
RESEARCH Open Access

Noise-resistant network: a deep-learning
method for face recognition under noise
Yuanyuan Ding1,2, Yongbo Cheng1,2, Xiaoliu Cheng1, Baoqing Li1*, Xing You1 and Xiaobing Yuan1

Abstract

Along with the developments of deep learning, many recent architectures have been proposed for face recognition

and even get close to human performance. However, accurately recognizing an identity from seriously noisy face

images still remains a challenge. In this paper, we propose a carefully designed deep neural network coined

noise-resistant network (NR-Network) for face recognition under noise. We present a multi-input structure in the

final fully connected layer of the proposed NR-Network to extract a multi-scale and more discriminative feature

from the input image. Experimental results such as the receiver-operating characteristic (ROC) curves on the AR

database injected with different noise types show that the NR-Network is visibly superior to some state-of-the-art

feature extraction algorithms and also achieves better performance than two deep benchmark networks for face

recognition under noise.
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1 Introduction

Nowadays, face recognition has made great progress for

various potential applications in security and emergency

[1–4], law enforcement [5] and video surveillance [6–8],

access control [9], etc. However, in some uncontrolled

conditions, including varying illumination, poses, facial

expressions, and noise, the performance of face recogni-

tion system would be dramatically affected. Extensive

works have been carried out towards the illumination,

pose, and expression problems and also get some excellent

results [10–12]. But when it comes to the noisy images,

the recognition accuracy of most approaches would drop

significantly. Face image is vulnerable to noises during its

acquisition, quantization, compression, and transition.

And sometimes, it is even difficult to recognize an identity

from the seriously noisy face by human. Various methods

have been proposed to denoise the image before the rec-

ognition stage. A line of approaches is to transfer image

signals to an alternative domain where they can be more

easily separated from the noise [13–15]. Another thread of

methods is to capture image statistics directly in the image

domain [16, 17]. Both of the two categories of approaches

can produce some good quality images. But the denoised

image tends to lose some of its edge information which

hurts the image recognition in the subsequent stage. To

address this issue, many methods are presented for direct

recognition of the identity from the noisy image. For ex-

ample, fuzzy local binary pattern (FLBP) [18] is proposed

to reduce the influence of noise which utilizes the prob-

ability measure to encode the pixel difference as 0 or 1.

However, given the magnitude of the pixel difference used

in the calculating process, the FLBP algorithm is still sen-

sitive to noise. Noise-resistant LBP (NRLBP) [19] and its

improved versions (NRLBP+, NRLBP++) [20] are another

kind of method to solve the noise-sensitive problem. In

[19], the authors propose a mechanism to recover the cor-

rupted image patterns in the original LBP. In the NRLBPs

(NRLBP, NRLBP+, NRLBP++), more information of other

bits and the prior knowledge of images are incorporated

into the encoding process. Thus, they can get some super-

ior performance when the optimal thresholds are selected

[19, 20], compared with other noise-resistant methods.

Recently, deep learning techniques to learn effective

feature representations have swept a variety of computer

vision tasks including face recognition with illumination,

poses, and expressions problems. Thanks to its deep

architecture and large learning capacity, some deep neural

networks even get close to human performance on tightly
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cropped face images of LFW dataset [21]. For instance,

DeepID2 [22] and DeepID2+ [23] utilize the idea of joint

face identification-verification to reduce intra-personal

variations which leads to a significant improvement on

face recognition accuracy. VGG net [24] stacks multiple

convolutional layers together to form complex features.

GoogLeNet [25] incorporates multi-scale convolutions

and pooling into a single feature extraction layer coined

inception which ranked in the top in general image

classification in ImageNet Large-Scale Visual Recognition

Challenge (ILSVRC) 2014, which has served as a testbed

for a few generations of large-scale image classification

systems. Later, sparse ConvNet is proposed to learn

high-performance deep networks with sparse neural

connections [26]. The sparse ConvNet model signifi-

cantly improves the face performance of the pervious

state-of-the-art DeepID2+ models, while it has only

12% of the original parameters. Besides, [27] proposes a

latent factor guided Convolutional Neural Network

(CNN) model to address the age-invariant face recognition

problem and gets a 97.51% recognition rate on the

MORPH dataset. Moreover, deep learning technique has

also been used for other tasks. For examples, Xie et al.

propose a novel approach to low-level vision problems that

combine sparse coding and deep networks pre-trained with

denoising auto-encoder (DA) [28]. Harmeling directly ap-

plies a plain multi-layer perceptron on the image patches

to solve the image denoising problem and outperforms

some state-of-the-arts [29]. Krause et al. use publicly avail-

able, noisy data sources to train generic models which

vastly improve upon state-of-the-art on fine-grained

benchmarks [30]. In [31], the authors use only monocular

camera images and independently of camera calibration to

train a CNN to predict the probability that task-space mo-

tion of the gripper will result in successful grasps. In

addition, Xu et al. propose the fractal dimension invariant

filtering (FDIF) method and re-instantiated approximately

via a CNN-based architecture to detect complicated curves

from the texture-like images [32].

Although many efforts and some progress have been

made in this field, accurately recognizing an identity

from seriously polluted face images under noise is still

difficult. Motivated by the DeepID [33] and GoogLeNet

[25], in this paper, we propose a carefully designed deep

CNN model which shows impressive performance on

face recognition under noise compared with some other

state-of-the-art noise-resistant approaches. This network

is named as noise-resistant network (NR-Network).

Generally, the proposed NR-Network mainly consists

of three parts. The main contributions of this work are

summarized as follows:

1. Considering the unknown noise level, we present a

“multi-inputs” structure, that is, the last fully

connected layer has three different inputs to extract

multi-scale and more discriminative features from

the lower layers.

2. In order to testify the effectiveness of the new

structure, we also trained two benchmark networks

for comparisons which are shown in the following

section.

3. Except for the two benchmark networks, the

recognition rate of the NR-Network is also compared

with some other hand-crafted feature extraction

algorithms for face recognition under noise such as

FLBP and NRLBPs.

Experiments on AR [34] database injected with differ-

ent types of noise achieve evident results and verify the

effectiveness of our method based on a single sample

per gallery. The remainder of this paper is organized as

follows. Section 2 is some related works about this

paper. Section 3 describes the proposed NR-Network

and its training methodology. The database and imple-

mentation details are considered in Section 4. Extensive

experiments are also conducted to evaluate the NR-

Network compared with benchmark networks and other

robust face recognition algorithms in this section. Section

5 concludes this paper.

2 Related works

In this section, we briefly review several recent related

works on face recognition.

2.1 Feature extraction

A traditional face recognition system includes three key

stages: face image acquisition, face feature extraction,

and feature classification. Extracting an invariant and

discriminative feature representation is the most import-

ant stage for face recognition. In general, the feature ex-

traction methods can be grouped into two main

categories: hand-crafted features and deep features.

Gabor wavelets [35] have been extensively used in face

feature extraction for many years, and it can extract the

multi-scale and multi-orientation information from a

face image. In [36], Liu defined a “mother” wavelet and

derived 40 Gabor filters by considering five scales and

eight orientations. Each filter is convolved with the input

image. Finally, all the features produced by the different

Gabor filters are chained to derive an augmented vector

of Gabor feature. The Gabor features are robust to

changes in expression and lighting. However, the Gabor-

wavelet-based methods would result in a huge feature

dimension such as the method mentioned in [36], and

thus, it does not benefit the real-time application. Local

binary pattern (LBP) is another representative hand-

crafted feature extraction method which has been widely

used in face recognition [20, 37], facial analysis [38, 39],
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texture classification [40], and many other tasks [41, 42].

LBP and some variants of it can achieve impressive ac-

curacy in pattern recognition fields with a strong texture

discrimination capability.

Using deep natural networks to learn effective features

has become popular in face recognition. Recently, a few

carefully designed deep networks even achieve quiet ex-

cellent results. Convolutional neural networks are one of

the most commonly studied deep learning architectures.

Compared with other regular face recognition methods,

training CNN is more troublesome and computational

expensive, but nowadays, with the developments of the

computers and hardware accelerating techniques, these

issues can also be tackled. A number of well-established

problems in computer vision have recently benefited

from the rise in CNN as feature representations or clas-

sifiers. For example, Zhang and Yan devise an effective

convolutional neural network to estimate air’s quality

based on photos by a modified activation function to al-

leviate the vanishing gradient issue [43]. Girshick et al.

[44] applied high-capacity CNN to bottom-up region

proposals to localize and segment objects from an

image. Hong et al. [45] propose a visual tracking algo-

rithm based on a pre-trained CNN, where the network

is trained originally for large-scale image classification

and the learned representation is transferred to describe

targets.

2.2 Face recognition in noisy conditions

Existing approaches for face recognition mainly deal

with issues such as variations in expression, lighting,

pose, and aging, but none of them is free from noise.

Noise in human face images can seriously affect the per-

formance of the face recognition systems. The noise in a

face image can be produced by the sensor of a scanner,

cameras, or by the image transmission, quantization,

compression etc. Noise decreases the useful information

in the data and significantly influences the ability of

some algorithms to correctly recognize an object on the

image.

We include three types of noise in this paper:

1. Gaussian noise

2. Uniform noise

3. Salt and pepper noise

Gaussian noise is defined by Gaussian normal distribu-

tion function p(x), which is expressed as:

p xð Þ ¼ 1
ffiffiffiffiffiffiffiffiffiffi

2πσ2
p e−

x−μð Þ2
2σ2

; ð1Þ

where μ and σ2 are the mean value and variance of the

distribution, respectively.

Uniform noise is another common type of noise, which

means the different “values” of noise are equally probable.

Salt and pepper noise shows as some randomly white

and black pixels in images. It can be produced by, e.g.,

transmission through an erroneous channel, malfunction-

ing pixels in camera sensors or faulty memory locations in

hardware.

2.3 Existing approaches

In order to evaluate the performance of the proposed

method in this paper, the existing FLBP and NRLBPs ap-

proaches for face recognition under noise are compared.

Experiments in [18–20] show that the FLBP and

NRLBPs are two representative hand-crafted feature ex-

traction methods to face recognition under noise based

on LBP. Figure 1 shows the LBP coding process in a

3 × 3 TU.

The definition of the LBP operator of the central gray

pixel gc in a 3 × 3 TU is defined as follows:

LBP gc
� �

¼
X8

p¼1
S gc ¼ gp

� �

2p; ð2Þ

s xð Þ ¼ 1; x ≥0
1; x < 0

�

; ð3Þ

where gc is the gray value of central pixel and gp are the

gray values of its neighbors.

2.3.1 FLBP

A drawback of the basic LBP is that a small image vari-

ation may alter the LBP code, and thus, it is very sensi-

tive to image noise. To tackle this problem, a probability

measure is used in fuzzy LBP [18] to represent the

Fig. 1 The LBP coding process in a 3 × 3 TU

Ding et al. EURASIP Journal on Image and Video Processing  (2017) 2017:43 Page 3 of 14



likelihood of a pixel difference to be encoded as “0” or

“1”. SLBP in (4) is the operator of the central gray pixel

in the FLBP.

SLBP ið Þ ¼
YP−1

p¼0

bp ið Þf 1;d gc−gp

� �

þ 1−bp ið Þ
� �

f 0;d gc−gp

� �h i

;

ð4Þ

f 1;d Zð Þ ¼
0; z ≤ −d

0:5þ 0:5
z

d
; Zj j < d

1; z ≥ d

8

<

:
; ð5Þ

f 0;d zð Þ ¼ 1−f 1;d zð Þ; ð6Þ

where bp(i)ϵ{0,1} is the value of the p-th bit of binary

representation of i, d is a thread holding which controls

the amount of fuzzification the function performs, and P

is the neighbor number in a TU. Usually, the histogram

of FLBP codes is constructed as the feature extracted from

an image block and the number of the FLBP histogram bins

is 28 in a 3 × 3 TU. In the real-world applications, a face

image is usually separated into N > 10 blocks to get a better

recognition result.

2.3.2 NRLBPs

NRLBP, NRLBP+, and NRLBP++ are another kind of

method to improve the performance of LBP for face rec-

ognition under noise. In the NRLBP, the pixel difference

zp between the neighboring pixel and the central pixel is

encoded as:

bp ¼
1; if zp ≥ t

X; if Zpj j
0; if Zp ≤ −t

< t;

8

<

:
ð7Þ

where X ϵ {0,1}is an uncertain state and t is a threshold.

An uncertain code C(X) in this state can be expressed as:

C Xð Þ ¼ bp−1 bp−2⋯b0;
����! ð8Þ

The NRLBP codes are obtained as (9) based the uncer-

tain code:

SNRLBP ¼ C Xð ÞjX∈ 0; 1f gn;C Xð Þ∈Φuf g ð9Þ

where Φu denotes the collection of all the uniform LBP

[19] codes. According to the definition of the uniform

LBP, there are 59 histogram bins of the NRLBP in an

image block.

NRLBP+ and NRLBP++ are two improved versions of

NRLBP, and the detailed descriptions of them can be

found in [19, 20].

3 Noise-resistant network (NR-Network)

Previous researches have shown that deep architectures

effectively generate robust features by exploiting the

complex non-linear interactions in the data [46]. Many

excellent convolutional neural networks have been pro-

posed in recent years and also get some significant results

on face recognition. But to the best of our knowledge,

there is still no specialized network designed to recognize

faces injected with serious noise. In this section, we first

present a novel deep convolutional neural network termed

NR-Network and then give a description of the training

process of our network.

3.1 The network architecture

We used CNN with rectified linear units (ReLUs) [41],

max pooling, dropout, and softmax regression. CNNs are

feed-forward neural networks designed to deal with large

input data, such as those seen in image classification tasks.

CNNs are mainly comprised of three types of layers. These

are convolutional layers, pooling layers, and fully con-

nected layers. When these layers are stacked, a CNN

architecture has been formed.

3.1.1 Convolutional layer

The convolutional layer is composed of several convolu-

tional kernels which are used to compute different fea-

ture maps. The new feature map can be obtained by first

convolving the input with a learned kernel followed by

the adoption of an element-wise nonlinear activation

function on the convolved results. There are four param-

eters to be considered in this layer: the depth, the filter,

the stride, and the setting padding. The depth indicates

the number of output feature maps. Reducing this param-

eter can significantly reduce the total number of neurons

of the network, but it can also significantly reduce the pat-

tern recognition capabilities of the model.

3.1.2 Pooling layer

The aim of this layer is to gradually reduce the dimen-

sion of the representation feature and thus further re-

duce the number of parameters and the computational

complexity of the model. It is often placed between two

convolutional layers or convolutional layer and fully con-

nected layer. In our model, the max pooling is used for

two reasons: (1) By eliminating non-maximal values, it

reduces computation for the upper layers. (2) It provides

a form of translation invariance.

3.1.3 Fully connected layer

There may be one or more fully connected layers to per-

form high-level reasoning after several convolutional

layers and pooling layers. They take all neurons in the

previous layer and connect them to every single neuron

of current layer to generate global semantic information.

Our NR-Network mainly consists of three parts marked

in different colors in the following figures apart from the

input layer, output layer, and the fully connected layer
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(Fc5). Figure 2 is the overview of the network architecture.

During training, the input to our NR-Network is a fixed-

size 64 × 64 gray image. The image is passed through a

stack of convolutional layers and pooling layers. The

output is a 256-cph. Though there are many image

compression and High Efficiency Video Coding methods

to speedup information transmission [47, 48], a shorter

feature size still benefits the real-time face recognition

system.

Part 1 labeled purple in Fig. 2 contains two convolu-

tional layers, and each layer is followed by a max pooling

layer, respectively. Convolutional layer 1 (Conv1) has

5 × 5 filters and a depth of 20. The convolution stride is

set to 1 pixel. Following it, max pooling (Pool1) is per-

formed over a 3 × 3 pixel window, with stride 2. The

convolutional layer 2 (Conv2) has 3 × 3 filters which is

the smallest size to capture the information of left to

right, top to bottom, center. The depth of this convolu-

tional layer is fixed to 20. Pool2 is also a max pooling

layer with a 2 × 2 pixel window to further down sample

the outputs of Conv2. We used ReLUs as an activation

function for each neuron in the convolutional layers.

ReLU is one of the most used activation functions. The

definition of the ReLU activation functions is shown as:

a ¼ max z; 0ð Þ ð10Þ

where z and a are the input and output of activation

function, respectively. Experiments in [41] show that deep

convolutional neural networks with ReLUs train several

times faster than their equivalents with tanh units.

Next, part 2 marked in gray is an inception module

which contains one max pooling layer and four convolu-

tional layers with different kernel sizes. Inception mod-

ule is introduced by Szegedy et al. [25], which can be

seen as a logical culmination of network in network

(NIN). They use variable filter sizes to capture different

visual patterns of different sizes and approximate the op-

timal sparse structures by the inception module. Pool3

in the first line of this inception is a max pooling layer

with a 3 × 3 pixel window; the stride of Pool3 is set to be

2 pixels. Convolutional layer 31 (Conv31) has 3 × 3 filters,

with stride 1. The upper line of this inception contains

three convolutional layers (Conv321, Conv322, and

Con323) with different kernel sizes, and strides of these

convolution layers are all fixed to 1. Specifically, in one of

the configuration, we use the 1 × 1 convolutional filter

which can be seen as a linear transformation of the input

of the lower layer. Finally, the outputs of the three convo-

lutional layers are connected together by a concat layer

(Conc1).

After this inception module, part 3 marked in green in

Fig. 2 with a max pooling layer and a convolutional layer

is inserted. Convolutional layer 4 (Conv4) has 3 × 3 fil-

ters, and the depth is 40. The filter size of the max

pooling layer (Pool4) in this inception is set to be 2 × 2

to have a same output size with Conv4. Following the

inception is also a concat layer (Conc2) as part 2.

In order to extract both the low-level and high-level

features hierarchically, the final fully connected layer is

connected to the outputs of all the three parts with 256

hidden neurons. The output of this fully connected layer

serves as the face representation. Followed by the final

inner product layer are the normalization and dropout.

Normalization ensures that the derived relative distance

of two images has an upper bound, while the objective

of the dropout is to reduce the risk of network overfit-

ting, which is first introduced by Hinton et al. [46]. The

dropout is an effective method to prevent the network

to be too dependent on any single neuron and force the

network to be more accurate at the same time.
Fig. 2 Architecture of the NR-Network
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In the proposed network, following the output per part

is an average pooling layer marked in blue to adjust the

proportions of every part in the final feature. The aver-

age pooling layer 51 (Pool51) and average pooling layer

53 (Pool53) have the same filter size of 3 × 3. The strides

of them are set to 1 and 2 pixels, respectively. The aver-

age pooling layer 52 (Pool53) has 5 × 5 filters and a

stride of 5 pixels. Table 1 describes the specific configur-

ation of this NR-Network. The fourth column of Table 1

indicates the outputs of every functional sections of the

network. It is clear that the total neurons of part 1, part

2, and part 3 are 160 (2 × 2× 40), 240 (2 × 2 × 60), and

100, respectively. The part 1 indicates the lowest de-

scription of the face, and it can provide a global facial

contour feature after the pooling of Pool52. In contrast,

the output of part 3 is the highest-level face feature ex-

tracted from the input face which represents the crucial

detailed information of a face and is also very sensitive

to noise at the same time. The role of part 2 is to get a

balance between different levels of the feature. These

multi-level features are combined together to get a more

robust face feature.

Figure 3(a) and (b) are two benchmark networks

named as BN1 and BN2, which are discussed in the fol-

lowing sections. For simplicity, we just show several top

layers of BN1 and BN2 in Fig. 3 and the rest layers in-

cluding the depth, filter size, and stride are same with

the proposed NR-Network in Fig. 2. Compared with the

NR-Network, the final fully connected layer (Fc5) of

BN1 is connected with the outputs of part 2 and part 3.

However, in BN2, only the output of part 3 is connected

to the fully connected layer (Fc5). We also use ReLUs in

all the convolutional layers of BN1 and BN2 to avoid the

vanishing gradient problem. Besides, batch normaliza-

tions (BN) are also used for all convolutional layers to

be less careful about initialization. BN is an efficient

method proposed by Ioffe et al. [49] in 2015. When the

data flow through a deep network, the distribution of

the input data to the internal layers may be changed;

thus, the network will lose the learning capacity and ac-

curacy. BN fixes the mean and variances of the input

layers to solve this so-called problem which can be seen

as a normalization step.

3.2 Training methodology

There are two steps in the training process: forward

propagation and back propagation. The aim of the for-

ward propagation is to compute the actual classification

results of the input data with current parameters. The

back propagation is employed to update the parameters

during the training process with the objective of making

the difference between the actual classification output

and the desired classification output as small as possible.

To obtain a noise-resistant model, the proposed net-

work is trained by the CASIA-WebFace dataset [50].

The CASIA-WebFace dataset is collected from the web-

site including 10,575 subjects with 494,414 face images.

The size of this dataset ranks second in the literature,

only smaller than the private dataset of Facebook. For

each subject, there exist several false images with wrong

identity labels and few duplicate images. In order to get

a balance between different subjects, we remove the sub-

jects having less than 14 and more than 200 face images

from the dataset. The cleaned CASIA-WebFace dataset

used in our network finally contains 8792 subjects with

402,852 face images.

In the training stage, first, all the face images of the

CASIA-WebFace are converted to gray scale and nor-

malized to 64 × 64. After the normalization, the only

preprocessing we do is subtracting the mean gray value

which is computed on the training set from each pixel.

Before being input to the network, we then inject the

Gaussian noise, the uniform noise, and the salt and

pepper noise of various noise levels onto the images as

Section 4. This is critical to train a noise robust network.

The images are split in ratios of 90 and 10% for training

and testing, respectively, where 360,000+ images are

used to train the network and the remaining 40,000+ are

used for testing. The network is implemented by Caffe

toolbox [51]. Stochastic Gradient Decent (SGD) is used

for optimization in our model with back propagation.

We set the weight decay and momentum to 0.005 and

Table 1 The specific configuration of the NR-Network

Name Type Filter size/stride Output size #Params

Conv1 Convolution 5 × 5/1 60 × 60 × 20 500

Pool1 Max pooling 3 × 3/3 20 × 20 × 20 –

Conv2 Convolution 3 × 3/1 18 × 18 × 40 7 K

Pool2 Max pooling 2 × 2/2 9 × 9 × 40 –

Conv31 Convolution 3 × 3/1 7 × 7 × 40 14 K

Pool3 Max pooling 2 × 2/2 5 × 5 × 40 –

Conv321 Convolution 1 × 1/1 5 × 5 × 20 800

Conv322 Convolution 3 × 3/1 5 × 5 × 20 7 K

Conv323 Convolution 5 × 5/11 5 × 5 × 20 19 K

Conc1 Concat – 5 × 5 × 60 –

Conv4 Convolution 3 × 3/1 3 × 33 × 40 21 K

Pool4 Max pooling 2 × 2/1 3 × 3 × 60 –

Conc2 Concat – 3 × 3 × 100 –

Pool51 Average pooling 3 × 3/1 1 × 1 × 100 –

Pool52 Average pooling 5 × 5/5 2 × 2 × 40 –

Pool53 Average pooling 3 × 3/2 2 × 2 × 60 –

Conc3 Concat – 500

Fc5 Fully connected 256 125 K

Total – – – 194 K
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0.9, respectively. The base learning rate is initially set to

0.01 which will decreases through iterations. For the sake

of fairness, in our experiments, the training methodologies

of the NR-Network and the two benchmark networks

BN1 and BN2 are the same.

It is clear that the proposed network can extract a 256

dimensional feature from an input face image. Compared

with the feature size of FLBP and NRLBPs given in Section

2, the feature size of NR-Network is much shorter and

hence benefits the real-time application.

4 Experimental results and discussions

We compare the proposed network with BN1, BN2, FLBP,

and NRLBPs on the AR database injected with Gaussian

noise, uniform noise, and salt and pepper noise. For FLBP

and NRLBPs, all the images are normalized to 100 ×

80 pixels and divided into 20 patches of 20 × 20 pixels. For

the NR-Network, BN1, and BN2, the images are normal-

ized to 64 × 64 pixels.

4.1 The database and implementation details

4.1.1 AR database

The AR database is of high image quality and considered

as a face database having almost no image noise. In this

paper, a subset that contains 100 subjects is chosen from

the AR database. Fourteen images with only facial expres-

sions and illumination changes were taken per subject for

our experiments.

The performances of different methods are evaluated

by the recognition rate. In the experiments, 14 runs are

performed in order to obtain the average recognition rate.

In each run, only one image per subject is selected as the

gallery set in turn, and the rest 13 images as the probe set.

Finally, the 14 recognition rates are averaged as the final

result.

In the classification process, the similarity between

extracted features of the gallery set and the probe set is

evaluated by the nearest-neighbor classifier with different

distance measures. For FLBP and NRLBPs, Chi-square

distance (CS), histogram intersection (HI), and modified

G-statistic (MG) are utilized in our experiments, which

are defined in Eq. (11), Eq. (12), and Eq. (13), respectively.

But experimental results show that CS, HI, and MG are

not suitable for the NR-Network, BN1, and BN2. There-

fore, in the following experiments, the Pearson correlation

coefficient, Euclidean distance, and Cosine distance are

used to measure the similarity for the networks BN1, BN2,

and NR-Network. Table 2 shows some of the recognition

rates of the networks using different distance measures on

the AR database injected with Gaussian noise (σ = 0.05).

X2
x; yð Þ ¼

X

i;j

xi;j−yi;j

� �2

xi;j þ yi;j
ð11Þ

DHI x; yð Þ ¼ −

X

i;j
min xi;j; yi;j

� �

ð12Þ

DMG x; yð Þ ¼ −

X

i;jxi;j
log xi;j þ yi;j

� �

ð13Þ

where x, y are the concatenated feature vectors and xi,j
and yi,j are the jth dimension of the ith patch, respectively.

We set 0 log(0) = 0, when xi,j = yi,j = 0.

Fig. 3 Architecture of a BN1 and b BN2

Table 2 The average recognition rates of the networks using

different distance measures on the AR database

BN2 BN1 NR-Network

Chi-square distance 0.8079 0.8187 0.8212

Histogram Intersection 0.8138 0.8243 0.8314

Modified G-statistics 0.8147 0.8207 0.8224

Pearson Correlation Coefficient 0.8234 0.8368 0.8514

Euclidean Distance 0.8157 0.8350 0.8509

Cosine Distance 0.8274 0.8414 0.8523
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The Pearson correlation coefficient, the Cosine dis-

tance, and the Euclidean distance are formulated as Eq.

(14), Eq. (15), and Eq. (16).

r x; yð Þ ¼
n
X

i
xiyi−

X

i
xi
X

i
yi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
X

i
x2i −

X

i
xi

� �2
r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
X

i
y2i −

X

i
yi

� �2
r

ð14Þ

Dc x; yð Þ ¼
X

i
xiyi

ffiffiffiffiffiffiffiffiffiffiffiffiX

i
x2i

q ffiffiffiffiffiffiffiffiffiffiffiffiX

i
y2i

q ð15Þ

DE x; yð Þ ¼
X

i
xi−yið Þ ð16Þ

where x,y are the feature vectors extracted from the net-

works and xi and yi are the ith dimension of the vector.

The experiments in this paper are conducted on an

Intel Xeon E5 2.4GHZ machine with 32G RAM.

4.2 Face recognition on the AR database with noise

FLBP and NRLBPs have been demonstrated effectively

for face recognition under noise [18–20], and we have

also given some detailed descriptions of them in Section

2. Thus, the proposed network is compared with FLBP

and NRLBPs to evaluate the noise-resistant property. Be-

sides, we also compare the NR-Network with benchmark

networks to testify the effectiveness of the “multi-input”

structure. The AR database is injected with Gaussian

noise, uniform noise, and salt and pepper noise of four

different noise levels referring to [19, 20]. The experimen-

tal results on recognition rates are presented in Tables 3,

4, and 5. For the results obtained using the proposed NR-

Network, see row 7 in the tables and the results are

marked in bold. For the results obtained using the BN1

and BN2, see row 6 and row 5, respectively.

� Resistant to Gaussian noise: Normalize the images

in range of (0, 1) and then apply Gaussian noise

with zero mean and standard derivation of σ. In

Table 3 The average recognition rates of different methods on the AR database injected with Gaussian noise

Algorithm Chi-square distance, σ = Histogram intersection, σ = Modified G-statistics, σ =

0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20

FLBP 0.7864 0.7228 0.5216 0.4227 0.7992 0.7261 0.5341 0.4249 0.7742 0.7253 0.5089 0.4036

NRLBP 0.8005 0.7333 0.5401 0.4175 0.8010 0.7301 0.5291 0.4205 0.7882 0.7107 0.5275 0.4159

NRLBP+ 0.7987 0.7547 0.5874 0.4463 0.8023 0.7354 0.5459 0.4388 0.7909 0.7399. 0.5470 0.4334

NRLBP++ 0.8094 0.7651 0.6275 0.5056 0.8174 0.7431 0.5948 0.4946 0.7987 0.7363 0.5695 0.4866

Pearson correlation coefficient σ = Euclidean distance, σ = Cosine distance, σ =

0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20

BN2 0.8234 0.7896 0.6731 0.6100 0.8157 0.7766 0.6679 0.6023 0.8274 0.7832 0.6779 0.6088

BN1 0.8368 0.8340 0.7306 0.6868 0.8350 0.8239 0.7189 0.6788 0.8414 0.8301 0.7258 0.6815

NR-Network 0.8514 0.8458 0.7584 0.7062 0.8509 0.8465 0.7452 0.6924 0.8523 0.8483 0.7595 0.7096

The bold indicates the best

Table 4 The average recognition rates of different methods on the AR database injected with uniform noise

Algorithm Chi-square distance, p = Histogram intersection, p = Modified G-statistics, p =

0.10 0.20 0.40 0.70 0.10 0.20 0.40 0.70 0.10 0.20 0.40 0.70

FLBP 0.7932 0.7574 0.6017 0.5055 0.7889 0.7623 0.6080 0.5184 0.7801 0.7562 0.6198 0.4827

NRLBP 0.7999 0.7670 0.6244 0.5159 0.8018 0.7624 0.6205 0.5020 0.7991 0.7571 0.6282 0.4732

NRLBP+ 0.8264 0.7747 0.6804 0.5465 0.8222 0.7843 0.6731 0.5263 0.8201 0.7769 0.6849 0.5233

NRLBP++ 0.8313 0.7945 0.6936 0.5363 0.8226 0.7816 0.6812 0.5295 0.8291 0.7861 0.6889 0.5321

Pearson correlation coefficient, p = Euclidean distance, p = Cosine distance, p =

0.10 0.20 0.40 0.70 0.10 0.20 0.40 0.70 0.10 0.20 0.40 0.70

BN2 0.8489 0.8065 0.7172 0.6438 0.8391 0.8028 0.6990 0.6289 0.8462 0.8109 0.7205 0.6462

BN1 0.8496 0.8375 0.7531 0.6997 0.8478 0.8342 0.7421 0.7025 0.8515 0.8418 0.7565 0.7063

NR-Network 0.8687 0.8463 0.7974 0.7242 0.8643 0.8409 0.7884 0.7165 0.8795 0.8559 0.7985 0.7275

The bold indicates the best
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the experiments, σ is set to be 0.05, 0.10, 0.15,

and 0.20. The first row of Fig. 4 shows some

samples of the noisy images. The average

recognition rates on the AR database injected

with Gaussian noise are given in Table 3 which

shows the proposed NR-Network significantly

outperforms the FLBP and NRLBPs regardless of

the distance measures. When the images are severely

distorted by noise, e.g., σ = 0.20, the NR-Network

can also achieve acceptable recognition rates of 0.7062

for the Pearson correlation coefficient, 0.6924 for

Euclidean distance, and 0.7096 for Cosine distance.

However, the recognition rates of the FLBP and

NRLBPs are almost lower than 50% in this case.

It is also clear that the performance of the BN1 is bet-

ter than BN2. While the NR-Network outperforms both

of them under different noise levels using three distance

Table 5 The average recognition rates of different methods on the AR database injected with salt & pepper noise

Algorithm Chi-square distance, d = Histogram intersection, d = Modified G-statistics, d =

0.05 0.10 0.15 0.25 0.05 0.10 0.15 0.25 0.05 0.10 0.15 0.25

FLBP 0.6959 0.6236 0.4462 0.2794 0.6908 0.6051 0.4277 0.2669 0.6938 0.6103 0.4451 0.2753

NRLBP 0.7149 0.6743 0.5605 0.3127 0.6995 0.6526 0.5663 0.3075 0.7077 0.6774 0.5742 0.3142

NRLBP+ 0.7344 0.7014 0.6112 0.3943 0.7138 0.6978 0.6041 0.3822 0.7210 0.7059 0.6089 0.4075

NRLBP++ 0.7390 0.7122 0.6242 0.4148 0.7249 0.7088 0.6158 0.4043 0.7365 0.7154 0.6228 0.4297

Pearson correlation coefficient, d = Euclidean distance, d = Cosine distance, d =

0.05 0.10 0.15 0.25 0.05 0.10 0.15 0.25 0.05 0.10 0.15 0.25

BN2 0.8023 0.7615 0.7002 0.5928 0.8144 0.7502 0.6948 0.5965 0.8014 0.7793 0.7046 0.5943

BN1 0.8310 0.8012 0.7534 0.6443 0.8245 0.7993 0.7315 0.6178 0.8327 0.8089 0.7412 0.6332

NR-Network 0.8542 0.8327 0.7886 0.7013 0.8487 0.8214 0.7749 0.6932 0.8597 0.8412 0.7924 0.7107

The bold indicates the best

Fig. 4 The sample images of AR database injected with different noise. a–d The first line of Fig. 4 indicates the samples injected with Gaussian

noise σ = 0.05, 0.10, 0.15, 0.20. e–h The second line indicates the samples injected with uniform noise p = 0.10, 0.20, 0.40, 0.70. i–l The third line

indicates the samples injected with salt and pepper noise d = 0.05, 0.10, 0.15, 0.25.
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measures. This is because the fully connected layer of

the NR-Network has more inputs from the lower layers

and hence can extract a multi-level and more discrim-

inative feature.

� Resistant to uniform noise: Uniform noise is another

common type of noise. As the same with adding

Gaussian noise, we conduct experiments on the AR

database injected with additive uniform noise in the

range of (−p/2, p/2). We set p = 0.1, 0.2, 0.4, and 0.7,

respectively. Some samples are shown in the second

row of Fig. 4. It is clear that when the noise level is

high, it is barely difficult to recognize a subject by

human. Table 4 summarizes the recognition rates on

the AR database with uniform noise. Apparently, the

proposed NR-Network is visibly better than the

FLBP and NRLBPs and better than BN1 and BN2.

For a higher noise level, p = 0.7, the NR-Network

can still obtain achievable results while the FLBP

and NRLBPs nearly fail to work.

� Resistant to salt and pepper noise: The images in the

AR database are also injected with salt and pepper

noise to test the performance of different methods.

Salt and pepper noise is composed by two noise

components: salt noise and pepper noise. Salt noise

is the bright spot and pepper noise is the darker

spot, which generally appear in the image at the

same time. The third row in Fig. 4 shows some

samples injected with salt and pepper noise with

different noise density d = 0.05, 0.10, 0.15, and 0.25.

Table 5 lists the average recognition rates of

different methods for face recognition under salt

and pepper noise. From the table, we can see that,

compared with the Gaussian noise and the uniform

Table 6 The feature extraction time (Fea_time) of different methods on the AR database injected with Gaussian noise

FLBP NRLBP NRLBP+ NRLBP++ BN2 BN1 NR-Network

σ = 0.05 Fea_time (s) 0.6806 0.3988 0.7301 0. 7845 0.2694 0.2721 0.2743

σ = 0.10 Fea_time (s) 0.5990 0.2609 0.6365 0.6740 – – –

σ = 0.15 Fea_time (s) 0.5425 0.6832 1.2452 1.3580 – – –

σ = 0.20 Fea_time (s) 0.3553 0.2078 0.6405 0.6973 – – –

Fig. 5 The ROC curves on the AR database with Gaussian noise σ = 0.05, 0.10, 0.15, 0.20. Black line the NR-Network method, red line the BN1

method, yellow line the BN2 method, green line the FLBP method, blue line the NRLBP method, carmine line the NRLBP+ method, cyan line the

NRLBP++ method
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noise, the recognition rates of the FLBP and

NRLBPs drops much sharply when the images are

injected with the salt and pepper noise. Especially,

when the noise level is higher than d = 0.15, the

recognition rates of the FLBP and NRLBPs are even

lover than 40%. However, it is observed from

Table 5 that our proposed method can still give

some significant recognition results even when the

face images are seriously polluted by this kind of

noise.

From the above Tables 3, 4, and 5, we can conclude

that the proposed NR-Network cares little about the

noise type and distance measures. Beyond that, the per-

formance of the NR-Network can still be acceptable in

some really bad noise conditions, which indicates that

the feature extracted from the “multi-input” structure is

more robust to noise. We also compare the feature ex-

traction time (Fea_time) per sample of the methods

compared in the experiment, and the results are shown

in Table 6. We also calculate the classification time of

different methods based on the nearest-neighbor classi-

fier with Euclidean distance: FLBP with 0.007079 s per

sample, NRLBPs with 0.005682 s per sample, and net-

works with 0.005043 s per sample. We can see from

Table 6 that the feature extraction time of LBP-based al-

gorithms (FLBP and NRLBPs) varies along with the

noise level and it is also much higher than the proposed

networks. But the feature extraction time of the BN1,

BN2 and NR-Network is nearly constant.

Finally, we want to illustrate that the recognition rates

of FLBP and NRLBPs established in Tables 3 and 4 are

not as good as ref [19] and ref [20]. The reason is prob-

ably that there is no preprocessing process during our

experiments such as image cropping and rotation. Be-

sides, the subset of the AR database used in our experi-

ment includes 100 subjects, but the subset used in ref

[19] and ref [20] contains only 75 subjects.

4.3 ROC comparisons

For quantitative evaluation, we also present the ROC (re-

ceiver-operating Ccaracteristic) curves of all the algorithms

compared in our experiments. The test set from the AR

database includes 4050 face pairs, half of which is genuine

and the other half is impostor. Figures 5 and 6 show the

ROC curves in AR database injected with Gaussian and

Uniform noise. The results of images injected with the salt

and pepper noise are similar with the Gaussian noise; thus,

in this experiment we did not show the ROC curves in this

case. We find that the NR-Network can always achieve the

Fig. 6 The ROC curves on the AR database with uniform noise p= 0.10, 0.20, 0.40, 0.70. Black line the NR-Network method, red line the BN1 method, yellow

line the BN2 method, green line the FLBP method, blue line the NRLBP method, carmine line the NRLBP+ method, cyan line the NRLBP++ method
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best results on ROC curves in all cases. Besides, the ROC

curves of the NR-Network vary slightly along with the noise

types and levels. In contrast, the performance of the FLBP,

NRLBPs would degrade quickly when the noise level im-

proves. According to the results presented in Figs. 5 and 6

for different networks, it is also clear that the NR-Network

with multi-input structure is superior to the benchmark

networks BN1 and BN2 with fewer inputs to the final fully

connected layer which demonstrates the effectiveness of

the proposed “multi-input” structure.

4.4 Face recognition under varying illumination

Illumination variation is another challenging task in face

recognition. In this section, we conduct an experiment

on the CMU-PIE database to further evaluate the per-

formance of the proposed “multi-input” structure for

face recognition under varying illumination. There are

68 subjects with 41,368 images captured under different

illumination, pose, and expression. In this experiment, we

choose the illumination subset (21 images per subject) to

test the methods, in which one image per subject is chosen

as the gallery each turn and the rest 20 images are used as

the query. Experimental results show that the LBP-based

methods (FLBP, NRLBPs) can get achievable results in glo-

bal illumination variation, while the recognition rates of

these methods drop sharply under local illumination vari-

ation. Thus, in this experiment, we also compare the pro-

posed networks with another several state-of-the-arts:

Gradient faces (G-face) [52], Weber-Face (W-face) [53],

and Local-Gravity-Face (LG-face). Table 7 shows the com-

parable recognition rates on the CMU-PIE database.

The similarity between extracted features of the gallery

set and the probe set is evaluated by the nearest-neighbor

classifier with the Euclidean distance measure. The results

of Table 7 demonstrate that the proposed network with the

multi-input structure can still get excellent results under

varying illumination and is superior to the other methods

with the highest averaged recognition rate (93.78%).

5 Conclusions

This paper has shown the performance of the deep

learning network to face recognition under noise. A new

architecture for noise-robust deep feature representation,

named NR-Network, is carefully designed to increase in-

ter-personal variations and reduce intra-personal varia-

tions at the same time. The main objective of our work

is to test the performance of the proposed multi-input

structure; thus, the designed NR-Network just consists

of three basic parts for simplicity. The recognition rate

with different noise types and ROC results validate that

the NR-Network is evidently effective than other well-

known noise-resistant face recognition algorithms.

With the hierarchical high-level and low-level feature

extraction mechanism, the presented network can still

work well even at the high noise level based on a single

face image. We also analyze the feature size of the ap-

proaches compared in our experiments. The final output

layer with just 256 hidden neurons of the NR-Network is

rather economic. One shall note that we refrain to directly

compare our tailored noise-resistant network against other

state-of-the-art deep learning models. The main reason is

that to the best of our knowledge, there is no specified net-

work designed to solve the problem of face recognition af-

fected by noise as addressed by our model. One possible

future work is to involve sparsity based models [54], match-

ing based methods [55], and error-correction based models

[56] to further improve cost effectiveness and robustness.
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