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Abstract

Purpose: Q.Clear is a block sequential regularized expectation maximization (BSREM)
penalized-likelihood reconstruction algorithm for PET. It tries to improve image
quality by controlling noise amplification during image reconstruction. In this study,
the noise properties of this BSREM were compared to the ordered-subset
expectation maximization (OSEM) algorithm for both phantom and patient data
acquired on a state-of-the-art PET/CT.

Methods: The NEMA IQ phantom and a whole-body patient study were acquired on
a GE DMI 3-rings system in list mode and different datasets with varying noise levels
were generated. Phantom data was evaluated using four different contrast ratios.
These were reconstructed using BSREM with different β-factors of 300–3000 and with
a clinical setting used for OSEM including point spread function (PSF) and time-of-
flight (TOF) information. Contrast recovery (CR), background noise levels (coefficient
of variation, COV), and contrast-to-noise ratio (CNR) were used to determine the
performance in the phantom data. Findings based on the phantom data were
compared with clinical data. For the patient study, the SUV ratio, metabolic active
tumor volumes (MATVs), and the signal-to-noise ratio (SNR) were evaluated using the
liver as the background region.

Results: Based on the phantom data for the same count statistics, BSREM resulted in
higher CR and CNR and lower COV than OSEM. The CR of OSEM matches to the CR
of BSREM with β = 750 at high count statistics for 8:1. A similar trend was observed
for the ratios 6:1 and 4:1. A dependence on sphere size, counting statistics, and
contrast ratio was confirmed by the CNR of the ratio 2:1. BSREM with β = 750 for 2.5
and 1.0 min acquisition has comparable COV to the 10 and 5.0 min acquisitions using
OSEM. This resulted in a noise reduction by a factor of 2–4 when using BSREM
instead of OSEM. For the patient data, a similar trend was observed, and SNR was
reduced by at least a factor of 2 while preserving contrast.

Conclusion: The BSREM reconstruction algorithm allowed a noise reduction without
a loss of contrast by a factor of 2–4 compared to OSEM reconstructions for all data
evaluated. This reduction can be used to lower the injected dose or shorten the
acquisition time.
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Background

Fluorodeoxyglucose (FDG) PET/CT scans provide 3D images of metabolic activity

combined with the anatomic structure. This functional imaging modality is widely used

for cancer diagnosis in the initial stage and to determine the severity or to assess treat-

ment response [1, 2]. PET/CT technology is constantly being improved and new sys-

tems are also combined with emerging improvements in image reconstruction. This

leads to changes in the resulting images which need to be tested and clinically vali-

dated. The resolution, noise, and quantitative accuracy of PET are not only affected by

the hardware but also highly influenced by the reconstruction method. Nowadays, the

most commonly used PET image reconstruction algorithm in clinical practice is a stat-

istical iterative method known as the maximum likelihood expectation maximization

(MLEM) [3–5]. This is a slowly converging method, but images are obtained in clinic-

ally acceptable times with acceleration through the use of subsets in ordered subsets

expectation maximization (OSEM). However, this accelerated convergence can be

problematic since the best result tends to oscillate between different subsets. One of

the advantages of statistical reconstruction techniques is the ability to better model the

emission and detection process [6]. The effects of attenuation, detector normalization,

and contamination by scattering and randoms are nowadays corrected in the recon-

struction algorithm. These improved models of the interaction in patient and system

lead to a more quantitative final image. In the latest systems, the modeling of point

spread functions (PSF) and time-of-flight (TOF) information have also been included

and this has shown to lead to a major improvement in image quality [6, 7]. However,

OSEM is also suffering from noise increase with an increasing number of iterations. In

order to reduce image noise, the OSEM algorithm is usually stopped before contrast

convergence occurs, in order to prevent excessive image noise amplification. In clinical

practice, the algorithm is stopped after 2–4 iterations and 20–30 subsets. Additionally,

these images are typically post-smoothed after reconstruction using a low-pass filter to

remove noise levels and Gibbs artifacts at edges because of resolution modeling [8–10].

A new Bayesian penalized likelihood reconstruction algorithm which uses a block se-

quential regularized expectation maximization as an optimizer was introduced in the

last few years by GE Healthcare. The algorithm, named Q.Clear on their PET scanners,

is introduced to improve clinical image quality. The algorithm is expected to reach con-

vergence without increasing noise while preserving edges [11]. Thus, instead of the ker-

nel filter, image characteristics are determined by a regularization β-parameter which

penalizes relative differences between neighboring pixels avoiding excessive smoothing

over large edges. Also, Gibbs artifacts from resolution modeling are avoided [12]. Sev-

eral research groups have investigated the improvements of the OSEM and BSREM re-

construction algorithms [13–17] but not with regards to image quality acquired on the

new Discovery MI with 3-rings (GE Healthcare) silicon photomultiplier-based TOF-PET/

CT with sensitivity of 7.3 cps/kBq and axial FOV of 15 cm. The lower sensitivity can be

compensated for by using more activity or longer acquisition times; however, this is not

always possible due to practical, financial, or dosimetric constraints. In this study, the per-

formance and clinical use of BSREM was compared to OSEM with full modeling of PSF

and TOF information for both algorithms acquired on the new Discovery MI with 3-rings

(axial FOV of 15 cm). Both phantom and patient data were analyzed with regards to CR,

background COV, CNR, SUV ratio, metabolic active tumor volumes (MATVs), and SNR.
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The aim of this study was to evaluate different β-factors compared to a clinical post-filter

kernel for different datasets with varying noise levels to investigate whether and to what

extent noise can be reduced by using BSREM instead of OSEM.

Methods

PET/CT system

All data were acquired on a digital GE Discovery MI PET/CT (DMI) system, installed in

Ghent University Hospital, Belgium. The investigated system consists of three detector

rings; each PET ring uses 136 detector blocks containing a 4 × 9 array of lutetium-based

scintillator (LBS) crystals coupled to a 3 × 6 array of silicon photomultipliers (SiPMs) with

Anger multiplexing for crystal identification [18]. Table 1 contains a summary of import-

ant design and performance parameters [19].

A well-countered cross-calibration scan was performed with 18F in a uniform cylindrical

phantom before starting the tests as a common quality control and assurance procedure.

Image reconstruction

The phantom and patient data were reconstructed using a matrix size of 256 × 256 with a slice

thickness of 2.78mm and multiple acquisition times for the two algorithms, respectively.

BSREM (Q.Clear) reconstruction was done for different penalization β-factors 300, 400, 500,

600, 750, 1000, 1500, and 3000. These reconstructions were compared to OSEM reconstruc-

tion with three iterations, 16 subsets and a Gaussian post-filter with FWHM of 5.0mm, as rec-

ommended by the manufacturer to be used in a clinical setting. All reconstructions included

attenuation and scatter correction based on CT as well as PSF modeling and TOF information.

Phantom data

The NEMA (National Electricals Manufacturers Associations) IEC image quality phan-

tom was used for these experiments. To simulate lesions of different sizes, the phantom

Table 1 Design and performance specifications of the GE Discovery MI commercial system

GE Discovery MI Three detector rings

Axial FOV 15 cm

Patient bore size 70 cm

Photodetector SiPM

Scintillator LBSa (LYSO)

Crystal element size 3.95 × 5.3 × 25 mm3

Coincidence timing window 4.9 ns

Sensitivity 7.5 cps/kBq

Spatial resolution (FWHM mm) Radial/tangential/axial

@1 cm 4.69/4.08/4.68

@10 cm 5.58/4.64/5.83

@20 cm 7.53/5.08/5.47

Scatter fraction 41.7%

Peak NECR 102.3 kcps @ 24.7 kBq/ml

Clinical NECR 29.6 kcps @ 2.4 kBq/ml

aLutetium-based scintillator
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has six fillable spheres of different diameters (10 mm, 13 mm, 17mm, 22 mm, 28mm,

and 37mm). The phantom contains a lung insert, which consists of a cylinder posi-

tioned in the center of the phantom with an inner diameter of 44.5 mm and a volume

of 194 ml. The lung insert was filled with low-density styrofoam pellets and pure water

to simulate human lung tissue. The phantom was prepared according to the NEMA

NU 2-2012 protocol [20]. The background volume of the phantom was filled with an

activity concentration of 5.3 kBq/ml (52MBq of 18F for 9800 ml). The sphere-to-

background ratios were chosen to be 8:1, 6:1, 4:1, and 2:1 for the six spheres.

The phantom data experiments were obtained during a single bed position scan of

20 min in the full FOV of the TOF PET/CT. The central slice contained the six spheres

and the adjacent slices were also used for the background ROIs. Sixty background ROIs

of each slice thickness (12 ROIs on each of five slices) were drawn on the slices as close

as possible to ± 1 cm and ± 2 cm on either side of the central slice. The CRs were de-

termined for each hot sphere j by

CRsH; j ¼
CH; j=CB; j

� �

−1

aH=aBð Þ−1
; 1ð Þ

where CH, j is the average number of counts in the ROI in the transverse image slice

that contains the center of the sphere j. CB, j represents the average number of counts

in the background ROI for sphere j. The terms aH and aB are the actual activity con-

centrations in the hot spheres and background respectively. The background COV was

calculated as

BackgroundCOV j
¼

SD j

CB; j

� �

2ð Þ

where SDj is the standard deviation and CB, j is the average of all counts for of the 60

background ROI counts for sphere j [20]. Contrast-to-noise ratio was defined as CR di-

vided by the background variability (calculated as described in [20]). The SUV values

were obtained using a VOI drawn on the OSEM reconstruction of 20 min acquisition

and then propagated to the BSREM reconstructions.

The CR data, CNR, and background COV of the phantom data were obtained in a

single bed position with full 20 min acquisition. Datasets of 10, 5.0, 2.5, and 1.0 min,

representing shorter scans with lower count statistics, were obtained using list-mode

selections. Reconstructions of the phantom data were analyzed using the NEMA NU

2–2012 protocol and compared based on different reconstruction parameters.

Clinical data

In our institution, an informed patient consent and a positive advice by the ethics com-

mittee are necessary for retrospective studies. The Belgian registration number (Bel-

gisch Registratienummer) for this study is B670201939137. Images were analyzed

according to FDG PET-CT European Association of Nuclear Medicine (EANM) pro-

cedure guidelines for tumor imaging [21]. The images were analyzed using OsiriX MD

10.0 tools fully optimized for a macOS Mojave 10.14 system installed in Ghent Univer-

sity Hospital, Belgium. A 71-year-old patient with multiple B cell lymphoma lesions of

different sizes was selected for this study. The patient fasted at least 6 h before receiving

an intravenous application of 340MBq of 18F-FDG. Before the injection of the
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radioactivity tracer, a blood sample was taken to ensure the blood glucose levels (97

mg/dl). FDG-PET/CT imaging started 60 min after the intravenous injection of FDG.

The total acquisition time (nine time lengths per bed-position) was 10min (1.07 min/

bp). From this dataset, scans of 5.0 min (0.34 min/bp) and 2.5 min (0.17 min/bp) were

generated in list mode. The TOF-PSF-OSEM image with post-smoothing with a 5.0-

mm filter was chosen as reference lesion volumes (VOIs). The VOIs were delineated

using the 41% threshold of the maximum voxel value and then propagated to the

BSREM reconstructions. The same reconstruction parameter settings were used as for

the phantom data. The noise level was calculated as standard deviation (SD) divided by

the SUVmean of a large spherical reference volume ( , 3.0 cm) placed in the liver (nor-

mal uptake). The lesion SNR was computed as the difference between the SUVmean of

the lesion VOI and the background SUV of the reference VOI placed in the liver, di-

vided by the SD of the value in the reference VOI. Contrast was calculated as lesion

SUVmean divided by SUVmean of the liver reference VOI. The signal to noise was evalu-

ated for the different lesions by comparing it to the noise level in the liver. The MATVs

was evaluated as the lesion SUVmean multiplied by the volume of the lesion.

Results

Phantom data

Contrast recovery

The results for CR versus background COV of the image quality phantom for each sphere

size and contrast ratio of 8:1 are shown in Fig. 1. All plots show a similar trend: the con-

trast increases when reducing the β-factor and the COV decreases as β increases in value.

Overall, the CR of BSREM reconstructions reaches a plateau with only a small gain when

changing β from 500 to 300. This is especially the case for the phantom data with low count

statistics. There is also a decrease in CR coefficients. Comparing CR of BSREM for different

levels of regularization to the CR of OSEM reveals higher (or at least similar) contrast recov-

ery for β-parameters down to 300, except for the smallest sphere. For the largest spheres (37,

28, 22, and 17mm), the CR seems to reach a steady value, where its dependence on the β-par-

ameter decreases. As the sphere size decreases, the convergence of the BSREM reconstruc-

tions appears to be dependent of the sphere size. The difference relative to OSEM for each

sphere sizes as a function of the β-parameter is shown in Fig. 2. The CR of OSEM reconstruc-

tion under clinical settings at high count statistics (20min) and contrast ratio of 8:1 match to

the CR of BSREM with β = 750. Figure 3 shows a similar trend (as a function of the acquisi-

tion time) for the ratios 6:1 and 4:1. There is not a significant difference at high count statistics

on the CR behavior between the ratios 8:1, 6:1, and 4:1, although the CR of BSREM decreases

as the acquisition time reduces. This dependence on the count statistics seems to be more

prominent at low count levels (1.0min) and in the smallest sphere of the 2:1 ratio. The de-

pendence on sphere size, counting statistics, and contrast ratio is also confirmed by the CNR

analysis. Figure 4 presents the CNR of BSREM with β = 750 and OSEM reconstruction as a

function of the sphere sizes for different count statistics and contrast ratios. For the ratios 8:1,

6:1, and 4:1, the CNR of β = 750 increased by a factor of 2 (for same count level) compared to

OSEM reconstruction, although CNR decreases with the reduction of counting statistics and

sphere size. The same trend was observed for the contrast ratio of 2:1, although there is a clear

reduction in the CNR compared to the other ratios.
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Noise properties

For reduced count statistics of the contrast 8:1 (reducing the acquisition time from 20

to 10, 5.0, 2.5, and 1.0 min), BSREM has in general lower COV than OSEM. Moreover,

OSEM was more sensitive to noise compared to BSREM with large differences in COV

between the different noise levels for the OSEM setting. When reducing the number of

counts by a factor of 2, the COV can be controlled by increasing the β-parameter in

the lower count dataset (losing contrast recovery). Similarly, the post-filter can be in-

creased in OSEM. By comparing the reconstruction algorithms for different count

levels, the following observations are made: The curves of BSREM at 50% of counts are

always outperforming the curves of OSEM at the full 100% of counts. For the four lar-

gest spheres, the BSREM curves for 25% of the counts are also outperforming OSEM at

100% of counts. For any length of the study, the highest contrast recovery is observed

for the smallest regularization parameter (300). The contrast recovery decreases with

increasing β-parameter. In comparison with OSEM, the contrast is higher for β = 300–

600 and comparable for β = 750 at 20, 10, and 5.0 min but slightly lower for 2.5 and

Fig. 1 Contrast recovery of BSREM (β = 300–3000, including TOF and PSF) and TOF-OSEM (3 iterations, 16
subsets, post-filter 5.0 mm and PSF) as a function of the background coefficient of variation for different
acquisition times (20, 10, 5.0, 2.5, and 1.0 min) and contrast ratio of 8:1. Different plots are shown with
decreasing sphere diameter

Fig. 2 Left: difference relative to the contrast recovery of TOF-OSEM (3 iterations, 16 subsets, post-filter 5.0
mm and PSF) at high count statistics (20 min) for each sphere size as a function of the regularization
parameters. Right: comparison of the contrast recovery as a function of the sphere size of BSREM with β =
750 (including TOF and PSF) and OSEM for 20 min acquisition. All plots correspond to a contrast ratio of 8:1
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1.0 min acquisitions. Furthermore, taking as a reference the full dataset (20 min) recon-

structed with OSEM (post-filter 5.0 mm), it is clear from Fig. 1 that the contrast (for all

sphere sizes) with β = 300–600 is still higher for 20, 10, 5.0, and 2.5 min. For the smal-

lest sphere, the optimal beta is around β = 300 and 400.

The background COV comparison to OSEM is shown in Table 2. The COV of

OSEM (20 min) is worse than the COV of BSREM with β = 750 for 20, 10 min, and 5

min. The COV of OSEM (10 min) is worse than the COV of BSREM with β = 750 for

10, 5.0, and 2.5 min. This represents a background COV reduction by a factor of 4. The

quantitative noise reduction found in Table 2 is also visually confirmed by the recon-

structions in Fig. 5. For all contrast ratios at 1.0, 2.5, and 20min, BSREM (with β =

750) reconstructions appears to have better background COV compared to OSEM

reconstructions. However, β = 750 has excessively smoothed the smallest sphere in the

2:1 ratio. This is also confirmed in Fig. 1, which suggests using a β value around 300

Fig. 3 Comparison in terms of contrast recovery as a function of sphere size between (top) TOF-OSEM (3
iterations, 16 subsets, post-filter 5.0 mm and PSF) and (bottom) BSREM with β = 750 (including TOF and
PSF) for different counting statistics and contrast ratios

Fig. 4 Comparison in terms of CNR as a function of sphere size between (top) TOF-OSEM (3 iterations, 16
subsets, post-filter 5.0 mm and PSF) and (Bottom) BSREM with β = 750 (including TOF and PSF) for different
count statistics and contrast ratios. Note that the maximum scale value showed in the graphs are different
between both reconstructions
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and 400 for small lesion at high count level. Increasing the β-factor leads to extra con-

trast loss and should only be done when the count level is low, and contrast can be

traded in for reduced background COV.

Clinical data

For the patient data, the contrast of the datasets with three different count levels (10,

5.0, and 2.5 min, representing each counting level a total of nine time ranges per bed

position) was evaluated for six different lesion volumes as a function of noise level on

the liver. The representative example of this patient data is presented in Fig. 6. The

curves follow a similar trend as in the phantom reconstructions (Fig. 1). BSREM out-

performed OSEM reconstructions in terms of noise levels with a lower noise level.

Also, the largest difference is seen for bigger lesions where reduced noise is combined

with higher contrast. The quantitatively measured values of the reference VOIs are

shown in Table 3.

As shown in Table 4, the noise level measured in the liver with BSREM is clearly

lower than for OSEM with post-filter. As excepted from the phantom data analysis, the

Table 2 Comparison in terms of background COV between TOF-OSEM (3 iterations, 16 subsets,
post-filter 5.0 mm and PSF) and BSREM with β = 750 for a volume of 26.52 ml at different count
statistics. All values correspond to a contrast ratio of 8:1

Background COV (26.52 ml)

Time (min) OSEM β750

1.0 0.186 0.095

2.5 0.119 0.059

5.0 0.084 0.041

10 0.059 0.028

20 0.043 0.021

Fig. 5 Qualitative evaluation of the transaxial images of the NEMA phantom of TOF-OSEM (3 iterations, 16
subsets, post-filter 5.0 mm and PSF) and BSREM with β = 750 (including TOF and PSF). Contrast ratios of 8:1,
6:1, 4:1, and 2:1 are shown in rows and acquisition times (1.0, 2.5, and 20 min) in column. Background level
is 5.3 kBq/ml in all cases
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noise in the liver of OSEM reconstruction (10min) is worse than the noise of BSREM

with β = 750 for 10min and 5.0min and is comparable to 2.5 min. Lower noise can be ob-

served for BSREM in all other cases (also when lowering the counts with a factor 4). This

leads to a noise reduction in the liver by a factor of 4. The SNR of BSREM with β = 750

and OSEM reconstruction are also shown in Table 4 for different count levels. A similar

trend to phantom data presented in the Fig. 4 is observed SNR for BSREM with β = 750

(averaged for all lesion size) increased by a factor of 2 times for the same counting level.

The SNR of both reconstructions decreases with reduction of counting statistics.

Figure 7 shows quantitatively the SUV values of the evaluated whole-body 18F-FDG

PET images of a patient with multiple lymphoma. In terms of SUVmean and MATVs

values for all lesion sizes, BSREM (with β = 750) reconstructions of 5.0 and 2.5 min are

quantitatively similar to the OSEM reconstruction (10 min). Also, a qualitative visual

evaluation has the same trends as the phantom reconstructions in Fig. 5.

Based on visual and quantitative differences, we found similar trends to the phantom

data analysis (Figs. 1, 3, and 4). It is possible to reduce the count level of a clinical

whole-body 18F-FDG PET/CT imaging with at least a factor of 2. Another similarity to

consider, especially in terms of noise reduction without loss in contrast analyses, is that

BSREM reconstruction increased the CNR and SNR by a factor of 2 (for both, phantom

and the clinical data) compared to OSEM at same count level.

Fig. 6 Contrast (SUV ratios) of BSREM (β = 300–3000, including TOF and PSF) and TOF-OSEM (3 iterations,
16 subsets, post-filter 5.0 mm and PSF) as a function of noise level of a large VOI ( , 3.0 cm) placed in
normal liver for different acquisition times (10, 5.0, and 2.5 min). Different plots are shown with decreasing
lesion volume

Table 3 Reference values measured in a healthy liver for OSEM and BSREM

Measureb OSEMa BSREM

β300 Β400 β500 Β600 β750 β1000 β1500 β3000

Volume (ml) 14.137

SUVmean 2.212 2.187 2.184 2.192 2.193 2.197 2.193 2.204 2.212

SUVSD 0.480 0.441 0.362 0.301 0.272 0.241 0.206 0.152 0.092

aTOF PSF OSEM (3 iterations and 16 subsets and 5mm Gaussian filter)
bMeasured in a sphere placed in liver for 10min (total) acquisition time
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Discussion

This study addressed the noise reduction performance of BSREM (Q.clear) compared

to OSEM for both phantom and patient data acquired on the new Discovery MI 3-

rings silicon photomultiplier-based TOF-PET/CT with sensitivity of 7.5 cps/kBq and

axial FOV of 15 cm. Differences of the performance between OSEM and BSREM are

expected due to the nature of the selective filtering of both algorithms, which can lead

to a direct result on different anatomical information [16]. The aim was to investigate if

the extent of noise can be reduced without a loss in image quality by using BSREM in-

stead of OSEM.

The latest developments in detector technology and timing resolution of the digital

PET/CT results in an increased sensitivity and count rate statistic compared with con-

ventional PET/CT [18, 22]. These improvements combined with emerging develop-

ments in reconstruction methods lead to changes in the clinical routine which need to

be considered and harmonized in order to obtain the most optimal image quality. This

Table 4 Noise level of a large VOI ( , 3.0 cm) placed in the liver and the SNR with all lesion sizes
averaged are presenting for TOF-OSEM (3 iterations, 16 subsets, post-filter 5.0 mm and PSF) and
BSREM with β = 750 (including TOF and PSF). Reference values measured in a healthy liver

Noise (14.137 ml) SNR (lesion size averaged)

Time (min)a OSEM β750 OSEM β750

2.5 0.443 0.228 20.256 41.710

5.0 0.318 0.156 15.088 29.092

10 0.217 0.109 10.243 19.448

aTotal of nine range of times per bed position

Fig. 7 Coronal whole-body 18F-FDG PET images of patient with multiple lesions of different sizes of B cell
lymphoma. The arrows indicate the SUVmean (red) and MATVs (black) of the lesions. Images were
reconstructed using BSREM with β = 750 (including PSF and TOF) and OSEM PSF TOF (3 iterations and 16
subsets and 5mm gaussian filter) for 2.5, 5.0, and 10 min
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should be done in a shortest possible acquisition time, which is preferable in terms of

patient care [23, 24].

BSREM reconstructions were compared to OSEM with PSF and TOF information

using three iterations and 16 subsets with a FWHM of 5 mm, which were recommend

by the manufacturer and are expected to be used in a general clinical setting. However,

in most of the clinical centers, the reconstruction settings are chosen by the physicians

based on the visual assessment of several PET scans.

Furthermore, the optimization of BSREM reconstructions has been previously investi-

gated, such as Reynés-Llompart et al. [16] using a range of β 50–500 parameters on a

BGO PET/CT. Other previous studies [14, 17, 24] have used a range of β 200–800 to

examine the BSREM algorithm. In this work, we extended the range to β 300–3000 to

assess in first, from a clinical point of view, which β-parameter has comparable contrast

recovery to OSEM on a new DMI. Afterward, we evaluated qualitatively and quantita-

tively what is the impact on the noise under the condition of different contrast ratios

and count statistics.

Regarding the contrast recovery and background COV for equal count levels, the phan-

tom data analysis showed (Figs. 1 and 2) that for the four largest spheres (17, 22, 28, and

37mm diameters), BSREM results in increased contrast recovery compared to OSEM. β =

750 (Fig. 2) has comparable resolution to OSEM reconstruction, but with a reduction of

four times background COV (Table 2). Although β = 750 has a CR to OSEM, these results

pointed out that the optimal penalization factor depends on the contrast ratio, acquisition

time, and sphere size. This suggest that a high value of β can lead to a negative impact on

the detectability of the small lesions. As presented in Fig. 1, the phantom results suggest

an optimum β value between 300 and 400, which maximizes the CR and the CNR of the

smallest sphere. This is also in agreement with the previous studies [14, 16, 23, 24].

BSREM outperforms OSEM with regards to the COV for all sphere sizes. The investi-

gated clinical data showed a similar trend from the phantom study. For any length of the

phantom data, the highest contrast recovery was found for a β = 300 (Figs. 1 and 6), but

this value also has the highest background COV of any other BSREM reconstruction.

These trends were also confirmed by the clinical data analysis (Fig. 6 and Table 4), where

the noise level and contrast are higher for β = 300. The use of a lower FWHM value

(FWHM < 5mm) of the smoothing post-filter would have maximized the CR and the

CNR of OSEM reconstruction; however, this would have increased the COV. In compari-

son with OSEM on the clinical data, BSREM reconstruction (especially for tumor lesions

with VOI = 3.92 cm3 and VOI = 2.46 cm3) resulted in an increased tumor SUVmean, SUV-

max, and an improved contrast at a matched level of noise. The SNR of the average of all le-

sion sizes increased by a factor of 2 at the same count level (Fig. 4). However, for lesions

smaller than 1.0 cm3 (Figs. 6 and 7), both reconstructions were equivalent in terms of SUV

values. The same behavior was also found in the phantom data analyses (Figs. 1 and 2). A

previous study [25] has reported that while PSF modeling commonly leads to visually en-

hanced images with higher contrast, it can simultaneously lead to notable edge artifacts af-

fecting the quantification of small lesions. Thus, it is important to assess in which

conditions is beneficial and warranted to use PSF modeling.

For reduced count levels based on phantom data, BSREM has in general a lower COV

than OSEM. When reducing the number of counts by a factor of 2, the COV can be

controlled by increasing the β-parameter in the lower count dataset (losing contrast
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recovery). A similar factor of 2 was observed in the clinical data. BSREM with a β =

750 increased SUV values and MATVs when compared to OSEM for the same acquisi-

tion time (Fig. 7). However, there was no difference in SUV values between OSEM (10

min) and BSREM (2.5 min), confirming that it is possible to have noise reduction with

BSREM while preserving contrast.

Previous studies [23, 24, 26] have suggested β = 400 and β = 550 as an optimum fac-

tor. Another recent study with 45 patients in the initial stage of lung cancer has re-

ported β values between 450 and 600 to be ideal for lung cancer [27]. Messerli et al.

[28] highlight the importance for careful standardization of a β value when following-

up non-small cell lung cancer. The optimum factor changes towards higher β values in

patients who received a dose lower than 2MBq/kg compared to patients who received

doses higher than 2MBq/kg. The higher β values appear to be more appropriate for pa-

tients with lower 18F-FDG doses.

In our study, the most favorable β-factor for both phantom and clinical data was in

the same range with β = 750 at higher count levels. However, the choice of β might de-

pend on several primary aspects, such as contrast, SNR, count statistics, radiation dose,

or lesion detectability. Thus, the β-parameter should be chosen dependent on the re-

quirements and context of the examination. Other aspects to consider are the acquisi-

tion duration and the axial FOV size of the TOF PET/CT used. According to EANM’s

procedure, good clinical whole-body 18F-FDG images are usually obtained with an ac-

quisition time of 3.0 min/bp [21]. The acquisition time reported evaluating the BSREM

algorithm used three different count statistics varying from 3.0 to 1.0 min/bp recon-

struction [22] which has somewhat a discrepancy compared to the range used 1.07,

0.34, and 0.17 min/bp in our study. This peculiar time ranges per bed position was

chosen to evaluate the BSREM under the condition of reduced count statistics and,

consequently, this decreased range would probably lead to an increase of the β-factor.

The axial FOV of 20 cm of the PET/CT scanner would lead to improvements in sensi-

tivity and count rate statistics compared to an axial FOV of 15 cm used in our study.

There are other limitations that should be considered in this study. All results from the

clinical data analysis were taken based on a lymphoma patient with multiple lesions of dif-

ferent sizes. It is possible that an analysis of a larger and diversified group of patients

would improve the results concerning the SUV lesion volume dependence. Consequently,

it was not possible to evaluate the influence of the body mass index of the overweight pa-

tients on β-factor [26]. Additionally, there is a restriction concerning the 18F-FDG PET

imaging tracer. The use of any other higher positron energy radioisotope would have led

to a statistical uncertainty due to the random nature of radioactive emissions [29].

There is a minor risk of using BSREM when the primary requirement is to detect small

lesions. Under the condition of higher count statistics, the combination of TOF-PSF-

OSEM would lead to a comparable lesion detectability to BSREM, but if OSEM recon-

struction is adopted, caution should also be taken regarding the increase of noise with the

increase of the number of iterations. Lowering the counts by a factor of 2–4 (e.g., from 10

min to 2.5min), BSREM would therefore lead to a comparable contrast recovery, CNR,

background COV, and SUV values than TOF-PSF-OSEM reconstructions at higher count

statistics. On the other hand, this reduction allows clinicians to reduce the PET activity

needed for many exams, benefiting especially young patients. In general, BSREM outper-

forms OSEM reconstructions allowing noise reduction without losing data information.
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Conclusion

Penalized-likelihood BSREM reconstruction improves image quality and allows noise re-

duction by a factor of 2–4 while preserving contrast compared to OSEM reconstructions.

Lowering of the injected dose or shortening the acquisition time is therefore possible by

introducing regularization in the image reconstruction without a loss in image quality.
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