. Thus, the impulse re-
sponse is an essential characteristic of acoustic systems. In
an actual environment, however, the measurement quality
of the impulse response deteriorates because acoustic ambi-
ent noise and electrical noise (hereafter collectively referred
to as noise) are included in the measurement results.

To address this problem, the use of various measure-
ment signals for the impulse response (or excitation signals;
hereafter, measurement signals) has been proposed. A lin-
early swept sine (SS) signal, also known as a time-stretched
pulse (TSP) signal [4]–[6], and a maximum length sequence
(MLS) signal [7]–[9] are known as basic measurement sig-
nals. Compared with the impulse signal, the energies of
these measurement signals are high, enabling them to re-
duce the noise component included in the measurement
results.

However, the linearly SS and MLS signals are white sig-
nals that have a constant power over the entire frequency
range. Hence, when a room noise that has a high energy
in a low-frequency range is added, the signal-to-noise (SN)
ratio in the low-frequency range decreases. In contrast, a
logarithmic swept sine (log-SS) signal, also known as an
exponential sine sweep (ESS) signal [10]–[12], whose log-
arithmic frequency proportionally increases with time, has
a high energy in the low-frequency range. Therefore, a high
noise reduction performance can be obtained in the low-
frequency range.

Air conditioners are major noise sources that produce
noise with a high energy in the low-frequency range. How-
ever, the shape of the spectrum depends on the type of air
conditioner and the room environment, resulting in varia-
tions in the noise reduction performance. In addition, when
there is a machinery noise source in the neighborhood, there
may be noises with high energies in the medium-to-high-
frequency range and such noises cannot be fully reduced
using the log-SS signal.

To solve this problem, noise-adaptive measurement sig-
nals, which are synthesized by considering the preliminarily
examined noise spectra, have been proposed. Weinzierl et
al. used a measurement signal with a power spectrum iden-
tical to that of the measured noise [13]. Here, the effect of
the noise biased to particular frequencies can be reduced
because the noise component included in the measurement
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Fig. 1 Impulse response measurement in a noisy environment. (a)
Measurement result obtained using impulse signal δ(n) and noise.
(b) Frequency domain representation of (a). (c) Frequency domain
representation of impulse response measurement using measure-
ment signal S(k) under noise-free condition. (d) Frequency domain
representation when noise is added to (c).

results is whitened by this signal. In this study we refer to
this signal as a noise-whitening (NW) signal.

Moriya and Kaneda proposed a signal that can minimize
the noise component included in measurement results (re-
ferred to as the minimum noise (MN) signal) [14], [15].
The MN signal has a power spectrum that is the square root
of the power spectrum of the noise.

As explained above, various measurement signals for
reducing the effect of noise on measurement results have
been proposed thus far. However, the noise reduction perfor-
mance of each measurement signal has not been sufficiently
or quantitatively examined. In this study we examined the
noise reduction performance of each measurement signal
theoretically and experimentally.

In Sec. 1, the principles of the impulse response measure-
ment and the noise component included in the measurement
result are explained. In Sec. 2, the results of a theoretical ex-
amination of the noise reduction performance (NRP) char-
acteristics of measurement signals are discussed. In Sec. 3,
the results of a simulation of an impulse response measure-
ment carried out to verify the results discussed in Sec. 2
are given and discussed. Finally, the study is concluded in
Sec. 4.

1 MEASUREMENT OF IMPULSE RESPONSE IN
NOISY ENVIRONMENT

In this study discrete-time signals are considered. As the
frequency domain representation of the signal, the L-point
discrete Fourier transform (DFT) is considered.

Fig. 1(a) shows a model diagram for an impulse response
measurement in a noisy environment. When a discrete-time
impulse signal δ(n) is input to an unknown system, the

impulse response h(n) is the system output with the noise
n0(n) added. Here, n is the discrete time and the added noise
is assumed to be a stationary noise.

Fig. 1(b) shows the DFT frequency domain representa-
tion of Fig. 1(a). H (k) is obtained by applying the L-point
DFT to h(n) and represents the frequency responses of the
unknown system. Here, k is the discrete frequency number
and N0(k) is obtained by applying the L-point DFT to n0(n).
The measurement result is H (k) + N0(k).

The SN ratio of the measurement result obtained using
the impulse signal δ(n) is small because of its small en-
ergy. Therefore, measurement signals with high energies
are generally used. Fig. 1(c) shows a model diagram for
the measurement of impulse response using a measurement
signal in an environment without noise. S(k) is the DFT
spectrum of the measurement signal.

When S(k) is input to the unknown system, the output
is H (k)S(k). To obtain a product in the DFT frequency
domain circular convolution should be carried out in the
time domain. Thus, two periods of a measurement signal
whose period is L are input. Then, the second period of the
output signal, which is the result of the circular convolution,
is extracted and subjected to the DFT to obtain H (k)S(k).
After this process, H (k)S(k) is multiplied by the inverse
characteristic 1/S(k) of the measurement signal to obtain
the frequency response H (k) of the unknown system.

In an actual measurement the noise N0(k) is added to
H (k)S(k) as shown in Fig. 1(d). Thus, when H (k)S(k) +
N0(k) is multiplied by the inverse characteristic 1/S(k),
H (k) + N0(k)

/
S(k) is obtained where N0(k)

/
S(k) is the

measurement error caused by noise (hereafter, the noise
component). This indicates that the magnitude of the noise
component depends on the spectrum of the measurement
signal S(k).

By applying the inverse DFT to H (k) + N0(k)
/

S(k) the
impulse response h(n) + n1(n) is obtained where n1(n) rep-
resents the inverse DFT of N0(k)

/
S(k). Figs. 2(a)–2(c)

show model diagrams of the impulse response measured
in the time domain. Fig. 2(a) shows that the noise n0(n) is
added to the impulse response measured using the impulse
signal δ(n). pN0 is the power of n0(n).

Fig. 2(b) shows the model diagram of a measurement
signal s(n). In this figure L is the signal length, i.e., the
defined length of the measurement signal. J is the effective
length, i.e., the length over which an effective signal exists;
outside this section, the power of the signal is almost zero.
For an MLS signal J = L. pS is the power of the signal in
an effective section.

Fig. 2(c) shows the model diagram of the measured im-
pulse response obtained using the measurement signal. The
noise component n1(n) with the power pN1 is added.

2 NOISE REDUCTION PERFORMANCE (NRP)
OF MEASUREMENT SIGNALS

2.1 Theoretical Examination
The power of the noise component, pN 1, when the mea-

surement signal s(n) is used is significantly lower than that
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Fig. 2 Measurement result of impulse response and noise compo-
nent. (a) Measurement result obtained using impulse signal δ(n)
and noise component n0(n). (b) Model diagram of measurement
signal s(n). (c) Measurement result obtained using measurement
signal s(n) and noise component n1(n).

of the noise component, pN0, when the impulse signal δ(n)
is used. Since the noise component n1(n) is obtained by ap-
plying the inverse DFT to N0(k)

/
S(k), pN 1 depends on the

characteristics of the measurement signal spectrum S(k).
In this study the noise reduction performance of mea-

surement signals is evaluated using the NRP defined by

N R P = pN0

pN1
. (1)

Here, pNi (i = 0,1) is the power of the noise component
ni (n) defined by

pNi = E

[
1

L

L−1∑
n=0

n2
i (n)

]
, (2)

where E[·] is the expectation.
Parseval’s relation, expressed by

L−1∑
n=0

n2
i (n) = 1

L

L−1∑
k=0

|Ni (k)|2, (3)

holds between ni (n) and Ni (k), which is the L-point DFT
of ni (n). From Eq. (3),

E

[
L−1∑
n=0

n2
i (n)

]
= 1

L

L−1∑
k=0

PNi (k), (4)

where PNi (k) = E[|Ni (k)|2] is the power spectrum of the
noise component ni (n). The energy of the measurement
signal, ES , is given by

ES =
L−1∑
n=0

s2(n) = 1

L

L−1∑
k=0

|S(k)|2. (5)

From Fig. 1(d), the power spectrum of the noise com-
ponent PN1(k) included in the measurement result is given
by

PN1(k) = E[|N1(k)|2] = E[|N0(k)|2/|S(k)|2]
= PN0(k)

/|S(k)|2. (6)

The power spectra
∣∣Ŝ(k)

∣∣2
and P̂N0(k) obtained by nor-

malizing |S(k)|2and PN0(k), respectively, using the respec-
tive mean values are defined by

∣∣Ŝ(k)
∣∣2 = |S(k)|2

1
L

L−1∑
k=0

|S(k)|2
(7)

and

P̂N0(k) = PN0(k)

1
L

L−1∑
k=0

PN0(k)

. (8)

|Ŝ(k)|2 and P̂N0(k) have the following relationship.

L−1∑
k=0

∣∣Ŝ(k)
∣∣2 =

L−1∑
k=0

P̂N0(k) = L . (9)

By solving Eqs. (7) and (8) for |S(k)|2 and PN0(k), re-
spectively, we obtain

|S(k)|2 =
{

1

L

L−1∑
k=0

|S(k)|2
}

· ∣∣Ŝ(k)
∣∣2

(10)

and

PN0(k) =
{

1

L

L−1∑
k=0

PN0(k)

}
· P̂N0(k). (11)

On the right sides of Eqs. (10) and (11), the first compo-
nent (for example, 1

/
L

∑L−1
k=0 |S(k)|2) represents the signal

energy and the second component represents a relative spec-

tral shape independent of energy (for example,
∣∣Ŝ(k)

∣∣2
or

P̂N0(k)).
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Using Eqs. (2), (4), (5), (6), (9), (10), and (11), NRP in
Eq. (1) can be represented as follows.

NRP = pN0

pN1
=

E

[
1
L

L−1∑
n=0

n2
0(n)

]

E

[
1
L

L−1∑
n=0

n2
1(n)

]

=
L−1∑
k=0

PN0(k)

L−1∑
k=0

PN1(k)
=

L−1∑
k=0

PN0(k)

L−1∑
k=0

PN0(k)

|S(k)|2

=
L−1∑
k=0

{
1
L

L−1∑
k=0

PN0(k)

}
·P̂N0(k)

L−1∑
k=0

{
1
L

L−1∑
k=0

PN0(k)

}
·P̂N0(k){

1
L

L−1∑
k=0

|S(k)|2
}

·|Ŝ(k)|2

= 1
L

L−1∑
k=0

|S(k)|2 ·
L−1∑
k=0

P̂N0(k)

L−1∑
k=0

{
P̂N0(k)

/|Ŝ(k)|2
}

= ES · L
L−1∑
k=0

{
P̂N0(k)

/|Ŝ(k)|2
} .

(12)

The first component of the final term in Eq. (12) is the
energy of the measurement signal, whereas the latter com-
ponent of the final term is determined by the power spectral

shapes of the noise P̂N0(k) and measurement signal
∣∣Ŝ(k)

∣∣2

and is independent of the measurement signal energy.

2.2 Energy of Measurement Signal and NRP
NRP is proportional to the energy of the measurement

signal ES . The energy of the measurement signal is deter-
mined as ES = J · pS from Fig. 2(b). Thus, NRP increases
when pS increases with increasing measurement signal am-
plitude or when the effective length J increases.

Note that when the ratio of the effective length J to
the total signal length L is kept constant, the SN ratio,
i.e., the ratio of signal energy to noise energy in the re-
ceived signal, remains constant even when L increases
(accordingly, J increases). Also, PN1(k) = PN0(k)

/|S(k)|2
takes almost the same value at the normalized frequencies
k
/

L
(
k = 0, 1, 2, · · · , L

/
2
)

regardless of the signal length
L. However, the power of the noise component, pN1, ob-
tained by dividing the noise energy by L, decreases with
increasing L, while the impulse response waveform main-
tains the same height.

Also note that the second component of the final term in
Eq. (12) is almost independent of L because the denomina-
tor is almost proportional to L.

2.3 Power Spectral Shape of Measurement
Signal and NRP

In this subsection the relationship between the power
spectral shape of the measurement signal and NRP is ex-
amined.

Case 1: When the measurement signal S(k) has a white
spectrum such as a linearly SS signal or an MLS signal, the
spectrum of S(k) is given by

|S(k)|2 = C1. C1: constant (13)

By substituting Eq. (13) into Eq. (7), we obtain∣∣Ŝ(k)
∣∣2 = 1 (14)

for all k. By substituting Eq. (14) into Eq. (12), and using
Eq. (9), we obtain

N R P = ES. (15)

Thus, the NRP of a measurement signal with a white
spectrum is identical to the energy of the measurement sig-
nal. This NRP value does not depend on the noise spectrum.

Case 2: When the measurement signal S(k) has a noise-
whitening spectrum (NW signal), the spectrum is given by

|S(k)|2 = C2 · PN0(k). C2: constant (16)

Using Eq. (16), the power spectrum of the noise compo-
nent PN1(k) is given by

PN1(k) = PN0(k)

|S(k)|2 = PN0(k)

C2 · PN0(k)
= 1

C2
. (17)

This is a white spectrum independent of the frequency k.
Substituting Eq. (16) into Eq. (7) and using Eq. (8)

gives

∣∣Ŝ(k)
∣∣2 = C2 · PN0(k)

1
L

L−1∑
k=0

C2 · PN0(k)

= P̂N0(k). (18)

Then, by substituting Eq. (18) into Eq. (12), we obtain

N R P = ES. (19)

Comparing Eqs. (15) with (19), the NRP of the measure-
ment signal with a noise-whitening spectrum is found to be
the same as that of the measurement signal with a white
spectrum.

Case 3: When the measurement signal S(k) has an MN
spectrum (MN signal), the spectrum is given by

|S(k)|2 = C4 ·
√

PN0(k). C4: constant (20)

The rationale behind Eq. (20) is given in Appendix 1.
By substituting Eq. (20) into Eq. (7) we obtain

∣∣Ŝ(k)
∣∣2 =

√
PN0(k)

1
L

L−1∑
k=0

√
PN0(k)

. (21)

By substituting Eq. (21) into Eq. (12), based on the fact
that

∑L−1
k=0

√
PN0(k) is not a function of k but a constant

value, and using Eq. (8), we obtain

NRP = ES · L

·
L−1∑
k=0

{
P̂N0(k)·

(
1/L· ∑L−1

k=0
√

PN0(k)√
PN0(k)

)}
= ES · L

1
L

L−1∑
k=0

√
PN0(k)·

L−1∑
k=0

P̂N0(k)√
PN0(k)

= ES ·
L2· 1

L

L−1∑
k=0

PN0(k)

L−1∑
k=0

√
PN0(k)·

L−1∑
k=0

PN0(k)√
PN0(k)

= ES ·
L·

L−1∑
k=0

PN0(k)

(
L−1∑
k=0

√
PN0(k)

)2 .

(22)
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Fig. 3 Spectra of room noises used in simulation.

Here, the variance of the amplitude spectrum of the noise
component

√
PN0(k) (k = 0,1,2,···, L−1) given by

1
L

L−1∑
k=0

(√
PN0(k)

)2 −
(

1
L

L−1∑
k=0

√
PN0(k)

)2

= 1
L2

{
L ·

L−1∑
k=0

PN0(k) −
(

L−1∑
k=0

√
PN0(k)

)2
} (23)

is considered. The magnitude of the final term in Eq. (22)
increases as the last term in Eq. (23), that is, the variance of√

PN0(k) increases. In other words, the higher the variance
of the amplitude spectrum as a function of frequency, the
higher the NRP obtained using the MN signal.

The inequality

1 ≤
L ·

L−1∑
k=0

PN0(k)

(
L−1∑
k=0

√
PN0(k)

)2 ≤ L (24)

holds for the latter component of the final term in Eq. (22).
Therefore, the achievable NRP of the MN signal depends on
the shape of the noise spectrum and is theoretically at most
L-fold higher than that of the signal with a white spectrum.

3 SIMULATION OF NRP

To verify the results of the theoretical examination in the
previous section the impulse response measurement in a
noisy environment was simulated.

3.1 Conditions for Simulation
In the simulation the measurement signal and the impulse

response of a loudspeaker were convolved and then noise
was added. Thus, a received sound signal was simulated.
Fig. 3 shows the spectra of the four types of actual room
noise used in the simulation. In the figure each spectrum
is plotted with a different power level to make the spectral
shape more understandable.

Table 1 NRP values obtained for four measurement signals.

(a) Measured NRP (dB).
Signal Spectrum Noise A Noise B Noise C Noise D

White 39.9 39.6 40.5 40.6
NW 40.7 38.5 40.5 40.0
Pink 51.8 49.3 45.9 45.2
MN 58.2 55.7 51.7 54.0

(b) NRP values (dB) normalized by that of white signal for
corresponding noise.
Signal Spectrum Noise A Noise B Noise C Noise D

White 0 0 0 0
NW 0.8 –1.1 0.0 –0.6
Pink 16.5 14.3 10.0 9.2
MN 18.3 16.1 11.2 13.3

All noises were recorded in our laboratory rooms that
had an average volume of 100 m3. The main sources of
noises A and B were air conditioners. In addition to an air
conditioner there were several computers and home electri-
cal appliances, such as a refrigerator, in the room in which
noise C was recorded. Noise D was recorded in a room next
to a room containing machinery, so its spectrum was high
at frequencies of approximately 300–600 Hz.

As measurement signals, four SS signals with one of the
following spectra were used. Here, Ci (i = 1, 2, 3, 4) is
constant.

(a) White spectrum (e.g., linearly SS signal): |S (k)|2 =
C1

(b) NW spectrum: |S (k)|2 = C2 · PN0 (k)
(c) Pink spectrum (e.g., log-SS signal): |S (k)|2 = C3/k
(d) MN spectrum: |S (k)|2 = C4 · √

PN0 (k)

The sampling frequency was 48 kHz. The target fre-
quency range was 70 Hz–24 kHz, and a high-pass filter
with a cutoff frequency of 70 Hz was used for the received
sound signal. The amplitude A, signal length L, and ef-
fective length J were set to 0.8, 216, and 215, respectively,
for all signals. This makes the energies (ES) of the four
measurement signals identical.

The noise level pN0 was set so that the SN ratio of the
received signal was about 6 dB, although pN0 does not affect
NRP. Constants Ci (i = 1, 2, 3, 4) were not set explicitly
because they were determined from the signal energy Es
and noise power spectrum PN0(k) and by using Eq. (5).

3.2 Simulation Results
Table 1(a) shows the NRP (dB) characteristics of the four

measurement signals for the four types of noise (noises A,
B, C, and D). As shown in Table 1(a), the NRP of the white
signal is approximately 40 dB regardless of the type of
noise. From Eq. (15), the NRP of the white signal is given
by the value of ES for the measurement signal regardless
of the type of noise. ES for the SS signal with amplitude A
and effective length J is given by

ES = J · A2/2. (25)
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Fig. 4 Frequency responses of measurement results obtained using four measurement signals for noise A. (a) White signal, (b) NW
signal, (c) pink signal, (d) MN signal.

By substituting the values of J and A given in the previous
subsection into Eq. (25),

ES = 10 · log10(215 · (0.8)2/2) = 40.3[dB] (26)

is obtained. This theoretical value is in good agreement
with the simulation result.

Table 1(b) shows the results obtained by normalizing the
NRP in Table 1(a) using the NRP of the white signal for the
corresponding noise. From Table 1(b), the NRP of the NW
signal was found to be almost equal to that of the white
signal for the four types of noise. This finding is also in
agreement with the theoretical result.

The NRP of the MN signal is the highest among the four
measurement signals and is 11–18 dB higher than that of
the white signal. NRP increases for a noise spectrum with
a sharper peak and hence having a higher variance of the
amplitude in the frequency axis, which also agrees with the
theoretical result.

The NRP values of the pink signal for noises A, B, and
C are similar to those of the MN signal. The difference
in NRP between the pink and MN signals is small, i.e.,

approximately 1–2 dB. This is because noises A, B, and C
have a monotonically decreasing spectrum that is similar
to the 1/k2 (power) spectrum, and the MN spectrum for the
1/k2 noise spectrum is a 1/k (pink) spectrum. However, the
NRP of the pink signal is lower for noise D because the
spectrum of noise D deviates from the 1/k2 spectrum, and
NRP is about 4 dB lower than that for the MN signal. To
increase NRP by 4 dB, it is necessary to increase the length
of the measurement signal 2.5-fold.

Figs. 4(a)–4(d) show the real frequency responses, the
spectra of the noise components, and the responses obtained
using the four measurement signals for noise A. Fig. 4(a)
shows the result obtained using the white signal. As shown
in the figure, the spectrum of noise A is unchanged resulting
in a low SN ratio in the low-frequency range.

Fig. 4(b) shows the result obtained using the NW sig-
nal. The noise is whitened and the noise level in the low-
frequency range is reduced. However, the noise level in
the high-frequency range significantly increases. As a re-
sult, the noise component energy over the entire range is
equivalent to that of the white signal.
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Fig. 5 Frequency responses of measurement results obtained using four measurement signals for noise C. (a) White signal, (b) NW
signal, (c) pink signal, (d) MN signal.

Figs. 4(c) and 4(d) show the results obtained using the
pink and MN signals, respectively. In both cases the noise
level in the low-frequency range is reduced with an ac-
ceptable increase in the noise level in the high-frequency
range. However, upon close observation, the noise com-
ponent obtained using the pink signal is smaller than that
obtained using the MN signal in the high-frequency range.
In contrast, the noise component obtained using the pink
signal is larger than that obtained using the MN signal in
the low-frequency range. This causes the fluctuation in the
frequency response obtained using the pink signal at fre-
quencies of less than 300 Hz. The results for noises B and
C were similar to those for noise A.

Figs. 5(a)–5(d) show the noise component spectra and
measured frequency responses for noise D. The measured
response using the white signal (Fig. 5(a)) fluctuates under
the influence of a noise component in the low-frequency
range, and the measured response using the NW signal
(Fig. 5(b)) fluctuates under the influence of a noise com-
ponent in the high-frequency range, similarly to Figs. 4(a)
and 4(b).

Figs. 5(c) and 5(d) show the results obtained using the
pink and MN signals, respectively. In both cases the noise
level in the low-frequency range is reduced with an accept-
able increase in the noise level in the high-frequency range.
In the case of the pink signal (Fig. 4(c)), however, the noise
component at approximately 500 Hz cannot be reduced. In
contrast, in the case of the MN signal (Fig. 4(d)), the noise
component at this frequency is more reduced than that in
the case of the pink signal because the MN signal adapts
to the actual noise spectrum. This explains the higher NRP
of the MN signal than that of the pink signal, as shown in
Table 1.

Figs. 6 and 7 show the waveforms of the noise com-
ponents using the four measurement signals for noise A
(Fig. 6) and noise D (Fig. 7). Figs. 6(a) and 7(a) show
the waveforms of the noise components obtained using the
white signal. Because the spectra of these noise compo-
nents are the same as those of the added ambient noises,
these waveforms are similar to those of the added ambi-
ent noises. Figs. 6(b) and 7(b) show the waveforms of the
noise components obtained using the NW signal. These are

354 J. Audio Eng. Soc., Vol. 63, No. 5, 2015 May



PAPERS NOISE REDUCTION PERFORMANCE FOR IMPULSE RESPONSE MEASUREMENT

Fig. 6 Noise component waveforms obtained using four measure-
ment signals for noise A. (a) White signal, (b) NW signal, (c) pink
signal, (d) MN signal.

white-noise waveforms and their power levels are almost
the same as those in Figs. 6(a) and 7(a).

We can see that the power levels of the noise component
waveforms obtained using the pink signal (Figs. 6(c) and
7(c)) are smaller than those in Figs. 6(a), 6(b), 7(a), and 7(b),
and the power levels of the noise component waveforms
obtained using the MN signal (Figs. 6(d) and 7(d)) are even
smaller. These results show good agreement with those in
Table 1.

4 CONCLUSIONS

In this study the noise reduction performance in terms of
NRP (the amount of the reduced energy of the noise com-
ponent included in the impulse response) obtained using
various impulse response measurement signals was theo-
retically examined.

The measurement signals were swept sine or pseudo-
noise signals having four types of power spectrum. The
power spectra were white, pink, noise-whitening (NW), and
minimum noise (MN). The NW power spectrum was the
same as the power spectrum of the ambient noise, PN0(k)(k:
discrete frequency number), and the MN power spectrum
was the square root of PN0(k).

Fig. 7 Noise component waveforms obtained using four measure-
ment signals for noise C. (a) White signal, (b) NW signal, (c) pink
signal, (d) MN signal.

Equations that represent NRP in terms of the measure-
ment signal energy and the power spectral shapes of both
the measurement signal and the ambient noise were derived.
The following results were obtained from the theoretical
equations and the results of the simulation carried out to
verify the equations.

1) NRP is proportional to the energy of the measurement
signal ES.

2) The power spectral shape of the noise component
included in the measurement results obtained using a
white signal is identical to that of the added ambient
noise. The obtained NRP value does not depend on the
noise spectrum.

3) The NW signal that whitens the noise component
included in the measurement signal greatly reduces
noise in the frequency range where an added noise
has a large energy. However, the noise level increases
in the frequency range where an added noise has a
small energy. As a result, the NRP of the NW signal is
equivalent to that of a white signal.

4) The MN signal has the highest NRP, which is 11–18
dB higher than that of a white signal for the typical
room noises used in the simulation.
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5) The measurement signal with a pink spectrum has a
similar NRP to the MN signal for noise with a spectrum
close to the 1/k2 spectrum. However, as the noise spec-
trum deviates from the 1/k2 spectrum, the difference in
NRP between the two signals increases. The maximum
difference is 4 dB for the noise used in the simulation.
This difference corresponds to 2.5-fold signal length.

Summarize the results; the overall noise reduction per-
formance for white signals and NW signals is actually the
same. Only the MN signal that can minimize the noise
component showed a significant improvement in NRP. The
pink spectrum measurement signal showed good NRP in
the presence of 1/k2 spectrum noise, where k is the discrete
frequency number, but worse performance with other types
of noise. This supports the conclusion that using the MN
signal that has a power spectrum that is the square root of the
power spectrum of the noise is the best method of reducing
the effect of noise on the measured impulse response.
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APPENDIX

SPECTRUM OF MEASUREMENT SIGNAL THAT
CAN MINIMIZE THE NOISE COMPONENT [15]

Assuming that the energy of the measurement signal ES

takes a value ESC,

ES = 1

L
·

L−1∑
k=0

|S(k)|2 = ESC , (A-1)

we obtain the power spectrum |S (k)|2 of a measurement
signal that can minimize the power of the noise component
pN1 included in the measurement result. Here, using Eqs.
(2),(4), and (6), pN1 is given by

pN1 = E

[
1
L

L−1∑
n=0

n2
1(n)

]

= 1
L2

L−1∑
k=0

PN1 (k) = 1
L2

L−1∑
k=0

PN0(k)
|S(k)|2 .

(A-2)

Using Lagrange’s method of undetermined multipliers
and ignoring the constant 1/L2, the desired |S (k)|2 can be
derived as the solution of the next equation.

∂

∂|S(k)|2

{
L−1∑
k=0

PN0(k)
|S(k)|2 − λ

(
ESC − 1

L ·
L−1∑
k=0

|S(k)|2
)}

= − PN0(k)
|S(k)|4 + 1

L · λ = 0.

(A-3)

From Eq. (A-3) we obtain

|S(k)|2 =
√

L ·
√

PN0 (k)√
λ

(A-4)

By substituting Eq. (A-4) into Eq. (A-1) we obtain

1√
L
√

λ

L−1∑
k=0

√
PN0 (k) = ESC . (A-5)

From Eq. (A-5) we obtain

√
λ = 1√

L · ESC

L−1∑
k=0

√
PN0 (k). (A-6)
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By substituting Eq. (A-6) into Eq. (A-4) we obtain

|S(k)|2 = L · ESC ·
√

PN0 (k)
L−1∑
k=0

√
PN0 (k)

. (A-7)

By representing terms independent of the frequency k in
Eq. (A-7) as

C4 = · L · ESC

L−1∑
k=0

√
PN0 (k)

, (A-8)

we obtain Eq. (20) in Subsec. 2.3.

THE AUTHOR

Yutaka Kaneda

Yutaka Kaneda was born in Osaka, Japan, in 1951. He
received the B.E., M.E., and Doctor of Engineering degrees
from Nagoya University, Nagoya, Japan, in 1975, 1977, and
1990. In 1977 he joined Nippon Telegraph and Telephone
Corporation (NTT), Musashino, Tokyo, Japan, where he
engaged in research on acoustic signal processing. In 2000
he joined Tokyo Denki University, Tokyo, Japan. He is
currently a Professor of acoustic signal processing at the

Department of Information and Communication Engineer-
ing, Tokyo Denki University. His research interests include
acoustical measurements, microphone array signal pro-
cessing, and speech processing. Dr. Kaneda is a member of
the Acoustical Society of Japan, the Acoustical Society of
America, Audio Engineering Society, Institute of Electrical
and Electronics Engineers, and the Institute of Electronics,
Information and Communication Engineers of Japan.

J. Audio Eng. Soc., Vol. 63, No. 5, 2015 May 357


