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Noise Spectrum Estimation in Adverse
Environments: Improved Minima Controlled

Recursive Averaging
Israel Cohen

Abstract— Noise spectrum estimation is a fundamental
component of speech enhancement and speech recognition
systems. In this paper, we present an Improved Minima Con-

trolled Recursive Averaging (IMCRA) approach, for noise es-
timation in adverse environments involving non-stationary
noise, weak speech components, and low input signal-to-
noise ratio (SNR). The noise estimate is obtained by av-
eraging past spectral power values, using a time-varying
frequency-dependent smoothing parameter that is adjusted
by the signal presence probability. The speech presence
probability is controlled by the minima values of a smoothed
periodogram. The proposed procedure comprises two iter-
ations of smoothing and minimum tracking. The first it-
eration provides a rough voice activity detection in each
frequency band. Then, smoothing in the second iteration
excludes relatively strong speech components, which makes
the minimum tracking during speech activity robust. We
show that in non-stationary noise environments and under
low SNR conditions, the IMCRA approach is very effective.
In particular, compared to a competitive method, it obtains
a lower estimation error, and when integrated into a speech
enhancement system achieves improved speech quality and
lower residual noise.

I. Introduction

NOISE power spectrum estimation is a fundamental
component of speech enhancement and speech recog-

nition systems. The robustness of such systems, particu-
larly under low signal-to-noise ratio (SNR) conditions and
non-stationary noise environments, is greatly affected by
the capability to reliably track fast variations in the statis-
tics of the noise. Traditional noise estimation methods,
which are based on voice activity detectors (VAD’s), re-
strict the update of the estimate to periods of speech ab-
sence. Additionally, VAD’s are generally difficult to tune
and their reliability severely deteriorates for weak speech
components and low input SNR [16], [20], [15]. Alternative
techniques, based on histograms in the power spectral do-
main [14], [10], [19], are computationally expensive, require
much memory resources, and do not perform well in low
SNR conditions. Furthermore, the signal segments used
for building the histograms are typically of several hun-
dred milliseconds, and thus the update rate of the noise
estimate is essentially moderate.

A useful noise estimation approach, known as the Mini-
mum Statistics (MS) [12], is to track the minima values of a
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smoothed power estimate of the noisy signal, and multiply
the result by a factor that compensates the bias. However,
the variance of this noise estimate is about twice as large as
the variance of a conventional noise estimator [12]. More-
over, this method may occasionally attenuate low energy
phonemes, particularly if the minimum search window is
too short [4]. These limitations can be overcome, at the
price of significantly higher complexity, by adapting the
smoothing parameter and the bias compensation factor in
time and frequency [13]. A computationally more efficient
minimum tracking scheme is presented in [5]. Its main
drawbacks are the very slow update rate of the noise esti-
mate in case of a sudden rise in the noise energy level, and
its tendency to cancel the signal [16]. Other closely related
techniques are the lower-energy envelope tracking [19] and
the quantile based [21] estimation methods. Rather than
picking the minima values of a smoothed periodogram, the
noise is estimated based on a temporal quantile of a non-
smoothed periodogram of the noisy signal. Unfortunately,
these methods suffer from the high computational complex-
ity associated with the sorting operation, and the extra
memory required for keeping past spectral power values.

Recently, we introduced a noise estimation approach,
namely Minima Controlled Recursive Averaging (MCRA)
[3], [4], that combines the robustness of the minimum track-
ing with the simplicity of the recursive averaging. The
noise estimate is obtained by averaging past spectral power
values, using a smoothing parameter that is adjusted by
the speech presence probability in subbands. The speech
presence probability is controlled by the minima values of
a smoothed periodogram. In contrast to the MS and re-
lated methods, the minimum tracking is not crucial, since
it only controls the recursive averaging as a secondary pro-
cedure. The recursive averaging is carried out without
a hard distinction between speech absence and presence,
thus continuously updating the noise estimate even dur-
ing weak speech activity. Additionally, the smoothing of
the noisy periodogram is carried out in both time and fre-
quency, which takes into account the strong correlation of
speech presence in neighboring frequency bins of consecu-
tive frames. We have shown that the MCRA noise estimate
is computationally efficient, and characterized by the abil-
ity to quickly follow abrupt changes in the noise spectrum.

In this paper, we further improve the MCRA estimator
with regard to the following aspects: Minimum tracking
during speech activity, speech presence probability estima-
tion, and derivation of a bias compensation factor. The
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proposed procedure comprises two iterations of smooth-
ing and minimum tracking. The first iteration provides
a rough voice activity detection in each frequency band.
Then, the smoothing in the second iteration excludes rel-
atively strong speech components, which makes the min-
imum tracking during speech activity robust. This facil-
itates larger smoothing windows, and thus a decreased
variance of the minima values. The estimation of the
speech presence probability is based on a Gaussian statis-
tical model [6]. However, the a priori speech absence prob-
ability is controlled by the result of the minimum tracking.
We show that this prevents the estimated noise from in-
creasing during weak speech activity, especially when the
input SNR is low. The speech presence probability is bi-
ased toward higher values to avoid speech distortions in
speech enhancement applications. Accordingly, we include
in the noise estimator a factor to compensate its bias. We
show that the value of the bias compensation factor is de-
termined by the a priori speech absence probability esti-
mator, and an explicit expression is derived.

Objective and subjective evaluation of the Improved

Minima Controlled Recursive Averaging (IMCRA) estima-
tor is performed under various environmental conditions.
We examine the tracking capability for non-stationary
noise, the segmental relative estimation error for various
noise types and levels, and the improvement in the segmen-
tal SNR when integrated into a speech enhancement sys-
tem. We show that compared to the MS method, the pro-
posed noise estimate is superior. Specifically, it responses
more quickly to noise variations, it obtains significantly
lower estimation error, and yields a higher improvement in
the segmental SNR. The advantages of the IMCRA method
are particularly notable in adverse environments involving
non-stationary noise, weak speech components, and low in-
put SNR.

The paper is organized as follows. In Section II, we
present the IMCRA noise estimator. The recursive aver-
aging is accomplished through a time-varying frequency-
dependent smoothing parameter, which is adapted under
the speech presence uncertainty. In Section III, we intro-
duce an estimator for the a priori speech absence probabil-
ity. The estimator is controlled by the minima values of a
smoothed periodogram of the noisy signal. In Section IV,
we combine the time-varying recursive averaging with the
minima-controlled estimation of the a priori speech absence
probability, and present the IMCRA algorithm. Finally, in
Section V, we evaluate the proposed method, and discuss
experimental results, which validate its effectiveness.

II. Time-Varying Recursive Averaging

In this section, we derive an estimator for the noise power
spectrum under speech presence uncertainty. The noise es-
timate is obtained by averaging past spectral power values
of the noisy measurement, and multiplying the result by a
constant factor that compensates the bias. The recursive
averaging is carried out using a time-varying frequency-
dependent smoothing parameter, that is adjusted by the
speech presence probability.

Let x(n) and d(n) denote speech and uncorrelated ad-
ditive noise signals, respectively. The observed signal y(n)
is divided into overlapping frames by the application of a
window function and analyzed using the short-time Fourier
transform (STFT). In the time-frequency domain we have
Y (k, `) = X(k, `) + D(k, `), where k represents the fre-
quency bin index, and ` the frame index. Given two hy-
potheses, H0(k, `) and H1(k, `), which indicate respectively
speech absence and presence in the kth frequency bin of
the `th frame, and assuming a complex Gaussian distri-
bution of the STFT coefficients for both speech and noise
[6], the conditional probability density functions (PDF’s)
of the observed signal are given by

f (Y (k, `) | H0(k, `)) =
1

πλd(k, `)
exp

{

−
|Y (k, `)|

2

λd(k, `)

}

(1)

f (Y (k, `) | H1(k, `)) =
1

π(λx(k, `) + λd(k, `))

· exp

{

−
|Y (k, `)|

2

λx(k, `) + λd(k, `)

}

(2)

where λx(k, `)
4
= E

{

|X(k, `)|2 | H1(k, `)
}

and λd(k, `)
4
=

E
{

|D(k, `)|2
}

denote respectively the short-term spectrum
of the speech and noise signals.

Let the a posteriori and a priori SNR’s be defined by
[14], [6]

γ(k, `)
4
=

|Y (k, `)|
2

λd(k, `)
, (3)

ξ(k, `)
4
=

λx(k, `)

λd(k, `)
. (4)

Then, the conditional PDF’s of the a posteriori SNR can
be written as

f (γ(k, `) | H0(k, `)) = e−γ(k,`)u(γ(k, `)) (5)

f (γ(k, `) | H1(k, `)) =
1

1 + ξ(k, `)

· exp

{

−
γ(k, `)

1 + ξ(k, `)

}

u(γ(k, `))(6)

where u(·) is the unit step function (i.e., u(γ) = 1 for
γ ≥ 0 and u(γ) = 0 otherwise). Applying Bayes rule

for the conditional speech presence probability p(k, `)
4
=

P (H1(k, `) | γ(k, `)), one obtains

p(k, `) =

{

1 +
q(k, `)

1 − q(k, `)
(1 + ξ(k, `)) exp(−υ(k, `))

}−1

(7)

where q(k, `)
4
= P (H0(k, `)) is the a priori probability for

speech absence, and υ
4
= γ ξ/(1 + ξ).

A common noise estimation technique is to recursively
average past spectral power values of the noisy measure-
ment during periods of speech absence, and hold the esti-
mate during speech presence. Specifically,

H0(k, `) : λ̄d(k, ` + 1) = αdλ̄d(k, `) + (1 − αd)|Y (k, `)|2

H1(k, `) : λ̄d(k, ` + 1) = λ̄d(k, `) (8)
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where αd (0 < αd < 1) denotes a smoothing parameter.
Under speech presence uncertainty, we can employ the con-
ditional speech presence probability, and carry out the re-
cursive averaging by

λ̄d(k, ` + 1) =
[

αdλ̄d(k, `) + (1 − αd)|Y (k, `)|2
]

·(1 − p(k, `)) + λ̄d(k, `)p(k, `) . (9)

Equivalently, the recursive averaging can be obtained by

λ̄d(k, `+1) = α̃d(k, `)λ̄d(k, `)+[1−α̃d(k, `)]|Y (k, `)|2 (10)

where

α̃d(k, `)
4
= αd + (1 − αd) p(k, `) (11)

is a time-varying frequency-dependent smoothing parame-
ter. The smoothing parameter α̃d is adjusted by the speech
presence probability, which is estimated based on the noisy
measurement. The speech presence probability also modi-
fies the spectral estimate of the clean speech, and therefore
is generally biased toward higher values to avoid speech
distortions in speech enhancement applications1 [4]. Ac-
cordingly, estimating the noise spectrum using (10) and
(11) would be biased toward lower values. We propose to
include a bias compensation factor in the noise estimator

λ̂d(k, ` + 1) = β · λ̄d(k, ` + 1) (12)

such that the factor β compensates the bias when speech
is absent:

β
4
=

λd(k, `)

E
{

λ̄d(k, `)
}

∣

∣

∣

∣

∣

ξ(k,`)=0

. (13)

In Appendix A, we show that the value of β is completely
determined by the particular estimator for the a priori

speech absence probability. An explicit expression for β
is derived in the case of estimating the a priori speech
absence probability by the method proposed in the next
section.

We note that the MS and lower-energy envelope track-

ing methods [12], [13], [19], also entail a multiplicative bias
compensation factor. However, its value has to be deter-
mined by simulations. Furthermore, these methods esti-
mate the noise at a given frame by processing a fixed time
segment, i.e., a fixed number of past frames. Whereas,
our noise estimator is based on a variable time segment in
each subband, which takes into account the probability of
speech presence. The time segment is longer in subbands
that contain frequent speech portions, and shorter in sub-
bands that contain frequent silence portions. This feature
has been considered [19] a desirable characteristic of the
noise estimator, which improves its robustness and track-
ing capability.

1The spectral gain is minimal when speech is absent. Hence, decid-
ing speech is absent when speech is present results ultimately in the
attenuation of speech components. Whereas, the alternative false de-
cision, up to a certain extent, merely introduces some level of residual
noise.

III. Minima-Controlled Estimation

In this section, we introduce an estimator q̂(k, `) for the
a priori speech absence probability. The estimator is con-
trolled by the minima values of a smoothed power spectrum
of the noisy signal.

In contrast to the MS and related methods [13], [5], the
smoothing of the noisy power spectrum is carried out in
both time and frequency. This takes into account the
strong correlation of speech presence in neighboring fre-
quency bins of consecutive frames [4]. Furthermore, the
proposed procedure comprises two iterations of smoothing
and minimum tracking. The first iteration provides a rough
voice activity detection in each frequency band. Then, the
smoothing in the second iteration excludes relatively strong
speech components, which makes the minimum tracking
during speech activity robust, even when using a relatively
large smoothing window2.

Let αs (0 < αs < 1) be a smoothing parameter, and let
b denote a normalized window function of length 2w + 1,
i.e.,

∑w
i=−w b(i) = 1. The frequency smoothing of the noisy

power spectrum in each frame is defined by

Sf (k, `) =

w
∑

i=−w

b(i) |Y (k − i, `)|
2
. (14)

Subsequently, smoothing in time is performed by a first
order recursive averaging:

S(k, `) = αsS(k, ` − 1) + (1 − αs)Sf (k, `) . (15)

In accordance with the MS method, the minima values of
S(k, `) are picked within a finite window of length D, for
each frequency bin:

Smin(k, `)
4
= min {S(k, `′) | ` − D + 1 ≤ `′ ≤ `} . (16)

It follows [13] that there exists a constant factor Bmin,
independent of the noise power spectrum, such that

E {Smin(k, `) | ξ(k, `) = 0} = B−1
min · λd(k, `) . (17)

The factor Bmin represents the bias of a minimum noise
estimate, and generally depends on the values of D, αs,
w and the spectral analysis parameters (type, length and
overlap of the analysis windows)3.

Let γmin(k, `) and ζ(k, `) be defined by

γmin(k, `)
4
=

|Y (k, `)|2

BminSmin(k, `)

ζ(k, `)
4
=

S(k, `)

BminSmin(k, `)
. (18)

2A larger smoothing window decreases the variance of the min-
ima values, but also widens the peaks of the speech activity power.
An alternative, computationally expensive, solution is to modify the
smoothing in time and frequency based on a smoothed a posteriori
SNR [13].

3The value of Bmin can be estimated by generating a white Gaus-
sian noise, and computing the inverse of the mean of Smin(k, `). This
takes into account also the time-frequency correlation of the noisy pe-
riodogram |Y (k, `)|2. Notice that the value of Bmin is fixed, whereas
in [13], it is estimated for each frequency band and each frame.
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Under the assumed statistical model, the PDF’s of
γmin(k, `) and ζ(k, `), in the absence speech, can respec-
tively be approximated by exponential and chi-square dis-
tributions (Appendix B):

f (γmin(k, `) | H0(k, `)) ≈ e−γmin(k,`)u(γmin(k, `)) (19)

f (ζ(k, `) | H0(k, `)) ≈
1

(

2
µ

)µ/2

Γ
(

µ
2

)

ζ(k, `)µ/2−1

· exp

{

−
µ ζ(k, `)

2

}

u(ζ(k, `))(20)

where Γ(·) is the gamma function, and µ is the equivalent
degrees of freedom. Based on the first iteration smooth-
ing and minimum tracking, we propose the following rough
decision about speech presence:

I(k, `) =











1, if γmin(k, `) < γ0 and ζ(k, `) < ζ0

(speech is absent)

0, otherwise (speech is present) .
(21)

The thresholds γ0 and ζ0 are set to satisfy a certain signif-
icance level ε:

P (γmin(k, `) ≥ γ0 | H0(k, `)) < ε , (22)

P (ζ(k, `) ≥ ζ0 | H0(k, `)) < ε . (23)

From (19) and (20) we have

γ0 = − log(ε) (24)

ζ0 =
1

µ
F−1

χ2;µ (1 − ε) (25)

where Fχ2;µ(x) denotes the standard chi-square cumulative
distribution function, with µ degrees of freedom. Typically,
we use ε = 0.01 and µ = 32, so γ0 = 4.6 and ζ0 = 1.67.

The second iteration of smoothing includes only the
power spectral components, which have been identified as
containing primarily noise. We set the initial condition for
the first frame by S̃(k, 0) = Sf (k, 0). Then, for ` > 0 the
smoothing in frequency, employing the above voice activity
detector, is obtained by

S̃f (k, `) =































w
∑

i=−w

b(i) I(k−i,`)|Y (k−i,`)|2

w
∑

i=−w

b(i) I(k−i,`)

, if
w
∑

i=−w

I(k − i, `) 6= 0

S̃(k, ` − 1), otherwise .
(26)

Smoothing in time is given, as before, by a first order re-
cursive averaging:

S̃(k, `) = αsS̃(k, ` − 1) + (1 − αs)S̃f (k, `) . (27)

We note that keeping the strong speech components out of
the smoothing process enables improved minimum track-
ing. In particular, a larger smoothing parameter (αs) and
smaller minima search window (D) can be used. This re-
duces the variance of the minima values [13], and shortens

the delay when responding to a rising noise power, which
eventually improves the tracking capability of the noise es-
timator.

Let S̃min(k, `) be the result of the second iteration min-
imum tracking,

S̃min(k, `)
4
= min

{

S̃(k, `′) | ` − D + 1 ≤ `′ ≤ `
}

,

and let γ̃min(k, `) and ζ̃(k, `) be defined by

γ̃min(k, `)
4
=

|Y (k, `)|2

BminS̃min(k, `)

ζ̃(k, `)
4
=

S(k, `)

BminS̃min(k, `)
. (28)

Since we use a relatively small significance level in the first
iteration (ε = 0.01), the influence of the voice activity de-
tector in noise-only periods can be neglected. That is,
the effect of excluding strong noise components from the
smoothing process is negligible. Accordingly, the condi-
tional PDF’s of γ̃min(k, `) and ζ̃(k, `), in the absence of
speech, are approximately the same as those of γmin(k, `)
and ζ(k, `) (Eqs. (19) and (20)).

We propose the following estimator for the a priori

speech absence probability:

q̂(k, `) =























1, if γ̃min(k, `) ≤ 1

and ζ̃(k, `) < ζ0

(γ1 − γ̃min(k, `)) /(γ1 − 1), if 1 < γ̃min(k, `) < γ1

and ζ̃(k, `) < ζ0

0, otherwise.
(29)

The threshold γ1 is set to satisfy a certain significance level
ε1 (ε1 > ε):

P (γ̃min(k, `) > γ1 | H0(k, `)) < ε1 ⇒ γ1 ≈ − log(ε1) .
(30)

Typically ε1 = 0.05, and γ1 = 3.
The a priori speech absence probability estimator as-

sumes speech is present (q̂(k, `) = 0) whenever ζ̃(k, `) ≥ ζ0

or γ̃min(k, `) ≥ γ1. That is, whenever the local mea-
sured power, S(k, `), or the instantaneous measured power,
|Y (k, `)|2, are relatively high compared to the noise power
BminS̃min(k, `) ≈ λd(k, `). The estimator assumes speech
is absent (q̂(k, `) = 1) whenever both the local and in-
stantaneous measured powers are relatively low compared
to the noise power (γ̃min(k, `) ≤ 1 and ζ̃(k, `) < ζ0). In
between, the estimator provides a soft transition between
speech absence and speech presence, based on the value of
γ̃min(k, `).

The main objective of combining conditions on both
γ̃min(k, `) and ζ̃(k, `) is to prevent an increase in the es-
timated noise during weak speech activity, especially when
the input SNR is low. Weak speech components can often
be extracted using the condition on ζ̃(k, `). Sometimes,
speech components are so weak that ζ̃(k, `) is smaller than
ζ0. In that case, most of the speech power is still ex-
cluded from the averaging process using the condition on
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Initialize variables at the first frame for all frequency bins k:

λ̂d(k, 0) = |Y (k, 0)|2; λ̄d(k, 0) = |Y (k, 0)|2; γ(k, 0) = 1; Smin(k, 0) = Sf (k, 0);

S(k, 0) = Sf (k, 0); S̃(k, 0) = Sf (k, 0); GH1
(k, 0) = 1; S̃min(k, 0) = Sf (k, 0);

Smin sw(k) = Sf (k, 0); S̃min sw(k) = Sf (k, 0).

Let j = 0. % j is a counter for frames within a sub-window.

For all time frames `

For all frequency bins k

Compute the a posteriori SNR γ(k, `) using Eq. (3), the a priori SNR ξ̂(k, `) using Eq. (32), and the conditional gain GH1
(k, `)

using Eq. (33).

Compute the first iteration of smoothed power spectrum S(k, `) using Eqs. (14) and (15), and update its running minimum:

Smin(k, `) = min {Smin(k, ` − 1), S(k, `)}; Smin sw(k) = min {Smin sw(k), S(k, `)}.

Compute the indicator function I(k, `) for the voice activity detection using Eqs. (18) and (21).

Compute the second iteration of smoothed power spectrum S̃(k, `) using Eqs. (26) and (27), and update its running minimum:

S̃min(k, `) = min
{

S̃min(k, ` − 1), S̃(k, `)
}

; S̃min sw(k) = min
{

S̃min sw(k), S̃(k, `)
}

.

Compute the a priori speech absence probability q̂(k, `) using Eqs. (28) and (29), the speech presence probability p(k, `) using

Eq. (7), and the time-varying smoothing parameter α̃d(k, `) using Eq. (11).

Update the noise spectrum estimate λ̂d(k, ` + 1) using Eqs. (10) and (12).

Let j = j + 1.

If j == V

For all frequency bins k

Store Smin sw(k), set Smin(k, `) to the minimum of the last U stored values of Smin sw(k), and let Smin sw(k) = S(k, `).

Store S̃min sw(k), set S̃min(k, `) to the minimum of the last U stored values of S̃min sw(k), and let S̃min sw(k) = S̃(k, `).

Let j = 0.

Fig. 1. The IMCRA noise estimation algorithm.

TABLE I

Values of Parameters Used in the Implementation of the

IMCRA Noise Estimator, For a Sampling Rate of 16 kHz.

w = 1 αs = 0.9 U = 8 V = 15
D = 120 Bmin = 1.66 γ0 = 4.6 γ1 = 3
ζ0 = 1.67 α = 0.92 αd = 0.85 β = 1.47
b: Hanning window

γ̃min(k, `). The remaining speech components can hardly
affect the noise estimator, since their power is relatively
low compared to that of the noise.

IV. Implementation of the Algorithm

In this section, we combine the time-varying recursive
averaging with the minima-controlled estimation of the a

priori speech absence probability, and present the IMCRA
noise estimation algorithm.

The noise spectrum estimate, λ̂d(k, `), is initialized at the

first frame by λ̂d(k, 0) = |Y (k, 0)|2. Then, at each frame
` (` ≥ 0), it is used, jointly with the current observation
Y (k, `), for estimating the noise power spectrum at the next
frame, `+1. According to Eq. (12), we need to find the bias
compensation factor β, and the time-varying smoothing
parameter α̃d(k, `). Appendix A shows that the value of β

is given by

β =
γ1 − 1 − e−1 + e−γ1

γ1 − 1 − 3 e−1 + (γ1 + 2) e−γ1

. (31)

In particular, for γ1 = 3, we have β = 1.47. The value of
α̃d(k, `) is updated for each frequency bin and time frame,
using the speech presence probability p(k, `), and expres-
sion (11).

It follows from Eq. (7), that the computation of the
speech presence probability requires an estimate for the
a priori SNR ξ(k, `). The “decision-directed” approach of
Ephraim and Malah [6] is commonly used for that purpose.
However, we obtained better performance with a modified
version proposed in [4]. Specifically, the a priori SNR is
estimated by

ξ̂(k, `) = αG2
H1

(k, `−1)γ(k, `−1)+(1−α)max {γ(k, `) − 1, 0} ,
(32)

where α is a weighting factor that controls the trade-off
between noise reduction and speech distortion [6], [1], and

GH1
(k, `)

4
=

ξ(k, `)

1 + ξ(k, `)
exp

(

1

2

∫ ∞

υ(k,`)

e−t

t
dt

)

(33)

is the spectral gain function of the Log-Spectral Amplitude

(LSA) estimator when speech is surely present [7]. We note
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that the original “decision-directed” a priori SNR estima-
tor of Ephraim and Malah [6], [11] is given by

αG2(k, ` − 1)γ(k, ` − 1) + (1 − α)max {γ(k, `) − 1, 0}

1 − q̂(k, `)
,

(34)
where G(k, `) is the spectral gain function of the LSA esti-
mator under speech presence uncertainty. The advantage
of ξ̂(k, `) over the original estimator, particularly for weak
speech components and low input SNR, is discussed in some
detail in [4].

The estimator for the a priori speech absence prob-
ability, q̂(k, `), (29), requires two iterations of time-
frequency smoothing (S(k, `), S̃(k, `)) and minimum track-
ing (Smin(k, `), S̃min(k, `)). The minimum tracking is im-
plemented by the method proposed in [12], [13], which pro-
vides a flexible balance between the computational com-
plexity and the update rate of the minima values. Ac-
cordingly, we divide the window of D samples into U sub-
windows of V samples (UV = D). Whenever V samples
are read, the minimum of the current sub-window is de-
termined and stored for later use. The overall minimum is
obtained as the minimum of past samples within the cur-
rent sub-window and the U previous sub-window minima.

The implementation of the IMCRA algorithm is summa-
rized in Fig. 1. Typical values of the respective parameters,
for a sampling rate of 16 kHz, are given in Table I.

V. Performance Evaluation

The performance evaluation of the IMCRA method, and
a comparison to the MS method, consists of three parts.
First, we test the tracking capability of the noise estimators
for non-stationary noise. Second, we measure the segmen-
tal relative estimation error for various noise types and lev-
els. Third, we integrate the noise estimators into a speech
enhancement system, and determine the improvement in
the segmental SNR. The results are confirmed by a subjec-
tive study of speech spectrograms and informal listening
tests.

The noise signals used in our evaluation are taken from
the Noisex92 database [22]. They include white Gaussian
noise (WGN), car noise, and F16 cockpit noise. A non-
stationary WGN was simulated by increasing the level of
the stationary WGN at a rate of 2 dB/s for a period of
three seconds, and some time afterwards decreasing it back
to the original level at the same rate. The speech signal
is constructed from six different utterances, without inter-
vening pauses. The utterances, half from male speakers
and half from female speakers, are taken from the TIMIT
database [8]. The speech signal is sampled at 16 kHz and
degraded by the various noise types with segmental SNR’s
in the range [−5, 10] dB. The segmental SNR is defined by
[18]

SegSNR =
10

|L|

∑

`∈L

log

∑

k |X(k, `)|
2

∑

k |D(k, `)|
2 (35)

where L represents the set of frames that contain speech,
and |L| its cardinality. The spectral analysis is imple-

mented with Hamming windows of 512 samples length (32
ms) and 128 samples frame update step.

Fig. 2(a) shows the periodogram |Y (k, `)|2, a recursively
smoothed periodogram with a smoothing parameter set to
0.95, and the noise power λ̂d(k, `) estimated by the IM-
CRA method, for a F16 cockpit noise at 0 dB segmental
SNR, and a single frequency bin k = 40 (center frequency
1219 Hz). Fig. 2(b) plots the ideal, IMCRA, and MS noise
estimates (the ideal noise estimate is taken as the recur-
sively smoothed periodogram of the noise |D(k, `)|2, with
a smoothing parameter set to 0.95). Clearly, the IMCRA
noise estimate follows the noise power more closely than
the MS noise estimate. The update rate of the MS noise
estimate is inherently restricted by the size of the mini-
mum search window (D). By contrast, the IMCRA noise
estimate is continuously updated even during speech ac-
tivity, as long as the speech components are not too large
compared to the noise power. This is a major advantage
of the IMCRA method, particularly in adverse noise envi-
ronments, which involve non-stationary noise, weak speech
components, and low input SNR.

Fig. 3 shows another example of the improved tracking
capability of the IMCRA estimator. In this case, the speech
signal is degraded by non-stationary WGN at 0 dB seg-
mental SNR. The ideal, IMCRA, and MS noise estimates,
averaged out over the frequency, are depicted in Fig. 3(b).
The response of the IMCRA estimator to increasing or de-
creasing noise power is essentially much faster than that of
the MS estimator, due to the recursive averaging mecha-
nism. For increasing noise power, the MS estimator lags
behind with a delay of D + V frames [13]. For decreas-
ing noise power, the delay of the MS estimator stems from
the fact that the minimum search window becomes effec-
tively shorter, and therefore the bias compensation factor
is practically too large. On the other hand, the delay of the
IMCRA estimator in case of increasing noise power results
from the increase in the time-varying smoothing parameter,
subsequent to the decrease in the a priori speech absence
probability. This delay is smaller than D+V frames, since
the recursive averaging is carried out instantaneously. For
decreasing noise power, the a priori speech absence prob-
ability gets larger and the time-varying smoothing param-
eter gets smaller, which further shortens the delay of the
IMCRA estimator.

A quantitative comparison between the IMCRA and MS
estimation methods is obtained by evaluating the segmen-
tal relative estimation error in various environmental con-
ditions. The segmental relative estimation error is defined
by

SegErr =
1

L

L−1
∑

`=0

∑

k

[

λ̂d(k, `) − λd(k, `)
]2

∑

k λ2
d(k, `)

(36)

where λd(k, `) is the ideal noise estimate, λ̂d(k, `) is the
noise estimated by the tested method, and L is the num-
ber of frames in the analyzed signal. Table II presents the
results of the segmental relative estimation error achieved
by the IMCRA and MS estimators for various noise types
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Fig. 2. Noise power estimation for a speech signal, degraded by F16 cockpit noise at 0 dB segmental SNR, and a single frequency bin
k = 40 (center frequency 1219 Hz): (a) Periodogram (dotted), smoothed periodogram (fine solid), and IMCRA noise estimate (heavy solid);
(b) Ideal (top), IMCRA (center), and MS (bottom) noise estimates (top and bottom graphs are displaced by ±10 dB, for clarity).
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Fig. 3. Noise power estimation for a speech signal, degraded by non-stationary white Gaussian noise at 0 dB segmental SNR: (a) Periodogram
(dotted), smoothed periodogram (fine solid), and IMCRA noise estimate (heavy solid) for a single frequency bin k = 33 (center frequency 1
kHz); (b) Ideal (fine solid), IMCRA (heavy solid), and MS (dotted) average noise estimates.

TABLE II

Segmental Relative Estimation Error for Various Noise Types and Levels, Obtained Using the MS and IMCRA Estimators.

Input SegSNR Stationary WGN Non-stationary WGN Car interior noise F16 cockpit noise
[dB] MS IMCRA MS IMCRA MS IMCRA MS IMCRA
-5 0.119 0.056 0.321 0.082 0.401 0.129 0.250 0.114
0 0.149 0.065 0.350 0.093 0.404 0.131 0.265 0.119
5 0.177 0.085 0.365 0.114 0.356 0.135 0.255 0.124
10 0.216 0.118 0.353 0.151 0.288 0.131 0.234 0.143

and levels. It shows that the IMCRA method obtains sig-
nificantly lower estimation error than the MS method.

The segmental relative estimation error is a measure that
weighs all frames in a uniform manner, without a distinc-
tion between speech presence and absence. In practice, the
estimation error is more consequential in frames that con-
tain speech, particularly weak speech components, than
in frames that contain only noise. We therefore exam-
ine the performance of our estimation method when inte-

grated into a speech enhancement system. Specifically, the
IMCRA and MS noise estimators are combined with the
Optimally-Modified Log-Spectral Amplitude (OM-LSA) es-
timator, and evaluated both objectively using an improve-
ment in segmental SNR measure, and subjectively by in-
formal listening tests. The OM-LSA estimator [2], [4] is
a modified version of the conventional LSA estimator [7],
based on a binary hypothesis model. The modification in-
cludes a lower bound for the gain, which is determined by a
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TABLE III

Segmental SNR Improvement for Various Noise Types and Levels, Obtained Using the MS and IMCRA Estimators.

Input SegSNR Stationary WGN Non-stationary WGN Car interior noise F16 cockpit noise
[dB] MS IMCRA MS IMCRA MS IMCRA MS IMCRA
-5 9.91 10.45 9.11 10.06 9.67 10.76 8.08 8.49
0 7.93 8.39 7.33 8.07 8.26 8.91 6.45 6.60
5 6.15 6.43 5.67 6.14 6.78 7.21 4.84 4.92
10 4.53 4.62 4.14 4.35 5.37 5.83 3.44 3.44

subjective criteria for the noise naturalness, and exponen-
tial weights, which are given by the conditional speech pres-
ence probability. Moreover, the a priori SNR is estimated
using (32), rather than the standard “decision-directed”
estimator (34).

Table III summarizes the results of the segmental SNR
improvement for various noise types and levels. The IM-
CRA estimator consistently yields a higher improvement
in the segmental SNR, than the MS estimator, under all
tested environmental conditions. The fact that the benefit
is greater for low input SNR implies that weak speech com-
ponents are better preserved when the noise is estimated
by the IMCRA method. This is confirmed by a subjective
study of speech spectrograms and informal listening tests.

Another major advantage of the IMCRA noise estima-
tion method, as discussed earlier, is its tracking capabil-
ity under non-stationary noise environments. In speech
enhancement applications, this quality is often not fully
appreciated when considering the average improvement in
the segmental SNR, since variations in the statistics of the
noise are usually sparse. However, a frame-by-frame trace
of the improvement in the segmental SNR, as illustrated in
Fig. 4, revels that the effectiveness of the IMCRA method
is particularly notable during alteration in noise character-
istics. Figs. 4(a) and (b) are plots of the speech waveform
in noise-free and noisy conditions (additive non-stationary
WGN at −5 dB segmental SNR). Figs. 4(c) and (d) are,
respectively, plots of the enhanced speech waveforms using
the IMCRA and MS noise estimates. While the increase in
the segmental SNR, gained by the IMCRA method over the
MS method, is on average less than 1 dB in this example,
it surpasses 5 dB in some instances (Fig. 4(e)).

VI. Conclusion

Recursive averaging is a commonly used procedure for es-
timating the noise power spectrum during sections which
do not contain speech. However, rather than employing a
voice activity detector and restricting the update of the
noise estimator to periods of speech absence, we adapt
the smoothing parameter in time and frequency accord-
ing to the speech presence probability. The noise estimate
is thereby continuously updated even during weak speech
activity. We have proposed an estimator for the a priori

speech absence probability that is controlled by the minima
values of a smoothed periodogram of the noisy measure-
ment. It combines conditions on both the instantaneous

and local measured power, and provides a soft transition
between speech absence and presence. This prevents an
occasional increase in the noise estimate during speech ac-
tivity. Furthermore, carrying out the smoothing and min-
imum tracking in two iterations allows larger smoothing
windows and smaller minimum search windows, while re-
liably tracking the minima even during strong speech ac-
tivity. This yields a reduced variance of the minima values
and shorter delay when responding to a rising noise power,
which eventually improves the tracking capability of the
noise estimator. We have shown that in non-stationary
noise environments and under low SNR conditions, the IM-
CRA approach is extremely effective. In particular, it ob-
tains a lower estimation error, and when integrated into a
speech enhancement system achieves improved speech qual-
ity and lower residual noise.

Appendix

I. Derivation of the Bias Compensation Factor

The factor β in (12), by definition, compensates the bias
of the noise spectrum estimator when speech is absent. It
stems from Eqs. (10) and (13) and the definition of the a

posteriori SNR that

β =
E {1 − α̃(k, `)}

E {(1 − α̃(k, `))γ(k, `)}

∣

∣

∣

∣

ξ(k,`)=0

. (37)

By Eq. (7), the conditional speech presence probability
p(k, `) degenerates, in the absence of speech (ξ(k, `) = 0),
to the a priori speech presence probability 1 − q(k, `).
Hence, Eq. (11) implies that the value of β is completely de-
termined by the particular estimator for the a priori speech
absence probability:

β =
E {q̂(k, `)}

E {q̂(k, `)γ(k, `)}

∣

∣

∣

∣

ξ(k,`)=0

. (38)

In our case, the estimate for the a priori speech absence
probability, q̂(k, `), is given by (29). Since we are using a
relatively low significance level in the first iteration (ε =
0.01), the conditional PDF of γ̃min(k, `) in the absence of
speech is approximately the same as that of γmin(k, `):

f (γ̃min(k, `) | H0(k, `)) ≈ e−γ̃min(k,`)u(γ̃min(k, `)) . (39)

Similarly, the conditional PDF of ζ̃(k, `) in the absence of
speech is approximately the same as that of ζ(k, `). Then
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Fig. 4. Example of speech enhancement using the IMCRA and MS noise estimators: (a) Original speech waveform; (b) Noisy speech
waveform (additive non-stationary white Gaussian noise at −5 dB segmental SNR); (c) Enhanced speech waveform using the IMCRA noise
estimate (SegSNR= 5.05 dB); (d) Enhanced speech waveform using the MS noise estimate (SegSNR= 4.11 dB); (e) Trace of the increase in
segmental SNR, gained by the IMCRA method over the MS method.

by Eq. (23), the probability of ζ̃(k, `) ≥ ζ0 is relatively low
(≈ ε). Hence, in the absence of speech we can assume that
ζ̃(k, `) < ζ0 for all k and `. Accordingly,

E {q̂(k, `) | ξ(k, `) = 0} ∼=

∫ 1

0

e−z dz +

∫ γ1

1

γ1 − z

γ1 − 1
e−z dz

= 1 −
1

γ1 − 1

(

e−1 − e−γ1

)

(40)

and

E {q̂(k, `)γ(k, `) | ξ(k, `) = 0}

∼=

∫ 1

0

z e−z dz +

∫ γ1

1

γ1 z − z2

γ1 − 1
e−z dz

= 1 −
3

γ1 − 1
e−1 +

γ1 + 2

γ1 − 1
e−γ1 . (41)

Substituting (40) and (41) into (38), we have

β =
γ1 − 1 − e−1 + e−γ1

γ1 − 1 − 3 e−1 + (γ1 + 2) e−γ1

. (42)



IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. XX, NO. Y, MONTH 2002 10

II. Statistics of γmin and ζ

Generally, successive values of |Y (k, `)|2 are correlated,
and there is no closed form solution for the probability den-
sity functions of γmin(k, `) and ζ(k, `). However, based on
certain assumptions and results from [12], [13], we can ob-
tain an approximate solution. To simplify notation, speech
absence is implicitly assumed throughout this appendix.

Let the spectral power values of the noisy measurement
|Y (k, `)|2 be independent, exponentially and identically
distributed. Substituting (14) into (15), the recursively
averaged periodogram can be written as

S(k, `) = (1 − αs)

w
∑

i=−w

∞
∑

j=0

b(i)αj |Y (k − i, ` − j)|
2
. (43)

If we approximate S(k, `) as the sum of µ squared mu-
tually independent normal variables, then its density and
distribution functions can be obtained by

fS(k,`)(x) ≈
µ

λd(k, `)
fχ2;µ

(

µx

λd(k, `)

)

(44)

FS(k,`)(x) ≈ Fχ2;µ

(

µx

λd(k, `)

)

(45)

where fχ2;µ(x) and Fχ2;µ(x) denote, respectively, the stan-
dard chi-square density and distribution functions, with µ
degrees of freedom. Specifically,

fχ2;µ(x) =
xµ/2−1 e−

x
2 u(x)

2µ/2 Γ
(

µ
2

) (46)

Fχ2;µ(x) =
Γ
(

µ
2 , x

2

)

u(x)

Γ
(

µ
2

) (47)

where Γ(·) is the gamma function, and Γ (a, x)
4
=

∫∞

0
e−tta−1 dt is the incomplete gamma function. We note

that µ, the equivalent degrees of freedom, is determined by
the smoothing parameter αs and the window function b.
For a normalized Hanning window function of size 2w + 1,
it was found experimentally that µ ≈ 1+αs

1−αs

(1 + 0.7w).

The value of Smin(k, `) (Eq. (16)) is based on D succes-
sive values of S(k, `), which are clearly correlated. How-
ever, to approximate the statistics of Smin(k, `), we assume
that Smin(k, `) is based on equivalent D i.i.d random vari-
ables. Hence, the probability density function of Smin(k, `)
is given by [13], [9]

fSmin(k,`)(x) ≈ D
(

1 − FS(k,`)(x)
)D−1

fS(k,`)(x) . (48)

Since γmin(k, `) is defined as the ratio of two random vari-
ables, |Y (k, `)|2 and Smin(k, `) scaled by Bmin, its density
function is given by [17]

fγmin(k,`)(x) =

∫ ∞

0

Bmin y f|Y (k,`)|2,Smin(k,`)(Bmin y x, y) dy .

(49)
Similarly, the density function of ζ(k, `) is given by

fζ(k,`)(x) =

∫ ∞

0

Bmin y fS(k,`),Smin(k,`)(Bmin y x, y) dy .

(50)

For large D and µ (D, µ > 10), we can assume that
Smin(k, `) is independent of either |Y (k, `)|2 or S(k, `).
Furthermore, the variance of Smin(k, `) is significantly
smaller than its squared mean value. Hence, Eqs. (49) and
(50) can be simplified to

fγmin(k,`)(x) ≈

∫ ∞

0

fSmin(k,`)(y)Bmin E {Smin(k, `)}

·f|Y (k,`)|2 (xBminE {Smin(k, `)}) dy(51)

fζ(k,`)(x) ≈

∫ ∞

0

fSmin(k,`)(y)Bmin E {Smin(k, `)}

·fS(k,`) (xBminE {Smin(k, `)}) dy .(52)

Substituting Eq. (17) into (51) and (52) we have

fγmin(k,`)(x) ≈ λd(k, `) f|Y (k,`)|2 (xλd(k, `))

= fγ(k,`)(x) (53)

fζ(k,`)(x) ≈ λd(k, `) fS(k,`) (xλd(k, `))

= µ fχ2;µ(µx) . (54)
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