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Noise Removal Using Smoothed
Normals and Surface Fitting

Marius Lysaker, Stanley Osher, and Xue-Cheng Tai

Abstract—In this work, we use partial differential equation tech-
niques to remove noise from digital images. The removal is done in
two steps. We first use a total-variation filter to smooth the normal
vectors of the level curves of a noise image. After this, we try to find
a surface to fit the smoothed normal vectors. For each of these two
stages, the problem is reduced to a nonlinear partial differential
equation. Finite difference schemes are used to solve these equa-
tions. A broad range of numerical examples are given in the paper.

Index Terms—Anisotropic diffusion, image denoising, nonlinear
partial differential equations (PDEs), normal processing.

I. INTRODUCTION

A
digital image can contain random noise superimposed
on the pixel intensity value by the formula

(1)

We would like to recover the true image from its noisy
observation . Noise is recognized as rapidly oscillating
signals and can, therefore, be removed by the process of
low-pass filtering or smoothing, unfortunately at the expense of
some high-frequency information (i.e. edges). Wavelet-based
methods, statistical methods, and diffusion filter methods have
successfully been used to remove noise from digital images.
Wavelet methods exploit the decomposition of the data into
the wavelet basis and shrink the wavelet coefficients in order
to denoise the images [1]–[3]. However, the space of functions
of bounded variation, which allows for edges in our recon-
struction, cannot be used easily with wavelet based methods.
For statistical methods used in image restoration, we refer to
the nonlinear median-type filters [4]–[6]. Median and mean
filters replace every pixel of an image with respectively the
median and the arithmetic mean of the pixels contained in a
window around the pixel. Mean filtering is usually used for
suppressing Gaussian noise while median filtering is a powerful
tool for removing impulse-like noise. However, in this work,
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we are more engrossed by diffusion filters coming from partial
differential equations (PDEs). In the end of Section II, we
outline some benefits inherited with this approach. Among var-
ious PDE techniques proposed in the literature, let us mention
[7]–[10]. The TV-norm filter proposed in [7] gives a rigorous
mathematical tool to introduce nonlinear diffusion filters and
it has been used as a regularization method for many other ap-
plications where one needs to identify discontinuous functions.
The TV-norm filter preserves edges but has the sometimes
undesirable staircase effect, meaning that smooth functions
are transformed into piecewise constants. To overcome this
problem (but, then, maybe sacrifice the good property of TV
norm on the edges), many other nonlinear filters have been
suggested in the literature, and, during the last few years, higher
order PDEs have been of special interest [11]–[16]. The method
we shall use in this paper is somewhat related to the methods
using higher order PDEs. We solve two second-order nonlinear
PDEs sequentially. If we combine the two equations together,
we would need to solve one higher order nonlinear PDE. To
be more precise, our method is a two-step method. In the first
step, we smooth the normal vectors of the level set curves of the
noise image using a TV-norm filter. After the normal vectors
are smoothed, we try to find an image that fits the normal
vectors and this image is taken as the recovered image for the
corrupted observation.

Our method is related to some techniques already in the liter-
ature. In Kenney and Langan [17], a method to restore images
from modified flow field was proposed. In its simplest form, this
process takes a single image, modifies its gradient field, and then
constructs a new image from the modified field. They introduce
an objective function based on a flow field to implicitly deter-
mine the edges of the image.

The idea we use in this paper is more inspired by the work
[18]. In that work, they tried to process three dimensional sur-
faces. The essential idea was to manipulate the normal vectors
for a given three dimensional surface and then find a new surface
that matches the processed normal vectors in a suitable way. In
this work, we are extending the idea of [18] to do image noise re-
moval. Further, we would like to mention that normal processing
has also been used in shape from shading reconstruction [19],
[20] and in mesh optimization [21], [22].

Another closely related paper is the inpainting approach of
[23]. In this paper, they try to minimize an energy functional
with respect to two variables: a vector field which represents
the direction of the level curves of and the intensity value

. Note that image denoising is quite different from in-
painting. In [23], they clearly point out how shape recovery is
achieved by first computing the vector field approximately,
and then include this information to the reconstruction process.

1057-7149/04$20.00 © 2004 IEEE
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We also utilized this idea in our algorithm. In fact, the func-

tional for the minimization problem we solve in the second step

is identical to one of the terms in the inpainting functional of

[23]. Another closely related work is [24]. That paper deals with

minimization of constrained functionals, and in particular with

-harmonic maps. For a vector valued function

, they proposed an elegant way of solving

(2)

with Dirichlet or Neumann boundary conditions. The tools we

shall use to smooth the normal vectors are closely related to

problem (2). In our approach, we are essentially taking

and in (2), and we add a fidelity term to balance the

smoothing and the edge preserving [see (6)].

Moreover, the approach we propose here is also strongly mo-

tivated by the fourth-order method proposed in [11] and the

second-order method [7]. The original TV-norm filter is to ob-

tain a restored image as a solution of the constrained optimiza-

tion problem

subject to (3)

where denotes the variance of the noise. In order to overcome

the stair-case effects, it was suggested in [11] to replace the cost

functional in (3) by

or (4)

With these minimization functionals, we try to minimize the

total variational norm of instead of . Rather good numerical

performance was obtained in [11]. We could go one step further.

Instead of minimizing the TV norm of or , we could mini-

mize the TV norm of , i.e.

subject to (5)

We know that is the unit normal vectors for the level

curves of . However, the Euler–Lagrange equation obtained by

minimizing the above functional is hard to solve numerically

because of the restrictive time step needed. In this paper, we

propose to split this into two steps, i.e., we first smooth the unit

normal vectors and then find a surface to fit the obtained normal

vectors.

For images with discontinuities, the algorithm proposed here

is clearly an improved version of the noise removal algorithm of

[25, Section 4.2]. In [25], the functions that need to be smoothed

are always continuous.

This paper is organized in the following way. In Section II,

we introduce the two-step method we use for noise removal.

Details are given to show how we obtain and solve the associ-

ated nonlinear PDEs coming from the two-step method. Finite

difference approximations and some implementation details are

explained in Section III. Numerical results are given in Sec-

tion IV. In the numerical experiments, we compare our method

with some related algorithms in the literature. Finally, we have

a Conclusion section followed by an Appendix, where we de-

scribe a transformation used in Section II.

II. FLOW FIELD SMOOTHING AND SURFACE FITTING

For a given image , is the unit normal vector

of the level curves of . For the noisy image , we shall try to

smooth the normal vectors . To avoid numer-

ical problems at low gradients, a small constant is added in the

calculation of the gradient magnitude, i.e. is substituted by

, turning the process into a convex one. Because the

normal vectors can be discontinuous vector functions we use the

TV norm to do the smoothing. Similar to [7], [11], we add a fi-

delity term to balance the smoothing and edge capturing. To be

more precise, we use a two-parameter method, one parameter

controls the flow field smoothing and another parameter con-

trols the surface fitting such that large deviation from their initial

state will be penalized. The following minimization problem is

solved to get a smoothed flow field (i.e., normal vectors):

(6)

Presently, we are investigating several ways to select dynam-

ically, but for all simulations given in this paper, the value of

is fixed to a positive constant. At the end of this section, we give

some advice on how to choose this constant.

Once the flow field is calculated, we want to find an image

that matches this field. There are different ways to do this. In this

work, we try to find a that solves the following minimization

problem

(7)

where is the smoothed normals obtained from (6). In the

above, is the noise level in norm, and we assume it to be

approximately known or that it can be estimated [26]–[28]. For

example, in [28], they proposed a statistical approach for blind

estimation of noise variance. In 98% of the cases they evaluated,

the relative estimation error was less than 0.2 with an average

error of 0.06. In case the noise level is not known or the above

estimation algorithms cannot be applied successfully, we just

add a fidelity term to the minimization functional (7) and drop

the noise level constraint.

Assume that is the angle between and , it is clear that

the functional

(8)

is always nonnegative. Heuristically, is orthogonal to the level

lines of , meaning that when (8) is minimized, the function

is constructed such that is constant along the

integral curves of .
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We shall use a Lagrange multiplier to deal with the noise

constraint . The Lagrange functional is

defined as

(9)

To find a minimizer for (7), we need to find the saddle points for

. The optimality conditions for the saddle points are

in

on (10)

and

(11)

In (10), is the outwards unit normal vector on the boundary

.

It is not easy to find the minimizer for (6). We shall use ideas

from [24]. As is a unit vector, we use polar coordinate to

represent it, i.e. . It is known that

(12)

(see the Appendix for the details of the calculations). There-

upon, (6) becomes

(13)

The optimality condition for for the above problem is

(14)

Thereafter, we introduce an artificial time variable and note

that is the steady state of the following equation:

(15)

One could solve directly from the above equation. One of the

troubles is that can be multivalued. As an alternative, we note

that (c.f. [24])

and

and with the notation , it follows from (15) that

(16)

We know that , which gives us ,

so (16) can be separated into

(17)

and

(18)

To find the values of and satisfying (10) and (11), we also

introduce an artificial time variable and solve the following

equation to steady state

(19)

The value of also needs to be determined in such a way that

the above equation has a steady state and the condition (11) is

fulfilled at the steady state. We use the noise level constraint (11)

and (10) to obtain such a formula for . Using the same idea as

in [7], we multiply (10) by and integrate over to get

(20)

Using Green’s theorem, we get the following formula for :

(21)

In the numerical simulations, an explicit finite difference

scheme is used to calculate . The value of at each time

level is updated according (21), see (30). In order to update

using the above formula, we need to know the noise level

approximately. In case that the noise level is not known, we

can just fix a constant value for by trial and error. If we use

a bigger value for the noise level , the restored image will

be smoother. If we use a smaller value for the noise level, the

algorithm is adding less diffusion to the image. Accordingly,

the restored image will have better edge preservation, but the

amount of noise removed from the image is also less in such a

case.

In our simulations, we do not have a dynamic updating for-

mula for and this parameter was chosen by trial and error. By

inspecting (17) and (18) we see that is not a good choice

since the dominating term then are

(22)

Solve (22) to steady state will force

and . In this way, and will be as noisy as their

observations and no progress is made. On the other hand, if

(23)

would be the dominating part. Both equations in (23) reach

steady state when and , meaning that and

are very smooth. A consequence of the extremity constant

and constant is that (19) approaches the TV norm proposed

in [7] (see the Appendix for details). Depending on the amount

of noise, we found to be a good choice.
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Fig. 1. Lena image. (a) Original image. (b) Noisy image SNR � 20. (c) Difference image.

Advantages: The proposed system of second-order PDEs are

capable to restore edges and discontinuities in a better way than

fourth-order PDEs and avoid the explicit computation of un-

stable higher order derivatives. Advantages over the classical

TV minimization are that our model can recover smooth subsur-

faces and that it is more general (see the Appendix for details).

An alternative approach for smoothing the flow field could be

to use Gaussian filtering techniques directly on ( , ) to get

( , ). This approach roughly halve the computing time of our

two-step algorithm since (17) and (18) in step one are replaced

with Gaussian filtering. However, the major disadvantage of

classical Gaussian filtering techniques is the uniform smoothing

in all directions of the flow field and fine details are easily de-

stroyed with these filters. Furthermore, solving (17) and (18)

guarantee that at each iteration and this constraint is

not necessarily satisfied everywhere if Gaussian filters are used

to smooth the flow field.

Disadvantages: One of the drawbacks of the proposed

method is the lack of a rigorous theory. We observe that our

algorithm produces good results even though we still do not

have any solid theoretical justification for this successful per-

formance. Further, since we solve two second-order nonlinear

PDEs sequentially, there may be a loss of efficiency compared

with other second-order nonlinear PDE methods. For instance,

the classical TV model is roughly twice as fast as the proposed

model due to the performance of normal smoothing in the

proposed model. Moreover, this is a two-parameter method and

the parameter must be found by trial and error.

III. IMPLEMENTATION

We discretize the system (17) and (18) by finite differences

and for simplicity we introduce

and

Details of how to discretize in space will follow the same

scheme as for described in (29). The following

semi-implicit scheme of [24] is used to solve and :

(24)

(25)

To solve the previous algebraic system is used in (24) to

get

(26)

The unknown is collected on the right hand side and an ex-

plicit formula is obtained for (18) [shown in (27), at the bottom

of the page] and (17) is approximated by the same technique

[shown in (28), at the bottom of the next page]. From (27) and

(28), it is easy to calculate that

As soon as steady state is reached for (27) and (28), we fix

to be the components of the unit normal

vector. Let us use the notation and

for backward and forward difference

at a given pixel . The numerical approximation to (19) and

(21) is shown in (29) at the bottom of the next page. Here, we

have used the notation

(27)



LYSAKER et al.: NOISE REMOVAL USING SMOOTHED NORMALS 1349

Fig. 2. For better visualization, we have only plotted the normal vectors in 
 = (30; 65) � (30;67) indicated in (a) by the bright rectangular 
 � 
.
(b) Original normals. (c) Noisy normals. (d) Processed normals.

and is defined discretely via

(30)

The evaluation of is done similarly as shown in (29). The

action is applied to the terms and

.

If we hold during the iterations between (29)

and (30), the updating of (29) and (30) is exactly the orig-

inal TV-smoothing algorithm of [7]. This means that the TV

smoothing is trying to force the normal vectors to be (0,0)

and the method proposed here is trying to force the normal

vectors to be closed to the smoothed normals. This is one of the

important reasons that the proposed is able to preserve edges

and still gives good results in smooth regions.

To evaluate , we need . In order to

overcome this problem in the simulations, we use the standard

trick to replace by where is

a small number. Normally, we choose to be very small (for

(28)

(29)
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Fig. 3. Results for the Lena image. (a) Our new method. (b) Difference image. (c) TV method. (d) Difference image. (e) Fourth-order method. (f) Difference
image.

example ) and the value of does not seem to influence

the results much. The same trick is used for the calculation of

.

To summarize, our noise removal approach is done in the fol-

lowing two steps.

1) Choose a positive and take to be the initial

values for ( , ), solve (27) and (28) to steady state.

2) Take as the initial value for and let ( , ) be the value

of the smoothed normals. Solve (29) and (30) to steady

state.

IV. NUMERICAL RESULTS

In this part, we present some of the results obtained with our

system of coupled equations. First of all, we wish to compare

our result with two related methods [7], [11]. Both [7], [11]

have their strengths and weakness and it will be shown that our

new method does an overall better job than both of them on

the set of examples tested. The classical TV model from [7]

is known to give good results for almost all kinds of images.

The chief criticism is that smooth regions are transformed into

piecewise constant regions. On the other hand, the TV method

works almost perfectly for block images. To avoid the staircase

effect Lysaker–Lundervold–Tai [11] suggested a fourth-order

PDE. By construction, this approach allows linear changes in the

intensity value and is therefore well suited for processing images

with smooth transitions like a human face. From a theoretical

point of view [11] will not fulfill the good property of the TV

method along edges. For the evaluations, we have used images

like Fig. 1, Fig. 4, Fig. 6, and some others to show the robustness,

strength, and weakness for the different algorithms concerned

her.

Example 1: In this first test, the well-known Lena image is

corrupted with noise. From the original and noisy image, we

calculate the original and noisy normal vectors. We use the noisy

observations as input to our algorithm and in this specific test
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Fig. 4. Blocky image. (a) Original image. (b) Noisy image SNR � 8. (c) Difference image.

Fig. 5. Comparisons for a blocky image. (a) Our new method. (b) Difference image. (c) TV method. (d) Difference image. (e) Fourth-order method. (f) Difference
image.

we have used . For better visualization, we have only

plotted a small portion of the flow field for the images in Fig. 2.

The rectangle in Fig. 2(a) indicates the area we have plotted.

The processed unit vectors point in the wrong directions

some places in Fig. 2(d), but it is certainly an improvement

compared with Fig. 2(c) where the normals more or less have

a random orientation. Together with (19) and (21), we use

the smoothed normals to restore a new image for the noisy

one. The result is compared with the TV method (i.e.

and ) and the fourth-order smoother [11]. We also
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Fig. 6. Brodatz image for evaluation. (a) Original image. (b) Noisy image SNR � 9.

Fig. 7. Results for the Brodatz image. (a) Our result. (b) Difference image. (c) TV result. (d) Difference image. (e) Fourth-order result. (f) Difference image.

visualize the difference between the input and output image.

In an ideal case, the difference image should only contain noise

as indicated in Fig. 1(c).

From the restored images in Fig. 3, it is clear that much of the

noise is suppressed. As expected, the TV algorithm transforms

smooth regions into piecewise constant regions (see Lena’s

cheek). By evaluating the image of the difference between the

smoothed image and the noisy image, it is obvious that neither

the fourth-order smoother or the TV method are as good as our

new method.

Example 2: A blocky image which should favor the TV

method is used in this second test. Note that some of the objects
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Fig. 8. Robustness of �. (a) True normals. (b) Normals with � = 2. (c) Normals with � = 10. (d) True image (e) Processed using (b) and (f) processed using (c).

Fig. 9. Image with a human face and some textures. (a) Original image. (b) Noisy image SNR � 20. (c) Our result. (d) Difference image.

are as small as 2 2 pixels and other as narrow as 1 10 pixels.

It is a nontrivial case to smooth out noise and simultaneously

maintain all edges for an image like this.

The amount of noise is increased and we fix during

the normal processing. With this kind of synthesized images

almost everywhere in . Due to this, we do not show

the unit normal vectors but just evaluate the final result. The

restored image obtained with our method is also compared with

the two methods mentioned above.

We see that all methods are able to suppress much noise, but

some ghosts are visible in the image restored by the fourth-order

scheme (around the narrow object of 1 10 pixels). This is not
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Fig. 10. Image with a tree and leaves. (a) Original image. (b) Noisy image SNR � 7. (c) Our result. (d) Difference image.

Fig. 11. MR brain image. (a) Original image. (b) Noisy image SNR � 20. (c) Our result. (d) Difference image.

surprising since the fourth-order scheme does not allow discon-

tinuous jumps in the same way as the other two methods do.

From Fig. 5(f) it is clear that the fourth-order scheme filters

out some edges, and in some sense the same is also observed

in Fig. 5(d).

Example 3: Here, we try our new method on an image com-

posed of four different Brodatz textures as given in Fig. 6(a).

Processing texture images is generally a hard task since fine

texture details often are filtered out. The texture in the lower left

and upper right part of Fig. 6(a) mostly contains high frequency
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Fig. 12. Results for a satellite image. (a) Original image. (b) Noisy image SNR � 5. (c) Our result. (d) Difference image.

information (i.e. very oscillating intensity values) and can easily

be mixed up with noise. From Fig. 7(b), we see that this is the

part of the image with the poorest result, but the main quality is

maintained. Both Fig. 7(d) and Fig. 7(f) reveal oversmoothing

for some of the fine structures. Methods like [12] may be better

suited to deal with texture images, but this example shows the

robustness of our new algorithm.

In Fig. 8, we visualize two results using different values for .

The purpose of this test is to show that our algorithm is robust

with respect to this parameter. We use the image depicted in

Fig. 6(b) as our observation data, but for better visualization,

we only plot a small part of the lower left corner. By choosing

, we smooth the flow field too much and the final image

depicted in Fig. 8(e) misses some details. Using , the

flow field resembles its initial state and the full potential of the

algorithm is not exploited. However, these deviations are hardly

noticeable when evaluating the images in full scale.

We will end this section by showing some more results from

a texture image, a MR image, a landscape image, and a satellite

image. The rest of this paper will only deal with results obtained

with our new method.

Our next example uses an image containing both a human

face and some textures. The challenge with this image is to

maintain both texture details and smooth transitions in the

human face during processing.

The background and human feature like a hand, shoulder, and

face is restored in a proper way, but the difference image tells

us that textures on the scarf is smoothed to much (see Fig. 9).

An image of leaves on a tree is evaluated next (see Fig. 10).

Restoration algorithms may have troubles with this kind of im-

ages due to the lack of connection in the image. Observe that the

leaves are not smeared together and this is an important quality.

The only negative remark is that the wire (going left from the

top of the pole) disappeared in some places. The same effect was

observed for the TV method and the fourth-order smoother. The

result is not reported here, but both of them reconstruct an image

which is almost as good as the one given in Fig. 10(c).

In our next example, an MR image is corrupted with noise,

see Fig. 11. We use an image of a human brain, zoomed so

it is possible to see all the fine features in the tissues. We see

that the restoration algorithm is able to maintain all important

information in the image, and in the same time filter out noise.

This means that the intensity value is more accurately computed

inside each tissue region after processing.

The final example concerns a satellite image. The recovered

image coincides with the true one almost everywhere (c.f.

Fig. 12).

We have also carried out a qualitative evaluation of the dif-

ferent schemes. In real applications, the exact noise level is

seldom known. To simulate such a case, the value we used for

is not the true noise level, but an approximation for the true

noise level. Let denote the true noise level and denote the

noise level we used for the algorithm. We investigate the per-

formance of the schemes using two different images. For the

texture image Fig. 6(b), we challenge the schemes by using a

poor estimate for the amount of noise when we deal with the

noise constraint . For Fig. 4(b), we use the esti-

mate .

In Table I, the reduction ratio of the error measured in

norm is reported in the second and fourth columns, and the im-

provement ratio of SNR is reported in the third and fifth column.

From Table I, we see that our method gives noticeable better
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TABLE I
EVALUATION OF SNR AND L -NORM FOR EACH OF THE SCHEMES

results than the two others. We obtain higher SNR improve-

ments and the reduction ratio of the error (compared with the

true image) measured in -norm are significant higher for the

set of examples tested. We want to emphasize that several statis-

tical approach [26]–[28] can be used to get much closer estima-

tion of noise variance than that which we evaluated in Table I.

V. CONCLUSION

A variational method for filtering gray-scale images cor-

rupted by additive noise is proposed in this paper. Our method

considers two second-order nonlinear PDEs which are solved

sequentially. The interpretation is simple; first we denoise the

normals for the level sets of the image intensity function, and,

thereafter, we try to find an image which fits the smoothed

normals. With this approach, geometric information of the level

contours are incorporated in our image processing model. If we

reject the smooth normals obtained in the first step, the image

processing step reduces to the original TV method.

Numerical experiments substantiate that our composed

method holds three important qualities; it is superior in re-

covering sharp edges of an image, and, second, it enhances

the recovery of smooth subsurfaces contained in the image.

Third, we have shown that it is easy to control the amount of

smoothing with our method.

APPENDIX

a) We give the details for the calculations for (12). Given

and

(31)

The gradient matrix and its norm of the vector-valued

function are respectively defined by

and

(32)

Let , it is easy to see that [shown in (33),

at the bottom of the page]

b) We illuminate some details concerning the original

TV-norm filter [7] and our approach. The restoration

model we propose here can be interpreted as the steady

state solution of the nonlinear diffusion process

where

(34)

An interesting observation is that this PDE reduces to the

PDE in [7] if we choose in (34), i.e.

where

(35)

Note also that setting in (34), we

get (35), but with a new initial value replacing

.
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