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Noise-resistant optimal spin squeezing via quantum control
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1Institut für Quanteninformationsverarbeitung, Universität Ulm, D-89069 Ulm, Germany

2Physics Department, Harvard University, Cambridge, Massachusetts 02138

(Dated: April 29, 2013)

Entangled atomic states, such as spin squeezed states, represent a promising resource for a new
generation of quantum sensors and atomic clocks. We demonstrate that optimal control techniques
can be used to substantially enhance the degree of spin squeezing in strongly interacting many-body
systems, even in the presence of noise and imperfections. Specifically, we present a time-optimal
protocol that yields more than two orders of magnitude improvement with respect to conventional
adiabatic preparation. Potential experimental implementations are discussed.

PACS numbers:

Quantum squeezed states are among the most interest-
ing examples of entangled states. In quantum metrology
they allow for measurements with an improved precision,
ultimately limited only by the Heisenberg limit. Since the
early theoretical proposals to realize them with non linear
interactions [2, 3], spin squeezed states have been imple-
mented in several experiments. Specific examples include
generation of spin squeezed states in cavity QED [4–6],
in trapped ions through shared motional modes [7, 8]
or using non linear interferometry with a Bose-Einstein
condensate [9].
In this Letter we demonstrate that optimal control can

be effectively employed to produce highly squeezed spin
states in many-body quantum systems, drastically reduc-
ing the impact of relaxation and decoherence. We em-
ploy the CRAB technique [10, 11] to optimally control
the evolution of a collection of N two-level systems mu-
tually coupled through a non linear (i.e. quadratic) inter-
action. We calculate optimized evolutions occurring on
time scales several orders of magnitude shorter than the
corresponding adiabatic evolutions, with a speed-up in-
creasing with the system size. Such a speed-up translates
directly into an enhanced robustness of the squeezing in
the presence of noise, as schematically depicted in Fig. 1.
We illustrate this enhanced robustness by modelling two
practical experimental implementations of squeezed state
preparations: cavity QED and trapped ions [6, 8].
One approach to spin squeezed states is based on the

so called one-axis twisting protocol, consisting in letting
evolve a collection of two-level systems under the effect
of a collective non linear interaction [3], described by a
Hamiltonian of the form

HSM = ωJz + χJ2
x (1)

for the global spin variable ~J (see below). Here ω is
precession frequency and χ is a strength of nonlinear in-
teraction. The relative simplicity of the one-axis twist-
ing scheme has been at the basis of its ubiquitous pres-
ence in squeezing experiments; however such a scheme
is known to be non optimal [3], the spherical nature of
the angular momentum phase space limiting the maxi-
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FIG. 1: Upper panel: initial state (left) and final highly
squeezed state (right) for a system of N = 100 spins. Lower
panel: adiabatic (red) and optimal (black) driving fields χ
generating the maximally squeezed state shown above; the
effect of the noise (big blue arrow) increases with the total
evolution time.

mal squeezing achievable. Such a bound is intrinsic for
the one-axis twisting protocol with fixed χ. Sørensen and
Mølmer proposed a protocol based on adiabatic evolution
to steer a system into maximally squeezed states [12].
This procedure has been implemented experimentally in
low-dimensional systems, see for instance Ref. [13]. Un-
fortunately the required evolution time, which is propor-
tional to the inverse square of the minimum spectral gap
∆ encountered during the evolution, Tad ∝ ∆−2 [14],
scales unfavourably with a system size. This makes adi-
abatic evolution significantly exposed to external noise:
typically in many-body systems the gap closes with in-
creasing system size N , which implies a dramatic in-
crease of the time required for adiabatic evolutions for
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large N . Previous studies have demonstrated that opti-
mal control is a powerful tool to drastically reduce the
time needed to perform a many-body quantum evolu-
tion [11, 15]. In particular the Chopped RAndom Basis
(CRAB) technique offers an efficient way to implement
optimal control, based on an expansion of the control
field onto a truncated basis [10, 11]. Recently it has been
shown that optimal control allows for reaching the Quan-
tum Speed Limit (QSL), the minimal time required by
physical constraints to perform a given transformation,
in spin chains [15, 16], cold atoms in optical lattices [17],
Bose-Einstein condensates in atom chip experiments and
in crossing of quantum phase transitions [19]. Indeed,
CRAB control makes it possible to reduce the time of the
transformation down to the QSL, which scales as 1/∆,
obtaining a quadratic speedup of the protocol with re-
spect of the adiabatic one. In this work we show that
this method is successful also in drastically reducing the
preparation time for maximally spin squeezed states, as
illustrated in Fig. 1, thereby significantly enhancing the
process’ robustness to realistic noise sources.

Model — A collection of N two-level atoms having
(pseudo)spin ~Si can be described in terms of the global

spin variable ~J =
∑N

i=1
~Si, with | ~J | = N/2 and z-

component Jz representing the population imbalance be-
tween the two atomic internal states. In Ramsey spec-
troscopy experiments, the measured signal M yields the
mean global angular momentum pointing along the z-
axis, M ≡ 〈Jz〉, while the noise is given by the un-
certainty in one of the orthogonal components ∆Ji =
√

〈J2
i 〉 − 〈Ji〉2, i = x, y. In spin squeezed states, the lat-

ter is below the standard quantum limit, i.e. ∆Ji
2 <

|〈Jj〉|/2 for i 6= j ∈ {x, y, z}. The squeezing parameter ξ
is defined through the signal to noise ratio as

ξ =

√
2J∆Jx
|〈Jz〉|

. (2)

Squeezed states satisfy the condition ξ < 1, which im-
plies entanglement in the system. The ideal states for
spectroscopy experiments are those minimizing ∆Jx for
sufficiently large values of the signal, i.e. M ∝ N . The
problem of finding the optimal squeezed state can be re-
cast into the search for the ground state |ψ0(χ,N)〉 of the
Hamiltonian Eq. 1, where ω is constant and negative and
the non-linear interaction χ(t) is now taken to be tunable
in time [26]. (From now on we set ~ = 1 and time is
measured in units of 1/|ω|.) Adiabatic evolution under
HSM automatically produces optimal squeezed states, as
follows: At the time t = 0 one takes χ(0) = 0 and the
system is prepared in its initial ground state |ψ0(0, N)〉,
the coherent state |Jz = J〉 with ξ = 1. Then adiabat-
ically increasing χ(t), the system evolves following the
instantaneous ground state |ψ0(χ(t), N)〉 of HSM , yield-
ing exactly the family of states with optimal squeezing
at a given value of M (see Fig. 1).
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FIG. 2: Scaling with the size of the total evolution time T for
the adiabatic (Iad = 7 ·10−3 , red triangles) and the optimized
dynamics (Iopt = 5 · 10−4, black circles). Numerical fits for
30 ≤ N ≤ 150 (dashed lines) result in Tad ∝ N1.95 and
Topt ∝ N0.93. Inset: Scaling of ξ2; a fit gives ξ2 ∼ 2.1/N0.94 .

Optimization in the absence of noise — We first inves-
tigate the properties of the Hamiltonian HSM in Eq.(1)
to identify target squeezed states that can be reached
via adiabatic evolution. We calculate the time required
to perform an adiabatic transformation from the initial
state into the target and its scaling with the system size
N . Subsequently, we apply optimal control to determine
the dynamics (neglecting for the moment decoherence ef-
fects) leading to the same target state in a much shorter
time. Finally, we compare the optimized evolution with
the adiabatic one.
As previously mentioned, squeezed states suitable for

quantum metrology should have sufficiently strong sig-
nalM . To fulfill this requirement we choose (throughout
the whole work) M̄ = J/

√
2 = 0.707J , i.e. M̄ ∝ N .

Then we find the value χM̄ (N) of the interaction such
that |ψ0(χM̄ , N)〉 has 〈Jz〉 = M̄ for a given N . The
inset of Fig. (2) shows the corresponding value of the
ground-state squeezing for varying N : a power-law fit
ξ2 = A/NB for 30 ≤ N ≤ 150 yields A = 2.1± 0.05 and
B = 0.94 ± 0.01, compatible with the Heisenberg limit
ξ2 ∝ N−1. This means that we have identified a class of
states |ψ0(χM̄ , N)〉 with the desired characteristics. We
can now take those states as a target for the optimiza-
tion, to achieve constant intensity of the signal M̄ and
maximal squeezing ξ for any given system size N .
As discussed above, the system is initially prepared in

the coherent state |ψ0(0, N)〉 where all spins are polar-
ized along the positive z-direction and ξ2 = 1, and we
aim at reaching the goal state |ψG〉 ≡ |ψ0(χM̄ , N)〉 af-
ter an evolution time T . The initial and target state for
the case N = 100 are depicted in Fig. 1 (upper pan-
els). For the adiabatic case, evolution is computed using
a linear ramp χ(t) = χM̄ t/T . Comparing the resulting
final state |ψ(T )〉 with the goal state yields the infidelity
I = 1−|〈ψ0(χM̄ , N)|ψ(T )〉|2. Fig. 2 shows, as a function
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FIG. 3: Final squeezing ξ2 as a function of the size N , for
ν = 500 for the adiabatic (red triangles) and optimal (black
circles) dynamics, subject to random telegraph noise with am-
plitude Kα = Kβ = 0.05 (empty symbols) and Kα = Kβ = 0
(full symbols). Data have been averaged over 24 instances of
disorder.

of the size N , the time Tad needed to reach a given infi-
delity value Iad via adiabatic evolution (red triangles). A
fit T = ANB for 30 ≤ N ≤ 150 gives A = 0.31±0.01 and
B = 1.95± 0.01, in agreement with the prediction of the
adiabatic theorem Tad ∼ 1/∆2 ∼ 1/N2. We then apply
the quantum optimal control CRAB algorithm [10, 11] to
find the time Topt needed by an optimal transformation to
reach an infidelity Iopt. More precisely we write the driv-
ing field in the form χ(t) = χM̄ [1+λ(t)

∑nf

j=1 aj sin(ωjt)+
bj cos(ωjt)]t/T , where λ(t) ensures constant boundary
conditions, ωj = 2π/T (1 + rj), rj is a random number,
and nf ∼ O(10), and we look for the optimal correction

(i.e. the coefficients ~a,~b) such that the infidelity is min-
imised for a given time (for details on the algorithm and
of its complexity see [11, 20]). A typical result is shown
in Fig. 1 (lower panel), while the scaling of the optimized
evolution time Topt as a function of the size N is shown
in Fig. 2 (black circles). A power-law fit Topt = ANB for
30 ≤ N ≤ 150 gives A = 0.06±0.01 and B = 0.93±0.04,
consistent with our conjectur about the QSL (see above).
This shows that optimal squeezing preparation results in
a quadratic improvement in the scaling of the preparation
time as a function of the system size, while additionally
reducing the total evolution time by at least two orders
of magnitude.

Our discussion up to this point neglected completely
the effect of noise, which of course is a major concern
in a real experiment. Therefore, in order to test the ro-
bustness of the protocol, we simulate the dynamics of
the system in the presence of noise. We will consider two
noise models, as different experimental implementations
of squeezed spin states are affected by different kinds of
noise. We will show that optimized protocols work also

in the presence of these types of noise, and that they are
much more resilient to noise than adiabatic protocols.
Effect of classical noise — A typical situation in which

classical fluctuations of an external field occur, reflect-
ing in random fluctuations of the interaction strength,
is found in trapped ions, also relevant for metrological
applications [8]. In trapped ion systems, a global ran-
dom magnetic noise is expected to be the most relevant
source of disturbance [18]. We include it in our simula-
tions by adding random classical telegraph noise to the
control field. We then study the evolution induced by
the Hamiltonian

H = χ(t)[1 +Kαα(t)]J
2
x + ω[1 +Kββ(t)]Jz (3)

where α(t), β(t) are random functions of the time with
a flat distribution in [−1, 1], changing random value on
average with frequency ν. The case Iα = Iβ = 0 corre-
sponds to a noiseless evolution of Eq.(1). In Fig. 3 we
compare the effect of the noise on the final squeezing ob-
tained by varying χ(t) either linearly in time (empty red
triangles) or according to the optimized protocol (empty
black circles). The squeezing ξ2 is plotted as a function
of the size N , for ν = 500 and for an intensity of the noise
Kα = Kβ = 0.05. As shown in Fig. 3, the noise effect
is stronger for larger system sizes, very quickly destroy-
ing the squeezing for the slow linear (adiabatic) protocol.
The reason is simple: as shown in Fig. 2, for large sizes,
e.g. N ≥ 100, the adiabatic evolution time is three or-
ders of magnitude larger than the optimized one. Vice
versa the fast optimal driving turns out to be robust even
at large sizes and relatively high intensities of the noise,
resulting in a final squeezing almost equivalent to that
obtained via the adiabatic process in the absence of noise
(full red triangles).
Effect of quantum noise — Finally we discuss a noise

model suitable for the description of QED experiments
[6], in which the effect of the noise is treated through
the formalism of the master equation. In cavity QED,
relaxation of the atomic levels towards the ground state
and leakage of photons outside the cavity are the most
relevant source of dissipation [4]. In order to estimate
the effect of the noise in a realistic system, we derive
the Hamiltonian of Eq. (1) from a microscopical model.
We consider a collection of N three level atoms with two
stable ground states |a〉 and |b〉 and an excited state |e〉,
in an optical cavity; the ground state energy splitting
is given by ωab and the relevant cavity mode has a fre-
quency ω0. The stable ground state |a〉 (|b〉) is coupled
to the excited state with a Rabi frequency Ω1 (Ω2) and
a frequency ω1 (ω2) which is detuned from the excited
state by ∆1 (∆2). In the regime of weak laser power,
the excited level is almost not populated and it can be
adiabatically eliminated, leading to an effective photon-
mediated interaction between the two ground state levels
|a〉 and |b〉. By introducing the total angular momentum

operators J+ =
∑N

k=1 |a〉k〈b|k, J− =
∑N

k=1 |b〉k〈a|k and
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FIG. 4: Squeezing ξ2 as a function of the cooperativity η in
the case of adiabatic (black circles) and optimal (red trian-
gles) protocols with N = 30, 2κ/δ ∼ 10−3. The blue dashed
line indicates the Heisenberg limit, reached in the large coop-
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Jz = (
∑N

k=1 |a〉k〈a|k−|b〉k〈b|k)/2, and by further assum-
ing the strength of the two Raman processes to be iden-
tical, Ω1g

∗
b/∆1 = Ω2g

∗
a/∆2 = Ωg∗/∆, after adiabatically

eliminating also the cavity field, we obtain the following
master equation for the density matrix [27]:

ρ̇ = −i[H̃eff , ρ] + Lρ, (4)

with unitary part given by

H̃eff = χJ2
x , (5)

where χ = |Ω|2|g|2/δ∆2 and δ = ω1 − ω0 − ωab, and
nonunitary part described by the Linbladian

Lρ = γ̃[2J†ρJ− − J−J†ρ− ρJ−J†], (6)

where, from a microscopical derivation of the model, the
most relevant contribution to the relaxation rate is γ̃ =
χ(t)γδ/|g2|.
Experimental implications — As discussed above, the

Hamiltonian Eq. (1) is relevant e.g. for the experiment
of Ref. [6]. Here, squeezing of the collective spin of atoms
in a cavity is used to improve the measurement precision
of an atomic clock. With a realistic estimate of the pa-
rameters [6] we have ∆ = 780 nm ∼ 3 ·1014 Hz, δ ∼ 2π ·3
GHz, γ ∼ 2π · 5 MHz, g ∼ 2π · 0.4 MHz, κ ∼ 2π · 1 MHz.
The dominant part for the relaxation is thus proportional
to the intensity of driving field χ with a proportionality
constant given by γδ/|g|2 ∼ 105. Our estimate of relax-
ation rate can be also expressed in terms of cooperativ-
ity η = g2/(γκ), leading to γ̃ = χ(t)δ/(2κη), where κ
is the decay rate of the cavity. In Fig. 4 the squeezing
parameter is shown as a function of η, for a system of
size N = 30. As clearly shown in the picture, the op-
timized dynamics requires a cooperativity two orders of
magnitude smaller than the one required by the (linear)
adiabatic dynamics to reach the same level of squeezing.

Conclusions and outlook — We have shown that opti-
mal control can be used to speed up the dynamics for the
production of squeezing, drastically reducing the effect of
external dissipation. In particular we have demonstrated
that optimized evolutions can occur on time scales or-
ders of magnitude smaller than the corresponding adi-
abatic evolutions, resulting in maximal squeezed states
two orders of magnitude more robust with respect to the
noise. The implementation of optimized protocols in spin
squeezing experiments could therefore have a great im-
pact in the field of quantum metrology. The very large co-
operativity required here to achieve the Heisenberg limit
is a consequence of a constraint intrinsic to the scheme
of Ref. [4], which aims at a pre-defined state (centered
on top of the Bloch sphere as shown in Fig. 1). Relax-
ing this constraint on the position and orientation of the
final state will allow to attain maximum squeezing al-
ready with smaller cooperativity. The implementation
of closed-loop optimal control strategies might result in
additional improvement [25]. Finally application of the
present methods demonstrated here to more complex
spin squeezing schemes [5], as well as adiabatic quantum
computation in the presence of decoherence, can also be
envisioned.
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Supplementary Material: Microscopical derivation of the model

We consider a collection of N three level atoms with two stable ground states |a〉 and |b〉 and an excited state |e〉 in
an optical cavity as done in. [1]. The ground state |a〉 (|b〉) is coupled to the excited state with a Rabi frequency Ω1

(Ω2) and a frequency ω1 (ω2), detuned from the excited state by ∆1 (∆2). The laser frequencies are chosen such that
their difference is equal to twice the ground state energy splitting, i.e. ω1 − ω2 = 2ωab. With this choice all single
atom transitions are off-resonant and atoms can only be excited in pairs. The pairwise excitation of atoms is made
possible by the presence of a quantized field inside the cavity coupling both states |a〉 and |b〉 to the excited state |e〉
with coupling constant ga and gb, see Fig. 1b for the transition path involving a double Raman process.
Assuming that all fields are propagating in the same direction, the Hamiltonian is:

H = ω0c
†c+ ωaeΣee + ωabΣbb +

[(

Ω1

2
e−iω1t + gac

)

Σea +

(

Ω2

2
e−iω2t + gbc

)

Σeb + h.c.

]

, (1)

where Σij =
∑N

k=1 |i〉k〈j|k are collective operators acting on the N atoms.
In order to estimate the effect of the noise, we compute the equation of motion for the ground state coherence
Σab = J+. The corresponding equation of motion takes the following form in a frame rotating at laser frequencies
(H → H̃):

iΣ̇ab = [Σab, H̃ ] = −
Ω1

2
Σ

(1)
eb + g∗b c

†e−iδtΣ(1)
ae − gace

iδtΣ
(2)
eb +

Ω∗
2

2
Σ(2)

ae − iγ0Σab + (Langevin force),

where γ0 is the dephasing rate of the ground state coherence, index 1(2) refers to left(right) Raman process in Fig. 1b,
and the Langevin force (L.F.) term ensures the commutation relations of the operator. Analogously we can derive
the equation of motion for the cavity field:

ċ = −i[c, H̃] = −ig∗be
−iδtΣ

(1)
be − ig∗ae

−iδtΣ(2)
ae − κc+ (L.F.), (2)

with κ being the decay rate of the cavity.
In a regime of weak laser power, the excited level is almost not populated and it can be adiabatically eliminated.
Therefore in such a regime where |Ω|2/4 ≪ ∆2+ γ2, with γ indicating the total decay rate of the excited state |e〉, we

can set Σee ∼ 0 and Σ̇
1(2)
ea = Σ̇

1(2)
be = 0. With these assumptions the equation of motion for the polarization becomes:

iΣ̇ab = −
Ω1

2

1− iγ/∆1

∆1

[

−
Ω∗

1

2
Σab − g∗b c

†e−iδtΣbb

]

+ g∗b c
†e−iδt 1 + iγ/∆1

∆1

[

−
Ω1

2
Σaa − gbce

iδtΣab

]

− gace
iδt 1− iγ/∆2

∆2

[

−
Ω∗

2

2
Σbb − g∗ac

†e−iδtΣab

]

+
Ω∗

1

2

1 + iγ/∆2

∆2

[

−
Ω2

2
Σab − gace

iδtΣaa

]

− iγ0Σab + (L.F.),

that is, separating the unitary part from the dissipative one

iΣ̇ab = [Σab, H̃
′] − i

(

γ0 +
γ|Ω1|

2

4∆2
1

+
γ|Ω2|

2

4∆2
2

+
γ|gb|

2

∆2
1

c†c+
γ|ga|

2

∆2
2

c†c

)

Σab

− iγ

(

Ω1

2∆2
1

g∗b c
†e−iδt +

Ω∗
2

2∆2
2

gace
iδt

)

(Σbb +Σaa) + (L.F.) (3)

where H̃ ′ is given by

H̃ ′ = −

(

|Ω1|
2

4∆1
+

|ga|
2

∆2
c†c

)

Σaa −

(

|Ω2|
2

4∆2
+

|gb|
2

∆1
c†c

)

Σbb

−

(

Ω∗
1

2∆1
gbce

iδt +
Ω2

2∆2
g∗ac

†e−iδt

)

Σab −

(

Ω1

2∆1
g∗b c

†e−iδt +
Ω∗

2

2∆2
gace

iδt

)

Σba, (4)

which corresponds to Eq. (A1) of Ref. [1]. The first line of previous equation represents ac-Stark shifts of the ground
state: the classical part (proportional to Ω’s) can be compensated making a change in the frequency of the fields;
the part containing the quantum cavity field is much smaller than the first one and can be neglected in the limit
g2/δ∆ << 1, see Ref. [1]. Notice that in this limit the part of the dissipation proportional to c†c can be also neglected.

http://arxiv.org/abs/1304.7195v1
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FIG. 1: a) Left panel: Energy levels and couplings. b) Right panel: transition path involving a double Raman process.

In a regime in which the lasers are sufficiently weak and we are not creating a significant number of photon excitations,
the cavity field can be also adiabatically eliminated

0 =
d(ceiδt)

dt
= eiδt

dc

dt
+ iδceiδt,

using Eq. (2)

ceiδt ≃ −
1

δ + iκ

[

g∗bΩ1

2(∆1 − iγ)
Σba +

g∗aΩ2

2(∆2 − iγ)
Σab

]

(5)

where we are keeping only the 0th-order terms in the cavity field c. Notice that this equation corresponds to Eq. (A3)
of Ref. [1]. Therefore inserting Eq. (5) in Eq. (3) and assuming the strength of the two Raman processes to be identical
(Ω1g

∗
b/∆1 = Ω2g

∗
a/∆2 = Ωg∗/∆), so that

ceiδt = −
1− iκ/δ

δ

Ωg∗

2∆
(Σab +Σba) (6)

we obtain

iΣ̇ab = [Σab, H̃eff ] − i

(

γ0 +
γ|Ω|2

4∆2
+

γ|Ω|2

4∆2

)

Σab + i
γ

∆

|Ω|2|g|2

2∆2δ
N (Σab +Σba) (7)

where we used Σbb +Σaa ∼ N and

H̃eff =
|Ω|2|g|2

4δ∆2
[ΣabΣab + ΣbaΣba +ΣabΣba +ΣbaΣab] . (8)

Finally we can introduce the total angular momentum operators J+ = Σab, J− = Σba and Jz = (Σaa − Σbb)/2, and
the quantity χ = |Ω|2|g|2/δ∆2 so that previous expressions become:

iJ̇+ = [J+, H̃eff ] − i

(

γ0 +
γδ

2|g2|
χ

)

J+ + i
γN

∆
χJx + (L.F.) (9)

with the Langevin force term (L.F.) ensuring validity of the commutation relations for J±, and

H̃eff = χJ2
x . (10)

With a realistic estimate of the parameters [2] we have ∆ = 780 nm ∼ 3 · 1014 Hz, δ ∼ 2π · 3 GHz, γ ∼ 2π · 5
MHz, g ∼ 2π · 0.4 MHz, κ ∼ 2π · 1 MHz, so that we obtain for the imaginary part of Eq. (9) γδ/|g|2 ∼ 105 and
γN/∆ ∼ 10−7N . The dominant part for the relaxation is thus proportional to the intensity of driving field χ with
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a proportionality constant given by γδ/|g|2 ∼ 105, so that we can set in the master equation for the density matrix
γ̃ = χ(t)γδ/|g|2, as discussed in the main article.
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