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Abstract Eye-tracking research in infants and older children

has gained a lot of momentum over the last decades. Although

eye-tracking research in these participant groups has become

easier with the advance of the remote eye-tracker, this often

comes at the cost of poorer data quality than in research with

well-trained adults (Hessels, Andersson, Hooge, Nyström, &

Kemner Infancy, 20, 601–633, 2015; Wass, Forssman, &

Leppänen Infancy, 19, 427–460, 2014). Current fixation de-

tection algorithms are not built for data from infants and

young children. As a result, some researchers have even

turned to hand correction of fixation detections (Saez de

Urabain, Johnson, & Smith Behavior Research Methods, 47,

53–72, 2015). Here we introduce a fixation detection algo-

rithm—identification by two-means clustering (I2MC)—built

specifically for data across a wide range of noise levels and

when periods of data loss may occur. We evaluated the I2MC

algorithm against seven state-of-the-art event detection algo-

rithms, and report that the I2MC algorithm’s output is the most

robust to high noise and data loss levels. The algorithm is

automatic, works offline, and is suitable for eye-tracking data

recorded with remote or tower-mounted eye-trackers using

static stimuli. In addition to application of the I2MC algorithm

in eye-tracking research with infants, school children, and

certain patient groups, the I2MC algorithm also may be useful

when the noise and data loss levels are markedly different

between trials, participants, or time points (e.g., longitudinal

research).

Keywords Eye-tracking . Fixation detection . Noise . Data

quality . Data loss

The emergence of the remote video-based eye-tracker has

allowed researchers to conduct eye movement research with

a plethora of participant groups for which conventional eye-

tracking techniques are unsuitable. Unlike, for example, scler-

al coil techniques or head-mounted and tower-mounted video-

based eye-trackers, remote eye-trackers can be positioned at a

distance from the participants and allow them to move freely

within a specified range. Remote video-based eye-trackers are

therefore suitable to use in participant groups whose head

movements are difficult to restrain, such as infants (Oakes,

2012) or school children (e.g., Holmberg, Holmqvist, &

Sandberg, 2015). As a result, eye-tracking research in, for

instance, infants has gained a lot of momentum over the last

decades (e.g., Aslin & McMurray, 2004; Oakes, 2012).

Although eye-tracking research in these participants groups

has become easier with the advance of remote eye-trackers,

and although studies are available that provide advice on how

to choose an eye-tracker for research in nonoptimal conditions

(Hessels, Cornelissen, Kemner, & Hooge, 2015), data quality

is still often low relative to recordings of well-trained adults

(Hessels, Andersson, Hooge, Nyström, & Kemner, 2015;
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Wass, Forssman, & Leppänen, 2014; Wass, Smith, &

Johnson, 2013). Current solutions for the automatic detection

of one of the most commonly investigated events, fixations, in

eye-tracking data are not built for low-quality data. This ap-

plies to both the solutions provided by eye-tracker manufac-

turers and the research community. This is problematic for

eye-tracking research with infants and young children, in

which data of low quality frequently occur. As a result, some

researchers have moved away from fully automatic analysis

techniques and turned to manual correction of fixation detec-

tion in eye movement data from infants (Saez de Urabain,

Johnson, & Smith, 2015). Here we consider the consequences

of low data quality for fixation detection, describe and quan-

tify the noise in infant data from remote video-based eye-

trackers, and introduce a new and superior solution for detect-

ing fixations in noisy data.

In humans, visual acuity is greatest at the fovea, and eye

movements are made to bring an area of the visual scene onto

the fovea, or to maintain it there. There is a primary distinction

between the periods in which an area of the visual scene is

kept on the fovea—a fixation—and periods in which an area

of the visual scene is brought onto the fovea—a rapid eye

position change called a saccade. Figure 1 (top panel) depicts

typical eye movement data from an eye-tracker using static

stimuli. At first glance, the periods in which gaze position is

constant—the fixations—can clearly be discriminated from

the periods of rapid gaze position change—the saccades.

Labeling segments of the eye movement data as fixations

and saccades may give researchers insight into the spatiotem-

poral processing of a visual scene. Algorithms that label eye

movement data in this fashion are referred to as event

detection algorithms, where an event can be a fixation, smooth

pursuit (when using moving stimuli; e.g., Larsson, Nyström,

Andersson, & Stridh, 2015), saccade, blink, postsaccadic os-

cillation (see, e.g., Nyström, Hooge, & Holmqvist, 2013), and

so forth. In the present article, we focus on the labeling of

fixations in data from remote or tower-mounted eye-trackers

using static stimuli.More specifically, we investigated fixation

labeling under varying levels of noise in the eye movement

data, to mimic fixation detection in low- and high-quality eye

movement data.

Event detection and data quality

An event detection algorithm generally consists of two parts.

The first, which we refer to as the Bsearch rule,^ aims to

separate fast periods (saccades) and slow periods (fixations)

in the data from each other. The second part, the

Bcategorization rule(s),^ accepts, rejects, and/or merges the

saccade and/or fixation candidates from the first rule accord-

ing to a set of criteria. These criteria may include, for instance,

a minimum fixation time, maximum saccade duration, and so

forth. Moreover, these criteria may be based on physiological

Fig. 1 Example eye-tracking data. The top graph depicts data recorded at

500 Hz on the SR Research EyeLink 1000 from an adult participant by

Hooge et al. (2015). The middle graph depicts data recorded at 300 Hz on

the Tobii TX300 from an adult participant by Hessels, Kemner, et al.

(2015). The bottom graph depicts data recorded at 300 Hz on the Tobii

TX300 from an infant participant by Hessels, Andersson, et al. (2015).

Only the horizontal coordinates are shown; the middle of the screen is

at 0°
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constraints of the eye—for example, a maximum acceleration

during a saccade (Nyström & Holmqvist, 2010)—or on the

experimental setup—for example, a minimum saccade ampli-

tude of 2° when the elements to be fixated are spaced 4° apart.

Event detection algorithms are often referred to by their search

rule. For example, two popular types of event detection algo-

rithms for labeling fixations and saccades are velocity- and

dispersion-based algorithms (see Holmqvist et al., 2011, pp.

147–175, for an elaborate overview). Velocity-based event

detection algorithms compute a velocity signal from the gaze

position signal, and subsequently use a velocity cutoff to label

periods of data as fixation candidates. The velocity cutoff used

may be set in advance, for example at 30°/s. Other strategies

involve first detecting saccade candidates with a fixed thresh-

old, and subsequently finding fixation start and end points by

adapting the threshold to the mean velocity in a period pre-

ceding the saccade candidate (Smeets & Hooge, 2003) or

using the median velocity plus a certain number of standard

deviations (Engbert & Kliegl, 2003). Dispersion-based algo-

rithms, on the other hand, label periods of data as Bfixation

candidates^ when a set of subsequent samples exceed a min-

imum time and do not exceed a maximum distance from each

other. As long as subsequent samples stay within the distance

limit, they are added to the fixation candidate. If, however, a

subsequent sample does exceed the maximum distance, the

current fixation candidate is ended and a new fixation candi-

date is started in the next available window that fits the

minimum-time and maximum-distance requirements. Both

event detection algorithmsmay subsequently employ different

or identical categorization rules to accept, reject, or merge

fixation candidates into fixations.

The two classes of event detection algorithms just

discussed are widely applied for analyzing eye movement

data. Although such event detection algorithms may lead to

reasonable results for adult data with large saccades and a low

noise level (Fig. 1, top panel), they may not necessarily do so

for data with a greater noise level. Figure 1 (middle panel)

depicts adult data in which the noise level is higher and small-

er saccades were made. However, the fixations and saccades

are still relatively easy to distinguish at first glance. In infant

data (Fig. 1, bottom panel), the amplitude of noise is frequent-

ly higher than in adult data, and often over short bursts no data

are reported by the eye-tracker (Hessels, Andersson, et al.,

2015;Wass et al., 2014). How these differences in data quality

affect event detection may depend on the specific event detec-

tion algorithm used.

Two aspects of data quality are important to consider for

the present event detection purposes: spatial precision and

data loss.1 First, the spatial precision of the data refers to the

reliability of the measurement when no movement of the eye

takes place: the variable error, or noise, in the signal. Although

the eye always moves slightly (e.g., tremor or drift), one way

to estimate the noise amplitude is to calculate the sample-to-

sample position change during fixation (Holmqvist, Nyström,

& Mulvey, 2012). When the sample-to-sample position

change is low, so is the noise amplitude. One may observe

that the noise amplitude is lowest for adult data using the SR

Research EyeLink 1000 (Fig. 1, top panel), followed by adult

data using the Tobii TX300 (Fig. 1, middle panel), and finally

for infant data using the Tobii TX300 (Fig. 1, bottom panel).

The noise level is determined not only by the hardware (i.e.,

the eye-tracker), but also by the behavior of the participant

group (Holmqvist et al., 2011). For instance, the poorer data

quality in infant eye-tracking research may in part be due to

the higher amount of movement in infants. An increase in

noise amplitude may affect outcome measures such as the

number of fixation candidates and the mean duration of fixa-

tion candidates. Moreover, depending on the specific search

rule used, the number of fixation candidates and the fixation

duration may either increase or decrease. If a fixed velocity

threshold is used to separate fixations from saccades, de-

creased precision may break up long fixation candidates into

shorter fixation candidates due to noise spuriously exceeding

the threshold (Wass et al., 2013). When long fixation candi-

dates are broken up into multiple shorter fixation candidates,

the number of fixations increases, and the mean fixation du-

ration decreases. On the other hand, if a velocity threshold is

adaptively chosen on the basis of the noise amplitude in the

data, small saccades with a velocity close to that of the noise

may be missed. This may then cause multiple fixation candi-

dates to be merged into longer fixation candidates (Holmqvist

et al., 2012). As a consequence, the number of fixations de-

creases, and the mean fixation duration increases.

The second aspect of data quality, data loss, refers to

periods in which no position coordinates are reported by

the eye-tracker. Although this intuitively may be attributed

to a participant not looking at the screen, data loss may

often occur due to unstable tracking of the eye by the

eye-tracker (Hessels, Andersson, et al., 2015; Wass et al.,

2014). Figure 1 (bottom panel) depicts such brief loss of

contact: Between 3 and 4 s, the recorded data are

interrupted by short periods of data loss. During event de-

tection, fixation candidates may be broken up by periods of

data loss (Holmqvist et al., 2012). When more data loss

occurs, the number of fixations increases, and the mean

fixation duration decreases, as compared to lower data loss

levels. Whether changing the parameters of the categoriza-

tion rule(s) may compensate for the differences in output

by the search rule is part of ongoing research (Zemblys &

Holmqvist, 2016). On the other hand, although the prob-

lem of reduced data quality in, for instance, infant research

is a common one, few solutions have been designed to

accommodate it.

1 Although accuracy is also an aspect of data quality, this does not affect

the detection of fixations.
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Event detection in noisy data

To our knowledge, two solutions have been proposed specif-

ically to accomplish event detection in noisy data (Saez de

Urabain et al., 2015; Wass et al., 2013). Wass et al. adapted

a velocity-based event detection algorithm specifically de-

signed to cope with eye movement data from infants. The

search rule of this algorithm is as follows: The algorithm first

selects only the portions for which data for both eyes are

available, and applies a smoothing procedure. Subsequently,

periods of data loss up to 150 ms are interpolated if the veloc-

ity between the start and end of the data loss period does not

exceed the velocity threshold. Thereafter, all periods of data

below the velocity threshold of 35°/s are marked as fixation

candidates. The categorization rules that follow to label fixa-

tion candidates as fixations are extensive. First, if a fixation

candidate borders on a period of data loss, it is excluded.

Second, saccades are excluded (and fixation candidates con-

sequently merged) if the fixation candidates before and after

are within 0.25° distance from each other. Third, if a saccade is

preceded by a fixation candidate with an average velocity over

12°/s, the saccade and the bordering fixation candidate are

excluded. Fourth, if a saccade is preceded by three samples

with an average velocity over 12°/s, the saccade and bordering

fixation candidate are also excluded. Fifth, if the distance be-

tween the gaze positions for the two eyes prior to the saccade

is larger than 3.6°, the saccade and bordering fixation candi-

dates are excluded. Finally, fixation candidates shorter than

100 ms are excluded. Wass et al. reported that this algorithm

remains reliable for data containing higher noise amplitude,

whereas standard dispersion-based algorithms decrease in re-

liability with increasing noise amplitude. Saez de Urabain

et al., on the other hand, use a two-step approach to event

detection. In a graphical user interface, the user can set a

number of parameters for a first estimation of which data

segments are fixation candidates (i.e., the search rule).

Thereafter, the user may manually correct the fixation candi-

dates (i.e., a manual categorization procedure). Although the

machine-coding, manual-correction approach by Saez de

Urabain et al. may increase the amount of eye movement data

that can be successfully labeled as fixations and used in further

analysis, it is a highly time-consuming, and subjective, pro-

cess. Moreover, although the velocity threshold adaptation by

Wass et al. is automatic, it features a large number of catego-

rization rules for rejecting data, leading to significant amounts

of data being excluded when the noise level is high.

Intuitively, an ideal approach would be an algorithm that is

automatic and that can reliably achieve fixation labeling in

periods of noisy data, instead of excluding such data. Here

we introduce such an approach.

The present article introduces the Bidentification by two-

means clustering^ (I2MC) algorithm. This algorithm was spe-

cifically designed to accomplish the labeling of fixations

across a wide range of noise levels and when periods of data

loss may be present, without the need to set a large number of

parameters or perform manual coding. Before we introduce

how the algorithm operates, we first discuss how to the algo-

rithm is to be evaluated.

Evaluating the algorithm

How can the output of an event detection algorithm be evalu-

ated? Or, the question that more generally arises; is the output

from my event detection algorithm Bcorrect^? Intuitively, it

makes sense to ask this question. One would want to know

whether the fixations labeled by an algorithm are Bcorrect,^ or

whether the output of the algorithm conforms to a golden

standard. The problem is, however, that although researchers

appear to informally discuss fixations and saccades with rela-

tive ease, there is no gold standard for when a fixation starts or

stops (Andersson, Larsson, Holmqvist, Stridh, & Nyström,

2016). Essentially, a fixation is defined by how it is computed,

which differs for each event detection algorithm. Holmqvist

et al., (2011, p. 150) also note BIn reality, perfect matches

between the fixations detected by an algorithm and moments

of stillness of the eye are very rare. Tomakematters worse, the

term fixation is sometimes also used for the period during

which the fixated entity is cognitively processed by the par-

ticipant. The oculomotor, the algorithmically detected, and the

cognitive ‘fixations’ largely overlap, but are not the same.^

Tackling the evaluation of algorithms based on the fixations

detected is therefore problematic, as the definitions for fixa-

tions differ between algorithms.

Komogortsev, Gobert, Jayarathna, Koh, and Gowda

(2010), for instance, aimed to determine a goodness of fit of

the eye movement data to the stimulus that was presented.

Participants were presented with a white dot that appeared

sequentially at 15 locations on screen for one second each.

In this case, an event detection algorithm was considered ideal

if it detects 15 fixations, 14 saccades, an average fixation

duration of one second, and an accuracy of 0°. Importantly,

Komogortsev et al. (2010) noted that this method is inherently

flawed. For instance, eye-trackers typically report accuracies

of 0.5°, even under ideal circumstances. Moreover, 14

saccades and 15 fixations would imply that no corrective

saccades are made. However, Komogortsev et al. (2010) pre-

ferred their method over manual techniques, which Bare fre-

quently employed to classify eye-movement behavior.

However, this type of classification technique [i.e., manual

coding] is susceptible to human error and can be open for

biased interpretation with limited generalizability^ (p. 2643).

Andersson et al. (2016), on the other hand, employed two

experienced human coders as their gold standard for compar-

ing with algorithms. They noted that although human coders

generally agreed more with each other than with automatic

Behav Res (2017) 49:1802–1823 1805



algorithms, there is a problem: Human coders make mistakes

and have disagreements, and eventually it is impossible to

determine whether an algorithm or a human coder should be

Bright.^ Finally, in the approach by Zemblys and Holmqvist

(2016), the algorithm considered Bbest^ by the authors was

taken as the gold standard—a choice that will most likely

provoke debate. To sum, there is little consensus on the man-

ner of evaluating the performance of a fixation detection

algorithm.

Instead of focusing on whether a gold standard for the

evaluation of fixation detection algorithms can be approximat-

ed, we take a different approach here. The purpose of the

presented algorithm, called I2MC, is to achieve consistent

labeling of fixations when there may be large differences in

data quality between participants and between trials, as is of-

ten encountered in, for instance, infant research. This means

that the I2MC algorithm should achieve fixation labeling

across a range of noise amplitudes and when short periods

of data loss may be present. If the labeling of fixations is done

for data with a small noise amplitude and few periods of data

loss, the output thereof can be compared to the output after

adding noise of higher amplitude and periods of data loss to

the same data. If the number of labeled fixations and the cor-

responding distribution of fixation durations remain un-

changed as noise and data loss increase, the algorithm is con-

sidered to be robust to noise and data loss. The key decision

left to the eye movement researcher is then whether the

fixation-labeling output at low noise and data loss levels is

satisfactory. If one is satisfied with the initial output of the

algorithm, one can generalize this satisfaction to higher noise

and data loss levels, given the algorithm’s stability in the face

of increasing noise and data loss. This decision inevitably has

to be made by every researcher, since no two experimental

setups and data sets are identical.

To evaluate whether the I2MC algorithm improves on the

currently available solutions, seven competing state-of-the-art

algorithms were chosen from the literature. The general moti-

vation for including an algorithm is that it should be able to

deal with one or more of the data quality issues that we

outlined above. The specific motivations are given in the

Method section. As we discussed briefly, algorithms may dif-

fer in both their search rules and their categorization rules for

labeling fixations. Moreover, the preprocessing steps, such as

data smoothing and interpolation to impute missing data, prior

to application of these rules may differ between algorithms. It

is paramount to note that the focus here is not on finding a

combination of preprocessing steps with search and categori-

zation rules that produces the most noise-robust output by

testing all possible combinations and exhaustively searching

through their parameter spaces. Instead, the focus is on wheth-

er previous solutions, taken as is, produce noise-robust output,

and whether or not the present I2MC algorithm improves over

them. We reasoned that taking the algorithms as they come

Bout of the box^ is what the vast majority of researchers who

are not experts on event detection algorithms would do when

choosing algorithms for purposes of data analysis.

Because previous research has shown that increased noise

amplitude may affect the number of fixations, and conse-

quently the fixation durations (Holmqvist et al., 2012; Wass

et al., 2013), we calculated the numbers of fixations, mean

fixation durations, and standard deviations of the fixation du-

rations for all noise and data loss levels. Such an approach is

similar to that of Zemblys and Holmqvist (2016), who inves-

tigated the parameter settings of event detection algorithms as

a function of increasing noise level. However, their aim was to

see how the settings of an algorithm should be adapted for the

output to approach that of their gold standard (the algorithm

they considered to be the Bbest^). Here, however, we com-

pared each algorithm against itself to examine its robustness of

the outcome measures to noise and data loss levels. After

examining the noise robustness of the outcome measures of

the I2MC algorithm in this manner, we examined the applica-

tion of the I2MC algorithm to infant data.

Algorithm

The I2MC algorithm is composed of three separate steps:

interpolation of missing data, two-means clustering (i.e., the

selection of fixation candidates by the search rule), and finally

fixation labeling (the categorization rules). It is important to

note that although example values will be provided with the

algorithm for all parameters, along with a motivation for the

specific value, these values may need to be adapted to better

suit a specific data set. A flowchart for the algorithm is

depicted in panel A of Fig. 2. A MATLAB implementation

of the I2MC algorithm is freely available from http://

dx.doi.org/10.5281/zenodo.159456.

Interpolation of missing data

To maximize the amount of eye-tracking data that can be used

for event detection, imputation of short periods of missing

data is performed through interpolation. We chose an interpo-

lation method satisfying two conditions: (1) interpolation

must be locally determined by the gaze samples at each end

of the interpolation window, and (2) interpolation must be

monotonic (i.e., there are no extrema in the data points be-

tween the start and end points). The interpolation method

adopted here, which satisfies both constraints, was developed

by Steffen (1990). It should be noted that the commonly used

cubic spline interpolation (e.g., Frank, Vul, & Johnson, 2009)

does not satisfy the constraints posed here, because it can

produce extrema in the interpolated data.

Interpolation was performed as follows. Periods of missing

coordinates in the gaze coordinate signals were interpolated

1806 Behav Res (2017) 49:1802–1823
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provided that the following criteria were met. First, the period

of missing coordinates had to be shorter than a set value. The

value used in this article was 100ms, and was chosen so as not

to interpolate over entire saccade–fixation–saccade sequences

(saccades with a latency of 100 ms are considered extremely

early; Fischer & Ramsperger, 1984). In addition, blink

durations are usually higher than 100 ms, and so relatively

few blinks should be interpolated. The value of 100 ms is,

however, not fixed, and may be adapted according to the pe-

riods of data loss observed in the eye-tracking data. Second,

valid data had to be available for at least two samples at each

end of the missing window.

A B

Fig. 2 Overview of the I2MC algorithm: (A) flow-chart for the entire algorithm, and (B) the specific steps of the clustering procedure (as outlined in the

Two-Means Clustering section)

Behav Res (2017) 49:1802–1823 1807



Two-means clustering

Following interpolation, a moving window of 200 ms width

slides over the gaze position signal. The value of 200 ms was

chosen here so that a window generally would contain parts of

at most two, and no more, fixations. For each window, a two-

means clustering procedure is carried out. Two-means cluster-

ing is a variant of k-means clustering (where k = 2 in this

case), a procedure in which a number of observations are

clustered iteratively into k clusters (see, e.g., Jain, 2010).

The observations belonging to each cluster are those that are

closer to the mean of that cluster’s observations than to the

mean of any other cluster. In the present application, portions

of the gaze position signal within a moving window are forced

into two clusters. The overarching idea is that if the gaze

position signal in a given window contains a saccade, there

will be few cluster membership transitions, and these will be

concentrated around a specific point in time—the time point

of the saccade. If, however, the gaze position signal in a given

window contains only a fixation, the cluster membership tran-

sitions between the two clusters are driven only by the noise in

the fixations. They may thus occur frequently and are likely to

be spread out across the whole window. The specific algorith-

mic steps of the clustering procedure, which are depicted in

Fig. 2, panel B, are as follows:

(1) If the current window contains nomissing data (if it does,

go to Step 4): Force the gaze position signal into two

clusters. Cluster membership is a value of either 1 or 2

(i.e., the cluster the sample belongs to). It is important to

note that cluster membership itself is not relevant, but

only where the membership transitions occur from

Cluster 1 to Cluster 2, or vice versa. Only the times at

which these transitions from one cluster to another occur

are used in the next step.

(2) Construct a clustering weight for the current window

from the cluster membership determined in Step 1. The

clustering weight for samples in which a cluster mem-

bership transition occurs is 1/number of total transitions

in the window. The clustering weight for the other sam-

ples (i.e., those at which no transition occurs) is 0. If, for

example, one transition occurs from Cluster 1 to Cluster

2, as in the saccade example in Fig. 2, the clustering

weight for the sample containing the transition is 1. For

all samples containing a transition in the fixation exam-

ple in Fig. 2, the clustering weight is much lower, be-

cause there are many transitions from one cluster to the

other in the window.

(3) To ensure that transitions are not caused solely by high-

frequency noise in the data, down-sample the gaze posi-

tion signal to integer divisions of the original sampling

frequency, and repeat Steps 1 and 2 for each down-

sampled position signal. For example, the data in Fig. 2

(and in this article) were recorded at 300 Hz and down-

sampled to 150, 60, and 30 Hz. The clustering weights

for the gaze position signal at its original sampling fre-

quency, as well as the down-sampled signals, are subse-

quently summed.

(4) Move the window in the gaze position signal. The win-

dow may be moved either one sample or a number of

samples.We used a step of 20ms (six samples at 300 Hz)

here, because it provides nearly identical results to mov-

ing the window one sample, but decreases the computa-

tion time sixfold. This step size is, however,

configurable. If the subsequent window contains missing

data or is moved past the end of the data, go back in steps

of one sample to determine the last possible window. If

no additional windows are possible backward in time up

to the previous possible window, find the first possible

window after the period of missing data. As long as the

end of the window does not reach the end of the gaze

position signal, return to Step 1.

(5) For each sample, average the clustering weights assigned

in Steps 1–3 for each time that sample was included in

the moving window. For example, if a sample was in-

cluded in three windows, it will have been assigned three

clustering weights, and these three weights are averaged.

The subsequent clustering-weight signal (see Fig. 2) can

now be used for fixation detection.

For binocular eye-tracking data, the clustering procedure

described above was run on the data for the left and right eyes

separately. These two clustering-weight signals were then av-

eraged to determine the final clustering-weight signal. Doing

this has the advantage that if only one eye moved according to

the eye-tracker, which most likely represents noise, the result

is unlikely to lead to a large peak in the clustering-weight

signal. For monocular eye-tracking data, and when the data

from only one eye are available in binocular eye-tracking data

due to data loss, the clustering-weight signal from that one eye

is used.

Fixation labeling

The categorization rules for the present algorithm are as fol-

lows. A cutoff is used to determine fixation candidates from

the clustering-weight signal (see panel B in Fig. 2). Here we

used a cutoff of the mean clustering weight plus two standard

deviations. However, different cutoffs may be required for

different datasets. All periods of clustering-weight signal be-

low this cutoff are labeled as fixation candidates, and thereaf-

ter consecutive fixation candidates are merged. Finally, short

fixation candidates are excluded from the output. The settings

for merging fixation candidates may depend on the stimuli

used in the experiment, the noise level in the eye-tracking

data, or the size of the saccades of interest. Here we opted
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for merging fixation candidates that were less than 0.7° apart

and were separated by less than 40 ms. Fixation candidates

shorter than 40 ms were removed.

The options that may be set in the algorithm and their

suggested values are summarized in Table 1.

Method

The algorithms were compared in terms of the following out-

come measures: the number of fixations, the mean fixation

duration, and the standard deviation of the fixation duration.

These outcome measures were obtained from eye movement

data with increasing noise amplitude and periods of data loss,

as well as the combination of the two. A dataset consisting of

binocular data that were recorded with the SR Research

EyeLink 1000 by Hooge, Nyström, Cornelissen, and

Holmqvist (2015) was used, in which the noise amplitude

and data loss were artificially increased. This dataset was cho-

sen on the basis of its low noise amplitude and low data loss

levels. In Hooge et al.’s experiment, the participants made

horizontal and vertical saccades of a wide range of amplitudes.

To examine robustness, the noise amplitude and data loss

level in the data were artificially increased. To provide a valid

test of algorithm performance, it is important that the added

noise and data loss be representative of levels that actually

occur when doing eye-tracking research in suboptimal condi-

tions. To achieve this, we first characterized what the noise

and data loss looked like in a set of infant data recorded by

Hessels, Andersson, et al. (2015; for an example, see the bot-

tom panel of Fig. 1). We subsequently developed methods to

add noise and data loss with these characteristics at varying

levels to our clean data. These methods are described in detail

in Appendix A. The noise level was varied from a sample-to-

sample root-mean square (RMS) noise level of 0 to 5.57°. The

latter value was chosen as being beyond the upper limit for

noise typically encountered in eye movement data. For com-

parison, the RMS noise level in infant eye movement data

rarely exceeds 3° (Hessels, Kemner, van den Boomen, &

Hooge, 2015). Data loss was varied by changing the occur-

rence of periods of data loss from 0 % to 100 % of a trial.

Because the noise and data loss were characterized in a dataset

recorded at 300 Hz, our clean data to which we subsequently

added noise and data loss were down-sampled from 1000 to

300 Hz using first-order interpolation.

After examining the noise robustness of I2MC and com-

peting algorithms in eye movement data with a range of arti-

ficially generated noise and data loss levels, we applied the

algorithms to real infant data. To interpret the outcome mea-

sures of the algorithms when applied to the infant data, four

eye movement experts (authors R.H., D.N., and I.H., as well

as an external expert) hand-coded the fixations in the infant

data. A subset of the infant data from Hessels, Hooge, and

Kemner (2016) were extracted for manual coding. The data

from 20 infants, amounting to a total of 40 min of eye move-

ment data, were coded. Hand coding was done in custom

MATLAB software and took eachmanual coder approximate-

ly 3 h to complete.

Algorithms for comparison

Seven algorithms were chosen for comparison against the

I2MC algorithm. Because only three of the seven algorithms

provided output for all noise and/or data loss levels, only these

Table 1 Settings for the identification by two-means clustering (I2MC) algorithm and their suggested values for data at 300 Hz

Setting Used Value(s) at 300 Hz Impact When Changed

Interpolation window 100 ms Increase will lead to interpolation of blinks, decrease will lead

to less periods of data loss being interpolated.

Interpolation edge 6.7 ms (two samples) Increase will require more data points at data loss edge, and will

not interpolate in the event of flicker (i.e., repetition of short

period of data loss and data points). At least two samples are required.

Clustering window size 200 ms Increase will lead to clustering procedure being more readily carried

out over saccade-fixation-saccade sequence.

Downsampling 150, 60, and 30 Hz Removal of downsampling steps will lead to more susceptibility to

short bursts of noise.

Window step size 20 ms We observed no difference between 3.3 and 20 ms.

Clustering-weight cutoff 2 standard deviations above the mean Increase will lead to fewer fixation candidates (more conservative),

decrease to more fixation candidates (more liberal).

Merge fixation distance 0.7° Increase will lead to more fixation candidates being merged.

Merge fixation time 40 ms Increase will lead to more fixation candidates being merged.

Min. fixation duration 40 ms Increase will lead to more short fixation candidates being excluded.
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algorithms are discussed here. The remaining four algorithms

are included in Appendix B. For each algorithm, only param-

eters that were dependent on the sample frequency of the input

data were adjusted. They were set to match their initial values

for the 300-Hz data we used here. The search and categoriza-

tion rules, as well as the motivation for including each algo-

rithm, are described below.

Adaptive velocity algorithms for low-frequency data An

implementation of an adaptive velocity search rule is given

by Hooge and Camps (2013; hereafter, HC). Their algorithm

labels fixations instead of saccades and was originally de-

signed for low-frequency (120 Hz or lower) eye movement

data. The categorization rules that they employed are (1) ad-

jacent fixations that are less than 1.0° away from each other

are merged, and (2) fixations shorter than 60 ms are excluded.

This algorithm’s was included because it is a simple fixation-

labeling algorithm with few parameters that is based on a

threshold that is adaptive to the noise level in the data.

Binocular-individual threshold Another implementation of

an adaptive velocity search rule was given by van der Lans,

Wedel, and Pieters (2011). They described their algorithm as

follows: BOur Binocular-Individual Threshold (BIT) algorithm

for identifying fixations is . . . a parameter-free fixation-identi-

fication algorithm that automatically identifies task- and

individual-specific velocity thresholds by optimally exploiting

the statistical properties of the eye-movement data across dif-

ferent eyes and directions of eye movements^ (p. 240). The

algorithm improves over standard adaptive velocity search rules

by using the covariance between movement of the left and right

eyes. If the left eye moves in a given direction, the right eye

often does so too, whereas in noise the movement of the two

eyes is uncorrelated. Given this feature, the BIT algorithm may

more readily be able to distinguish saccades from noise than are

standard velocity algorithms, and therefore we included it in

this comparison. No further categorization rules are reported

by the authors for the algorithm.

Identification by analysis of variance and covariance

Veneri et al. (2011) designed a fixation-labeling algorithm

(hereafter, C-DT) with a search rule based on the covariance

of the horizontal and vertical eye position signals. The algo-

rithm labels gaze samples as belonging to a fixation when an F

test indicates that the variances of the horizontal and vertical eye

positions are equal. When the covariance between x- and y-

coordinates is high, samples are labeled as belonging to a sac-

cade. The remaining samples are labeled according to a com-

bination of their covariances and the F test for equal variances.

Veneri et al. reported that their C-DT algorithm identified fixa-

tions more accurately than a standard dispersion algorithm

when the noise amplitude was high. The reason it was included

is that it appears to be robust to noise. No further categorization

rules are reported by the authors for the algorithm.

Results

RMS noise

The numbers of fixations, mean fixation durations, and stan-

dard deviations of the fixation durations were calculated for all

algorithms as a function of the RMS noise level added to the

eye movement data. As is depicted in Fig. 3, how the algo-

rithms’ outputs were affected by the noise level varied greatly.

The HC and BIT algorithms showed immediate decreases in

the numbers of fixations detected as noise increased. The

number of fixations for the HC algorithm slowly decreased

but did not quite reach zero. For the BIT algorithm, the num-

ber of fixations stabilized at RMS noise values larger than 2°.

The CDTalgorithm showed a steady increase in the number of

fixations detected as the noise level increased. Finally, the

I2MC algorithm produced a fairly consistent number of fixa-

tions as a function of noise level, with only a small increase in

the total number when more than 5° of RMS noise was added

to the eye movement data.

The HC algorithm showed an increase in the mean fixation

duration as noise increased, as well as an increase in the stan-

dard deviation of the fixation durations. The BIT algorithm

also showed increases in both the mean fixation duration and

the standard deviation of the fixation duration. The CDT al-

gorithm showed a slowly decreasing, but still fairly consistent,

mean fixation duration and standard deviation of the fixation

duration. Finally, the I2MC algorithm showed both a fairly

consistent mean fixation duration and standard deviation of

the fixation duration as a function of noise level, with only a

small decrease in the mean fixation duration when more than

5° of RMS noise was added to the eye movement data.

These findings show that the outcome measures from the

I2MC algorithm were most robust, among the algorithms we

tested, to increasing noise levels in the eye movement data.

Variable RMS noise

To determine how robust the algorithmswere to large variations

in noise level during a single portion of the eye movement data,

the RMS noise level was increased only in segments totaling

half of the trial. This mimicked short bursts of noise, as may

occur, for instance, when tracking is unstable for one part of the

screen. The eye movement data in each trial thus contained

periods both with and without added RMS noise. As is depicted

in Fig. 4, we again observed some variation between the algo-

rithms’ reported numbers of fixations, mean fixation durations,

and standard deviations of the fixation durations. The results for

the numbers of fixations detected closely resembled those from
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the earlier RMS noise analyses, although the decreases and

increases were smaller. The BIT and HC algorithms showed

decreases in the number of fixations, whereas the CDT algo-

rithm showed an increase in the number of fixations. Finally,

the I2MC algorithm showed a stable number of fixations as a

function of variable RMS noise level.

For the mean fixation durations and the standard deviations

of the fixation durations, the results overall matched the pre-

vious RMS noise analyses, albeit once again with smaller

increases and decreases.

Data loss

The numbers of fixations, mean fixation durations, and stan-

dard deviations of the fixation durations were calculated for all

algorithms as a function of the amount of data loss added to

the eye movement data, from 0 % (no data loss occurring) to

100 % (data loss could occur throughout an entire trial). As is

depicted in Fig. 5, the differences between the algorithmswere

much smaller than in the previous analyses. The CDT algo-

rithm showed an increase in the number of fixations as data

loss increased, but the BIT algorithm, on the other hand,

showed a decrease in the number of fixations as data loss

increased. Both the HC and I2MC algorithms were stable with

regard to the number of fixations as a function of the data loss

added to the eye movement data.

For the CDT algorithm, the mean fixation duration and

standard deviation of the fixation duration decreased as a func-

tion of data loss. For the HC algorithm, a slight decrease was

followed by an increase, and then again by a decrease for both

the mean fixation duration and the standard deviation of the

fixation duration as a function of data loss. Finally, for the BIT

and I2MC algorithms, the mean fixation duration was fairly

stable as data loss increased.

Combined noise and data loss

As a final test of the robustness of the outcomemeasures of the

four algorithms, a combination of RMS noise and data loss

was added to the eye movement data.

As we described in the noise analysis, and as is visible in

the left column of Fig. 6, there was only a small increase in the
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number of fixations detected by the I2MC algorithm as the

RMS noise increased. When both data loss and noise in-

creased, the increase in the number of fixations detected was

somewhat larger than when only the noise level increased.

Consequently, the mean fixation duration and the standard

deviation of the fixation duration both decreased with increas-

ing noise level, and more so when data loss also increased. For

the three competing algorithms (HC, BIT, and CDT), the dif-

ferences in performance are markedly larger. As is visible in

the second column of Fig. 6, the number of fixations de-

creased for the HC algorithm as the noise level increased.

Moreover, the differences between the levels of data loss were

large, and the number of detected fixations increased fourfold

as data loss increased at the highest noise level. For the HC

algorithm, the mean fixation duration and the standard devia-

tion of the fixation duration as a function of noise level in-

creased most for the lowest data loss level, and appeared to be

most robust for the highest data loss level (we return to this

apparent robustness shortly). As is visible from the third col-

umn of Fig. 6, the results for the BIT algorithm are similar to

those from the HC algorithm. However, whereas the HC al-

gorithm showed an increasing number of fixations and a

decreasing mean fixation duration and standard deviation of

the fixation duration across all noise levels, the values for the

BIT algorithm appeared to stabilize for RMS noise levels

greater than 2°, albeit with marked differences between the

levels of data loss. Finally, as is visible in the right column

of Fig. 6, the number of detected fixations for the CDT algo-

rithm increased as a function of noise level for all levels of

data loss. Consequently, the mean fixation duration and the

standard deviation of the fixation duration both decreased as a

function of noise level for all levels of data loss. Our conclu-

sion was that the number of fixations, mean fixation duration,

and standard deviation of the fixation duration were all most

robust for the I2MC algorithm as noise level and/or data loss

increased.

Interpreting noise robustness

For three of the algorithms, there was at least one data loss level

at which the outcome measures were robust to changes in noise

level. First, the outcome measures from the I2MC algorithm

were the most robust, among all the algorithms, to noise level,

data loss level, and the combination thereof. Second, the
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outcome measures for the BIT algorithm were relatively robust

to increases in noise level, albeit with marked differences be-

tween the different levels of data loss. Third, the outcome mea-

sures reported for the HC algorithm were robust to increases in

noise level for the highest data loss level. To interpret this noise

robustness, we examined the precise differences in the distribu-

tions of fixation durations between these algorithms. Thus, 2-D

histograms of fixation duration were computed for the varying

noise and data loss levels. As is visible in Fig. 7 (top panels), the

distribution of fixation durations detected by the I2MC algo-

rithm remained almost unchanged from 0° to 0.85° RMS noise

and from 0 % to 100 % data loss. Note that, because a number

of fast corrective saccades followed undershoot of the target in

this dataset, there is a large peak in fixation duration around

~140 ms. For higher RMS values, fewer short fixations were

reported, and consequently relatively more longer fixations

were reported. The differences in the distribution of fixation

durations as a function of data loss remain minimal for the

1.96° RMS noise level. For the higher RMS noise levels

(3.53° and 5.57°), a larger number of longer fixation durations

were reported in general than at the lower RMS noise levels.

Moreover, more short fixations were reported at the higher data

loss levels for these two RMS noise levels.

For both the HC and BIT algorithms (middle two rows

of Fig. 7), there were few differences in the distributions

of fixation durations as data loss increased for the lowest

RMS noise level. For RMS noise levels of 0.85° and up,

however, both algorithms reported progressively fewer

short fixation durations for the lowest data loss level.

When data loss increased, progressively more short fixa-

tions were again reported. This suggests that both the HC

and BIT algorithms detected longer fixations when noise

increased, which were subsequently broken up into

shorter fixations when data loss increased. Finally, for

the CDT algorithm, progressively more short fixations

were reported when the RMS noise exceeded 1.96°. The

differences between the distributions of fixations dura-

tions for the varying data loss levels were minimal, most

probably due to the fixation durations already being ex-

tremely short. As is visible in Fig. 8, the numbers of

fixations and the fixation durations detected by the

I2MC algorithm were more noise-invariant than the out-

puts of the other three algorithms. To conclude, the num-

bers of fixations and the distributions of fixation durations

in the output from the I2MC algorithm were affected least

by both noise level and data loss level.
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Applying the algorithm to infant data

After ascertaining the noise robustness of the I2MC algorithm, it

and the competing algorithms were applied to 40 min of infant

data. The average numbers of fixations per trial and the mean

fixation durations were calculated for the I2MC, HC, BIT, and

CDT algorithms, as well as for the four expert coders. The algo-

rithm that best approached the average of the four expert coders

was considered the best in the application to infant data. As is

visible in Fig. 9, there was some variability in the outcome mea-

sures of the expert coders. Moreover, the expert coders generally

detected fewer fixations per trial, and the mean fixation duration

was generally longer than with the algorithms. When comparing

the algorithms to the average of the four expert coders, a couple

of conclusions can be drawn. The HC and BIT algorithms de-

tected approximately one or two fixations more per trial than the

average of the expert coders, and the mean fixation duration was

between 100 and 150 ms shorter than the average of the expert

coders. Both the CDT and I2MC algorithms approximated the

average of the expert coders better, and the I2MC did so the best.

The differences between the results from the I2MC algorithm

and the average of the four expert coders were 0.77 fixations

per trial and 24 ms in mean fixation duration.

Three representative excerpts of infant eye movement data

with varying noise levels are depicted in Fig. 10. When consid-

ering the trial with the lowest noise level (left panel), the numbers

and durations of the fixations detected by the four algorithms and

the four coders are highly similar. However, for the trial with

higher noise levels (middle panel), HC and BIT detected more

fixations than did I2MC, CDT, and the expert coders. Finally, for

the trial with the highest noise level (right panel), CDT also

detected more fixations than the four expert coders. Across the

different noise levels, the I2MC algorithm best agreed with the

four expert coders. The main difference between the I2MC algo-

rithm and the expert coders was that the fixation durations were

slightly longer for the I2MC algorithm. In conclusion, the I2MC

algorithm not only performs best in eye movement data with

artificially increased noise and data loss levels, but also when

applied to actual infant data.

Discussion

The purpose of the present work was to address the need

for an algorithm capable of labeling fixations across a

wide range of noise levels in data in which periods of
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data loss may occur. This is particularly relevant because

of the rise of remote video eye-tracking in participant

groups such as infants, school children, and certain patient

groups whose body movement is difficult to restrain–

which may strongly affect the eye movement data quality.

Here we proposed and evaluated a new algorithm de-

signed specifically for eye movement data of varying data

quality: identification by two-means clustering.

Fig. 8 Fixations labeled by the four algorithms for the data prior to

adding RMS noise (left), as well as with 1.96° (middle) and 5.02°

(right) of added RMS noise. The fixations labeled by the algorithms are

presented in the bottom rows. The data are from a trial in which 10°

horizontal saccades had to be made
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Fig. 7 2-D histograms of fixation durations for fixations detected by the

I2MC, HC, BIT, and CDTalgorithms. The columns depict different noise

levels, from low (left) to high (right). Within each histogram, five levels

of data loss are depicted, from 0 % (left) to 100 % (right) of the trial.

Redder colors indicate more detected fixations, and bluer colors fewer

detected fixations
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In comparison with other state-of-the-art event detection algo-

rithms, we found the following. First, we report that the numbers

of fixations, mean fixation durations, and standard deviations of

the fixation durations recorded by the I2MC algorithmweremost

robust to increases in noise level than the same measures record-

ed by competing algorithms. This was the case both when the

noise level was increased for the entire eye movement signal and

when the noise level was increased for only part of the eye

movement signal, mimicking short bursts of noise. Second, dif-

ferences between the algorithms were smaller for the data loss

analysis than for the noise analyses. However, the outcome mea-

sures of the I2MC and BIT algorithms were most robust to

increases in data loss. We report that when adding both noise

and data loss to eye movement data, the outcome measures for

the I2MC algorithm are most robust. This was particularly the

case for 0°–2° of noise, at which levels the outcome measures

were almost identical. Since the BITalgorithm appeared to show

stable outcome measures as a function of noise for noise ampli-

tudes larger than 2°, albeit with marked differences between the

data loss levels, and the HC algorithm showed stable outcome

measures for the highest data loss level only, we examined the

distributions of fixation duration more closely. Here, we report

that the I2MC algorithm showed nearly identical distributions of

fixation durations for the lowest noise levels, regardless of data
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bottom rows. Noise levels were estimated by computing the RMS noise

of the longest fixation detected by the I2MC algorithm
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Fig. 9 Average numbers of fixations per trial (left) and average fixation durations (right) for infant eyemovement data, as reported by the four algorithms

and four coders. Error bars represent standard errors of the means, and the dashed lines indicate the averages of the four coders
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loss level, whereas differences in the distributions of fixation

durations for the competing algorithms were already present at

the lowest noise levels. However, when the noise amplitude was

larger than 2°, the distribution of fixation durations according to

the I2MC algorithm also began to show marked differences as

compared to the lower noise levels. Finally, when the I2MCwas

applied to infant data, the outcomemeasures best approached the

average of those of four expert coders, as compared to the other

algorithms. We concluded that the outcome measures for the

I2MC algorithm were most robust to noise, most notably in the

range 0°–2° of RMS noise (for each data loss level) added to the

eye movement data.

If we compare the noise robustness of the I2MC algorithm to

what has been found in previous research, we see that it also

compares favorably to manufacturer-provided algorithms. For

instance, Zemblys and Holmqvist (2016) reported that the num-

bers of fixations and mean fixation durations for the SMI I-VT

and I-DT algorithms changed drastically for noise levels higher

than 0.25° RMS. In addition, they created a mathematical model

to estimate the best-compromise threshold for the SMI

dispersion- and velocity-threshold algorithms from the noise

levels observed in the eye movement recording. Although

adjusting the threshold may compensate for higher noise levels,

this comes at the cost of reduced agreement of the algorithms’

output (i.e., numbers of fixations and mean fixation durations)

relative to the gold standard. Moreover, a large-scale study of

data quality revealed that many of remote eye-trackers produce

data with noise levels over 2° for some of participants, with

infrequent recordings in which the RMS noise level was even

over 3° (Zemblys & Holmqvist, 2016). In addition, Hessels,

Kemner, et al. (2015) reported that the RMS noise was rarely

over 3° in infant research. The fact that the outcome measures of

the I2MC are noise-robust, and particularly so between 0° and 2°

RMS noise, means that the algorithm may apply to most real-

world situations. Moreover, no parameters need to be adjusted to

achieve the same output of the fixation parameters when the

noise level varies between 0 and 2°, whereas this was the case

for manufacturer-provided algorithms in this range (Zemblys &

Holmqvist, 2016).

As we noted in our introduction, a fixation is defined by how

it is computed. This means that a fixation for one algorithm is not

the same as a fixation for another algorithm. Evenwhen the noise

level was low in the eye movement data investigated here, there

were large differences between algorithms in the numbers of

fixations and the fixation durations (see also Appendix B). This

was not only a result of the search rule algorithms apply to find

fixation candidates, but also of the categorization rules used to

merge or exclude these fixation candidates. When one algorithm

excludes more fixation candidates under uncertainty, it will pro-

duce fewer fixations as output than will an algorithm that does

not exclude any fixation candidates. As such, comparing fixation

parameters between algorithms is like comparing apples and

oranges. Instead of doing so, we first compared the fixation

parameters for each algorithm to itself as a function of data qual-

ity—the absolute values for each algorithm were not so impor-

tant, only the change in the value as a function of noise or data

loss. In essence, we compared apples to apples, and oranges to

oranges. Here we have presented an algorithm that produces the

same output under a wide range of circumstances—the apple

remains roughly the same, regardless of the situation. Does this

then mean that the output of the presented algorithm is Bgood^?

That is a very difficult question to answer. Commonly in the

literature, this question is tackled by comparing the output of

an algorithm to an expert coder. Here, when comparing the out-

come measures of I2MC and the competing algorithms to the

output of four expert coders, I2MC also outperformed the other

algorithms. It should be noted, however, that the expert coders

did not produce identical outcome measures, such that the ques-

tion becomes how informative one expert coder actually is.

Future research should examine whether expert coders serve as

a good gold standard for event detection algorithms.

The I2MC algorithm is applicable to fixation labeling in

situations in which the data quality may be low—for instance,

when working with infants, school children, or certain patient

groups. The I2MC algorithmmay also be used when the noise

and data loss levels are markedly different between trials and/

or participants; the outputs should be comparable despite these

differences in noise and data loss levels. This is also particu-

larly relevant for studies in which two groups are compared:

For instance, Shic, Chawarska, and Scassellati (2008) reported

that changing the parameters of a fixation detection algorithm

may reverse the effects between toddlers with autism spec-

trum disorder and typically developing controls. In addition,

recent work has also suggested that differences in data quality

between groups should be carefully monitored (Keehn &

Joseph, 2016). Here, using an algorithm whose outcome mea-

sures are robust to differences in data quality between groups

may be a better solution.

Although the I2MC algorithm may be applicable in a wide

range of studies, it has several limitations. First, the algorithm is

built only for labeling fixations. When saccade parameters are of

interest, for example, the I2MC is not a sensible analysis tool.

Second, we restricted the present study to labeling fixations in

data collected with remote or tower-mounted eye-trackers using

static stimuli.When head-mounted eye-trackers are used, the gaze

position signal is complicated by periods of optokinetic nystag-

mus and the vestibulo-ocular reflex, whichmay require a different

event detection strategy.Moreover, whenmoving stimuli are used

in remote or tower-mounted eye-trackers, smooth pursuit move-

ments may occur. Recent work has begun to address event detec-

tion in these situations (Larsson et al., 2015). In addition, a general

limitation to the present work is that we focused on 300-Hz data,

whereas a broad range of sampling frequencies are being used in

eye-tracking research. Moreover, although the selection of algo-

rithms against which we tested the I2MC algorithm was motivat-

ed, it represents but a subset of the entire event detection catalog.
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Conclusion

Herewe presented a fixation detection algorithm for eye-tracking

data recorded with remote or tower-mounted eye-trackers using

static stimuli. The algorithm works offline and is automatic. The

key improvementmade by this algorithm is that it labels fixations

across a wide range of noise levels and when periods of data loss

may occur.
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Appendix A

Noise

Here we describe how the noise characteristics of the infant

eye movement data were determined and re-created. The fol-

lowing steps were performed:

1. We performed event detection on the eye movement data

using I2MC (chosen for its event detection over a wide

range of noise levels and data loss).

2. For each trial we selected all fixations that were at least

400 ms long.

3. For each of these fixations, we determined the frequency

characteristics of the noise separately for the horizontal

and vertical eye position signals as follows:

a. We centered and Fourier-transformed the central

400 ms of the fixation using the FFT algorithm in

MATLAB R2015b, yielding the frequency domain

Fourier coefficients Ck , where k ranges from 0 to 60

for our 400 ms of data at 300 Hz.

b. We then calculated the power spectral density (PSD)

using standard techniques. Specifically, using the

symmetry of the Fourier coefficients around the

Nyquist frequency that is obtained when transforming

a real signal, the PSD was obtained as CkCk
*=120*2.

c. Noise can be characterized by the examining how the

PSD changes as a function of frequency. In biological

systems, the PSD is often inversely proportional to the

frequency, and as such characterized by 1= f α, where f
is the frequency and α is a scaling exponent. Such

scaling relationships have also been observed in human

eye movements, with scaling exponents between –0.6

and –2 (Coey,Wallot, Richardson, & van Orden, 2012;

Findlay, 1971; Wang, Mulvey, Pelz, & Holmqvist,

2016). The α value was determined by the slope of a

straight line fitted to the PSD in log–log space.

d. The mean slopes of all fixations were –0.48 for the

horizontal axis and –0.54 for the vertical axis, which

were values comparable to previous results (Coey

et al., 2012). However, as is visible in Fig. A1, there is

considerable variation in the observed slopes. To ensure

that we adequately represented the observed range of

slopes in the noise generated below,we cast the fixations

into 100 bins (each containing an equal number of data

points), based on the slope obtained from the PSD fit.

We then determined themean PSD in each bin by taking

the PSDs for all trials in the bin and averaging these.

The distribution of PSDs thus derived was used to generate

random noise with sample-to-sample RMS levels between 0°

and 5.57°. For each noise level, a noise signal was generated

and added to each trial of the dataset with the following

procedure:

1. Randomly choose one of the 100 PSDs generated from the

infant data set.

2. Interpolate the PSD so that it corresponds to the number

of samples for which we want to generate data.

3. Generate a random signal with the same number of sam-

ples as the trial, and take its Fourier transform. Combine

the phase spectrum of this signal with the interpolated

PSD generated in Step 2.

4. Compute the random noise time series with the target PSD

by taking the inverse Fourier transform of the combined

signal from Step 3.

5. Determine the sample-to-sample RMS of this noise time

series and scale the time series to achieve the desired RMS

noise level.

Data loss

We have previously described the empirical distribution of

durations of data loss for the baby dataset used here

(Hessels, Andersson, et al., 2015). To be able to generate

representative data loss, we expanded on this by also describ-

ing the distribution of the durations of data between the pe-

riods of data loss and the relationship between the duration of

one period of data loss and the duration of the following pe-

riod of data loss. To determine these relationships, we ana-

lyzed the data loss in the baby data with the following

procedure:

1. For each period of data loss, we computed its duration, the

duration of data until the next period of data loss, and the

duration of the next period of data loss.
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2. We summarized these data as a 3-D histogram indicating

the frequencies of co-occurrence of every possible com-

bination of the three variables. Because none of the algo-

rithms deal with loss periods longer than 100 ms, the

histogram was truncated to this value for loss duration

and the next loss duration.

It should be noted that the procedure above describes what

the loss looked like when there was loss; it does not capture

how frequently loss occurred overall in the data. For instance,

trials in which no loss occurred, as well as the data duration

before the first loss period and after the last loss period in a

trial, are not represented in our histogram. However, the aim

was that the data loss that was present be representative of

how data loss occurs in suboptimal recordings. Given the

above histogram as input, we sampled data loss and added it

to between 0 % and 100 % of a trial, with the following

procedure:

1. For the first data loss period, randomly choose a point in the

3-D histogram, taking the relative frequency of occurrence

as a probability weighting for each point being selected.

2. Then, for all the next samples, use the duration of the next

period of data loss, just given by the previous sample, to

determine the duration of the current loss period. Then

sample from the subset of the 3-D histogram given by the

current data loss duration to determine the duration of data

until the next period of data loss and the duration of the next

period of data loss, again using the relative frequencies of

occurrence of each combination as probability weights.

3. Continue with Step 2 until data loss has been generated

for the whole trial. Step 1 is repeated in the very rare case

that there are no observations of a given loss duration in

the 3-D histogram.

To add data to a specific percentage of a trial, we defined 24

equally spaced time points in the trial. Data loss was added in

windows centered on these time points, with the window size

set such that the desired amount of loss was attained.

Appendix B

Additional algorithms for comparison

Adaptive velocity algorithm (NH) A recent advancement

in event detection was introduced by Nyström and

Holmqvist (2010). Their search rule first labels periods

of data as noise when the velocity exceeds a physiolog-

ical implausible value. Subsequently, a velocity thresh-

old adapts to the remaining noise level for finding sac-

cade-candidates, which are labeled as saccades if they

exceed the minimum saccade duration (i.e., the catego-

rization rule for saccades). Hereafter, periods of data

following a saccade are labeled as postsaccade oscilla-

tions if they contain a peak exceeding a certain velocity

threshold. Finally, the remaining samples are labeled as

fixation candidates. If consecutive samples exceed the

minimum fixation duration (i.e., the categorization rule

for fixations) of 40 ms, they are labeled as a fixation.

The reason for its inclusion in the present comparison

was that, in our experience, it is one of the best event

detection algorithms currently available for low-noise

data. We reasoned that, since it employs an adaptive

velocity threshold set depending on the noise level in

the data, the outcome measures derived from its output

might be robust to noise for at least a range of noise

levels.

Identification by velocity threshold for low- and high-noise

data (WSJ)Wass et al. (2013) adapted a velocity thresh-

old search rule with several post-hoc categorization

rules, as we detailed in the introduction. In short, the

algorithm uses a fixed velocity threshold to determine

fixation candidates, and thereafter excludes those fixa-

tion candidates that are unlikely to be genuine fixations

according to a set of rules. The reason the algorithm

was included here is that it was specifically designed

to accomplish fixation labeling in both low- and high-

noise data.

Identification by Kalman filter (I-KF) In the I-KF algo-

rithm, a Kalman filter is used to predict the eye velocity

of the current sample on the basis of the observed eye

velocities of the previous samples in a noise-suppressing

manner. In its search rule, the samples for which the

observed velocity differs significantly from the predicted

velocity (using a chi-square test) are flagged as saccade

candidates (Sauter, Martin, Di Renzo, & Vomscheid,

1991; see also Komogortsev & Khan, 2009). The im-

plementation by Komogortsev et al. (2010) was used in

the present comparison. Their categorization rules were

subsequently: If fixation candidates are separated by a

Euclidean distance of less than 0.5° and less than 75 ms
Fig. A1 Boxplots for the slopes of the linear fit to the power spectrum

density (PSD) for the horizontal and vertical gaze coordinates
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in time, fixation candidates are merged. Fixation candi-

dates shorter than 100 ms are excluded.

Identification by minimum spanning tree (I-MST) A min-

imum spanning tree algorithm aims to connect all 2-D gaze

coordinates with line segments in a tree in such a way that the

total length of these line segments is minimized (Salvucci &

Goldberg, 2000). In an ideal situation, short line segments

connect gaze coordinates during a fixation, and longer line

segments connect the separate fixations with each other. The

reason I-MST is included here is because BThe advantage of

using an I-MST is the algorithm’s ability to correctly identify

fixation points, even when a large part of the signal is missing

due to noise^ (Komogortsev et al., 2010, p. 2638). The imple-

mentation of I-MST used in the present comparison was pro-

vided by Komogortsev et al. (2010). Their subsequent catego-

rization rules were: If fixation candidates are separated by a

Euclidean distance of less than 0.5° and less than 75 ms in

time, fixation candidates are merged. Fixation candidates

shorter than 100 ms are excluded.

Results and conclusions for the additional algorithms

As can be seen in Fig. B1, the outcome measures of the NH,

WSJ, I-KF, and I-MST algorithms are not robust to increases

in noise level in the eye movement data. As is visible in

Fig. B2, this is also the case for combinations of increases in

noise and data loss levels. Importantly, the NH, WSJ, and I-

KF algorithms report few or no fixations when the noise level

is over 2° RMS noise. Moreover, the numbers of fixations,

and consequently the mean fixation durations, are not robust

to changes in noise level between 0° and 2° of RMS noise.We

concluded that the four additional algorithms do not improve

over the I2MC and the algorithms already introduced in the

main body of the article. Finally, Table B1 depicts the percent

changes in the numbers of fixations, mean fixation durations,

and standard deviations of the fixation durations for the noise,

variable-noise, and data loss analyses for all eight event de-

tection algorithms. The percent changes in the outcome mea-

sures of the I2MC algorithm are smallest, and the I2MC algo-

rithm is therefore considered most robust to changes in eye

movement data quality.
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detection algorithms as a function of RMS noise added to the eye movement data
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tional algorithms as a function of noise level in the eye movement data.

From left to right, the columns depict the NH, WSJ, I-KF, and I-MST

algorithms. Separate lines indicate data loss added to from 0 % (lightest

gray) to 100 % (black) of a trial

Table B1 Percent changes in numbers of fixations, mean fixation durations, and standard deviations (SDs) of the fixation durations after adding noise,

variable noise, and data loss for all algorithms

Percentage Change: Number of Fixations Percentage Change: Mean Fixation Duration Percentage Change: SD of Fixation Duration

Algorithm Noise Variable Noise Data Loss Noise Variable Noise Data Loss Noise Variable Noise Data Loss

I2MC 17 –7 6 –16 7 –8 –7 –1 –2

HC –82 –77 –8 594 447 –35 1,881 1,598 –30

NH –100 –96 –76 * –26 91 * –38 75

WSJ –100 –87 –94 * –26 –50 * –2 –49

KF –100 –50 25 * 0 –48 * 0 –48

MST –99 –50 7 –79 –2 –56 –97 0 –42

BIT –64 –84 –17 360 382 –12 743 199 –29

CDT 144 73 62 –62 –43 –48 –53 0 –29

*Because no fixations were detected for the highest noise level, reporting changes in mean fixation duration and the SD of fixation duration is not

informative: Changes in the means (and SDs) of fixation duration may have been positive or negative for the last noise level at which fixation detection

was achieved
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