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is paper illustrates the application of the discrete wavelet transform (DWT) for wandering and noise suppression in
electrocardiographic (ECG) signals. A novel one-step implementation is presented, which allows improving the overall denoising
process. In addition an exhaustive study is carried out, de�ning threshold limits and thresholding rules for optimal wavelet
denoising using this presented technique.
e systemhas been tested using synthetic ECG signals, which allow accuratelymeasuring
the e�ect of the proposed processing. Moreover, results from real abdominal ECG signals acquired from pregnant women are
presented in order to validate the presented approach.

1. Introduction

Electrocardiogram (ECG) is a valuable technique that has
been in use for over a century, not only for clinic applications
[1]. ECG acquisition from the human skin involves the use
of high gain instrumentation ampli�ers. 
is fact makes the
ECG signal to be contaminated by di�erent sources of noise
[2]. 
is circumstance is highlighted when the target is the
measurement of fetal ECG signals acquired over the mother’s
abdomen [3]. For processing ECG signals, it is necessary to
remove contaminants from these signals that make visual
inspection and ECG feature extraction di
cult. In general,
ECG contaminants can be classi�ed into di�erent categories,
including power line interference, electrode pop or contact
noise, patient-electrode motion artifacts, electromyographic
(EMG) noise, and baseline wandering. Among these noises,
the power line interference and the baseline wandering
(BW) are the most signi�cant and can strongly a�ect ECG
signal analysis. Except for these two noises, other noises
may be wideband and usually involve a complex stochastic
process, which also distorts the ECG signal. 
e power
line interference is narrow-band noise centered at 50Hz or
60Hz with a bandwidth of less than 1Hz. Usually the ECG
signal acquisition analog hardware can remove the power
line interference. However, the baseline wandering and other

wideband noises are not easy to be suppressed by analog
circuits. Instead, the so�ware scheme is more powerful and
feasible for portable ECG signal processing. 
us, denoising
this type of signals is decisive for further parameter extraction
in clinic applications.

Wavelet transform (WT) [4] is a useful tool for a variety of
signal processing [5, 6] and compression applications [7, 8];
its primary, and most advantageous, application areas are
those that have to generate or process wideband signals. 
is
transform produces a time-frequency decomposition of the
signal under analysis, which separates individual signal com-
ponentsmore e�ectively than the traditional Fourier analysis.

is fact makes WT one of the most used tools for biosignal
processing, with ECG being an obvious candidate for this
type of analysis. Discrete wavelet transform (DWT) provides
amultiresolution, analysis, which allows representing a signal
by a �nite sum of components at di�erent resolutions so that
each component can be processed adaptively based on the
objectives of the application.


is paper proposes an arrangement of discrete wavelet
transform structures for ECG signal processing on portable,
embedded computing real-time implementations [9], focus-
ing on the suppression of di�erent types of noise including
DC levels andwandering.
is suppression is carried out with
a one-stepwavelet processing, which reduces computing cost.
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Appropriate so�ware models and parameter selection are
presented based on mathematical analysis for the mentioned
ECG digital processing.Moreover, these so�waremodels will
also enable very quick tests of the required signal processing.
In order to select an appropriate method for the development
of the so�ware modeling, noise suppression and feature
extraction procedures on ECG signals are studied in the
following.

2. Materials and Methods

2.1. DWT Fundamentals. Wavelet transform (WT) is one of
the most used tools in multiresolution signal analysis due to
its ability to decompose a signal at various resolutions, which
allow observing high-frequency events of short duration in
nonstationary signals [10]. 
e continuous WT of a signal�(�) ∈ �2(�) is de�ned as [11]

�(�, 	) = ∫+∞
−∞

� (�) ��,� (�) ��, (1)

��,� (�) = 1√��∗ (� − 	� ) . (2)

In (2), ∗ denotes complex conjugate, and � is a scale factor

and 	 a translation factor. 
e normalization factor �−1/2 is
included so that ‖��,�‖ = ‖�‖. 
us, ��,�(�) represents a
shi�ed and scaled version of the so-called mother wavelet�, which is a window function that de�nes the basis for the
wavelet transformation. A mother wavelet � of order � is
a function � : � → � which satis�es the following four
properties.

(1) If� > 1, then � is (� − 1) times di�erentiable.

(2) � ∈ �∞(�). If � > 1, for each � ∈ {1, . . . , � − 1},�(�) ∈ �∞(�).
(3) � and all its derivatives up to order (� − 1) decay

rapidly: for each � > 0 there is a � > 0 such that

������(�) (�)����� < 1� , � ∈ {1, . . . , � − 1} for each |�| > �. (3)

(4) For each � ∈ {0, 1, . . . , �}, ∫ ���(�)�� = 0.
Practical applications rely on the discrete wavelet transform
(DWT), since it provides enough informationwhile requiring
reasonable computation time and resources. 
e DWT of a
discrete function �(�) is de�ned as

�(�, 	) = � (�, �) = ∑
�
� (�) ��,� (�) , (4)

where

��,� (�) = 2−�/2� (2−�� − �) (5)

and � = 2� and 	 = �2�, with �, � ∈ Z. 
us, DWT is
computed in practice through a set of two FIR-like �lters,
lowpass and highpass, at each decomposition level !, followed
by a downsampling by 2, which implies a reduction in

the sampling frequency. 
e result of the low-pass �lter is
usually known as the approximation and is used as input
to the following decomposition level, while the result of the
high-pass �lter is called the detail. 
us, the usual DWT
corresponds to the scheme in Figure 1(a), with

�(	)� = 
−1∑
�=0

"��(	−1)2�−� ! = 1, 2, . . . , #,

�(	)� = 
−1∑
�=0

ℎ��(	−1)2�−� �(0)� ≡ &�
(6)

for an '-sample input sequence. 
e coe
cients of the
low-pass and high-pass �lters are de�ned by the family of
wavelet functions used as basis for the transformation: Haar,
Daubechies, Quadratic Spline, and so forth [11].

Since every detail is the result of high-pass �ltering of the
previous approximation and approximations are the result
of low-pass �ltering, these details and approximations at
every decomposition level contain information at di�erent
frequencies and time scales; this re�ects the multiresolution
analysis of theWT. Moreover, it is possible to reconstruct the
original signal from the set of details and approximations,
through the inverse DWT, so

�̂(	−1)�

=
{{{{{{{{{{{{{{{{{{{{{

(
/2)−1∑
�=0

"2��̂(	)(�/2)−� +
(
/2)−1∑
�=0

ℎ2��̂(	)(�/2)−�
� even

(
/2)−1∑
�=0

"2�+1�̂(	)((�−1)/2)−� +
(
/2)−1∑
�=0

ℎ2�+1�̂(	)((�−1)/2)−�
� odd,

(7)

where, once more, the corresponding details are high-pass
�ltered and the approximations are low-pass �ltered, this
time through the appropriate reconstruction �lters.
us, the
reconstructed approximation at level ! − 1 is obtained by
addition of the output of the reconstruction �lters and an
upsampling by 2, as shown in Figure 1(b).

2.2. DWT-Based ECG Processing. 
e special characteristics
of ECG signals and their frequency spectrummake the use of
traditional Fourier analysis for the detection of ECG features
di
cult [12]. Wavelet transform can be applied in many
�elds, but its primary, and most advantageous, application
areas are those that have, generate, or process wideband
signals.
is is due to themultiresolution analysis that wavelet
provides, which allows representing a signal by a �nite sum of
components at di�erent resolutions, so that each component
can be processed adaptively based on the objectives of the
application. In this way, this technique represents signals
compactly and in several levels of resolution, which is ideal
for decomposition and reconstruction purposes. 
us, the
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Figure 1: Block diagramof themultiresolution decomposition using
the wavelet transform, (a) analysis �lter bank and (b) reconstruction
�lter bank.

discrete wavelet transform is an e�ective way to digitally
remove noises within speci�c subbands for ECG signals.

Several wavelet families have been proposed for ECG
processing [12]. Selecting the right wavelet for this application
is a task requiring at least a brief discussion. 
e wavelet
type to use for the discrete wavelet analysis is an important
decision for this processing. Singh and Tiwari [13] studied
di�erent wavelet families and analyzed the associated prop-
erties. We can distinguish between two types: the orthogonal
wavelets as Haar, Daubechies (dbxx), Coi�ets (coifx), Symlets
(symx), and biorthogonal (biorx x), where & indicates the
order of the wavelet and the higher the order, the smoother
the wavelet. 
e orthogonal wavelets are not redundant and
are suitable for signal or image denoising and compression.
A biorthogonal wavelet is a wavelet where the associated
wavelet transform is invertible but not necessarily orthogo-
nal. Designing biorthogonal wavelets allows more degrees of
freedom than orthogonal wavelets. One of these additional
degrees of freedom is the possibility to construct symmetric
wavelet functions.
e biorthogonal wavelets usually have the
linear phase property and are suitable for signal or image
feature extraction.

2.2.1. Wavelet-Based Wandering Suppression. Baseline wan-
dering (BW) usually comes from respiration at frequencies
varying between 0.15 and 0.3Hz. Di�erent methods for
wandering suppression exist, will the common objective of
them to make the resulting ECG signals contain as little
baseline wandering information as possible, while retaining
themain characteristics of the original ECG signal. One of the
proposed methods consists in high-pass digital �ltering; for
example, a Kaiser Window FIR high-pass �lter [14] could be
designed, where appropriate speci�cations of the high-pass
�lter should be selected to remove the baseline wandering.

In addition to digital �lters, the wavelet transform can
also be used to remove the low frequency trend of a signal.

is wavelet-based approach is better because it introduces
no latency and less distortion than the digital �lter-based
approach. 
e required steps for the application of this
wavelet-based processing for baseline wander correction are
the following.

(1) Decomposition: apply wavelet transform to the signal
up to a certain level � in order to produce the

wavelet approximation coe
cients �(�)� that captures
the baseline wander.

(2) Zeroing approximation coe
cients: replace the

approximation vector �(�)� for an all-zero vector to
subtract this part from the raw ECG signal and
remove the wandering.

(3) Reconstruction: compute wavelet reconstruction,
based on these zeroing approximation coe
cients of
level � and the detail coe
cients of levels from 1 to �,
in order to obtain the BW corrected signal.


e main idea is to remove the low frequency components,
which better estimate the baseline wander. 
is processing is
easy to carry out using wavelet decomposition, for which it is
necessary to select the proper wavelet function and resolution
level.

2.2.2. Wavelet-Based Denoising. 
e goal in ECG denoising
is to try to recover the clean ECG from the undesired
artifacts with minimum distortion. 
e recovered signal is
called denoised signal, and it allows further ECG processing,
such as in the case of separation of fetal ECG [3], QRS
complex detection, and parameter estimation (such as the
cardiac rhythm). 
e underlying model for the noisy signal
is basically of the following form:

5 (�) = � (�) + 67 (�) , (8)

where 5(�) represents the noisy signal, �(�) is an unknown,
deterministic signal, time � is equally spaced, and 6 is a noise
level. In the simplestmodel we suppose that 7(�) is a Gaussian
white noise '(8, 62) = '(0, 1). 
e denoising objective
is to suppress the noise part of the noisy ECG signal and
to recover the clean ECG. From a statistical viewpoint, the
model is a regression model over time, and the method can
be viewed as a nonparametric estimation of the function �
using orthogonal basis.

Wavelet denoising has emerged as an e�ective method
requiring no complex treatment of the noisy signal [15]. It
is due to the sparsity, localitym and multiresolution nature
of the wavelet transform.
e wavelet transform localizes the
most important spatial and frequential features of a regular
signal in a limited number of wavelet coe
cients. Moreover,
the orthogonal transform of stationary white noise results
in stationary white noise. 
us, in the wavelet domain the
random noise is spread fairly uniformly among all detail
coe
cients. On the other hand, the signal is represented
by a small number of nonzero coe
cients with relatively
larger values. 
is sparsity property assures that wavelet
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shrinkage can reduce noise e�ectively while preserving the
sharp features (peaks of QRS complex). 
e general wavelet
denoising procedure basically proceeds in three steps [11].

(1) Decomposition: apply wavelet transform to the noisy
signal 5(�) to produce the noisy wavelet coe
cients to
the level', by which we can properly distinguish the
presence of partial discharges.

(2) 
reshold detail coe
cients: for each level from 1 to', select appropriate threshold limit and apply so�
or hard thresholding to the detail coe
cients at some
particular levels to best remove the noise.

(3) Reconstruction: compute wavelet reconstruction,
based on the original approximation coe
cients of
level ' and the modi�ed detail coe
cients of levels
from 1 to ', in order to obtain estimated/smoothed
signal �̂(�).

Although the application of this denoising method is not
conceptually complex, some issues are carefully studied and
addressed in the following for getting satisfactory results.

3. One-Step DWT-Based Baseline Wandering
(BW) and Noise Suppression Proposal

Due to the similar wavelet structure for the application of BW
and noise suppression, we propose here to apply in only one
step both wavelet-based techniques. It will save important
resources and/or time, which would facilitate any future
portable hardware implementation [16, 17]. 
e required
steps for the application of this approach are as follows.

(1) Decomposition: the wavelet decomposition is applied
down to a certain level � in order to produce the

approximation coe
cients �(�)� that capture the BW.

(2) Zeroing approximations: the approximation �(�)� is
replaced by all-zero vector.

(3) 
reshold details: the level 9 (with 9 < �) allow-
ing to properly distinguish the presence of partial
discharges in the noisy details must be selected.
Additionally, for each level from ! = 1 to 9, the
appropriate threshold limit and rule (so� or hard)

are applied to the detail coe
cients �(	)� for better
removing the noise.

(4) Reconstruction: the wavelet reconstruction, based on
the zeroing approximations of level �, the modi�ed
details of levels 1 to 9, and original details of levels
from 9 + 1 to �, is computed to obtain the BW
corrected and denoised signal.


us, simultaneous BWandnoise suppressions are easy to get
using this wavelet-based technique, for which it is necessary
to select the proper parameters. One of the aims of this work
is to develop a mathematical processing model oriented to
portable hardware implementation. 
us, a deep analysis of
the involved parameters is detailed in the following.

3.1. Analysis of Parameters

3.1.1. Wavelet Family. 
e selection of the wavelet family
has to be based on the similarities between the ECG basic
structure and thewavelet functions and the type of processing
to apply. For ECGwandering suppression, the selection of the
wavelet family is based on the study of the wavelet that best
resembles the most signi�cant and characteristic waveform
QRS of the ECG signal.
us, the detail sequences at di�erent
levels of decomposition from 1 to � can capture and keep the
detail features that are of interest for properly reconstructing
the ECG without baseline wander. 
is is achieved through
the elimination of the approximation sequence at level �. 
e
selection of the wavelet family for ECG denoising is made
in a similar way to that for wandering removing; it is also
based on the di�erent types of wavelets and their correlation
to di�erent signals. 
e order-6 Daubechies wavelet is a
functionwell suited because of its similarity to an actual ECG.
Other features include order-10 Symlets.

3.1.2. Resolution Level for Wandering. Another important
parameter for wavelet-based wandering suppression is the

decomposition level �, so that �(�)� can capture the baseline
wander without oversmoothing. To select this resolution
level, it is important to take into account the maximum
number of decomposition levels, ', which is determined by
the length of the sampled ECG signal. Decomposition level
must be a positive integer not greater than log2(� 
), where� 
 is the length of the signal, two di�erent methods can be
employed for selecting the resolution level.

(i) Visual inspection: it consists of plotting the approxi-
mation sequences for di�erent decomposition levels
and to select the resolution level whose approxima-
tion better captures the baseline wandering. ECG
signal from lead 4 of the DaISy dataset [18] is chosen
to illustrate this method.
is dataset contains 8 leads
of skin potential recordings of a pregnant woman.
e
lead recordings, three thoracic and �ve abdominal,
were sampled at 250 sps rate and are 10-second long.
Figure 2 plots the ECG signal and approximation

sequences �(	)� for ! = 5 to 9. 
is �gure shows that�(6)� and �(7)� are the approximation sequences better
capturing the baseline wander. However, this method
is not e�ective for real-time processing.

(ii) Analytical calculation: this method is based on the
calculation of the resolution level for wander suppres-
sion as follows.Wavelet decomposition uses half band
low-pass and high-pass �lters. As it was commented
in Section 2, multiresolution decomposition allows
representing a signal by a �nite sum of components
at di�erent resolutions. Each decomposition level
contains information at di�erent frequency bands
and time scales. 
e approximation sequence at level!, �(	)� , is decomposed to obtain approximation and

detail at level ! + 1, �(	+1)� , and �(	+1)� . Speci�cally,

approximation �(	+1)� is the result of low-�ltering

approximation �(	)� and a downsampling by 2, so that
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Figure 2: ECG data with BW (lead 4 DaIsy dataset) and approxima-
tion sequences at decomposition levels from 5 to 9.

frequencies in �(	)� that are above half of the highest
frequency component are removed. 
is means that
at every decomposition level the frequency band of
the approximation is reduced to the half. Figure 3
shows a study of the frequency subbands of wavelet
decomposition of DaISy dataset lead 4. 
is �gure
displays approximation FFTs for resolution levels
for ! = 1 to 7. Let us consider that the most
important frequency bands in baseline wander are
below a certain frequency ��. For example, �� =1Hz for wandering coming from respiration (0.15–
0.3Hz) [19]. Other wandering components such as
motion of the patients and instruments have higher
frequencies components. To remove wandering, it
should be necessary to select the resolution level such
as the approximation captures the ECG components
for frequencies lower than this��.
e decomposition
level for wandering suppression can be calculated as
follows:

�BW = int [log2 (@max�� )] , (9)
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Figure 3: FFT of ECG DaIsy dataset lead 4 ECG1 and FFTs of
approximation sequences, at decomposition levels from 1 to 7 and
zoom to FFTs approximation and detail level 7.

where @max is the highest frequency component. For
example, the sampling frequency for DaISy dataset is
250Hz, so @max=125Hz (Nyquist 
eorem) and for�� = 1Hz from (9) we can obtain �BW = 7. A�er
applying seven low-pass �lters and downsampling

processes, �(7)� captures frequencies from 0Hz to
0.977Hz and is a good estimation of baseline wander.

e visual inspection method also determined that�(7)� captures the baseline wander. 
e BW corrected
signal can be obtained using wavelet reconstruction
based on the detail coe
cients of levels from 1 to 7 and
zeroing �(7)� . Figure 4 illustrates the proposed method
for wavelet-based wandering suppression. 
is �gure
shows the original ECG signal (DaISy dataset lead 4),

the estimated baseline wander with �(7)� , and the ECG

signal obtained a�er zeroing �(7)� .

3.1.3. Level of Decomposition for Denoising. 
e maximum
level for detail thresholding, 9, depends on several factors
such as the SNR in the original signal or the sample rate.

e level of decomposition speci�es the number of levels
in the discrete wavelet analysis to take into account for
detail thresholding. Unlike conventional techniques, wavelet
decomposition produces a family of hierarchically organized
decompositions. 
e selection of a suitable level for the
hierarchy will depend on the signal and experience. Most
o�en, the level is chosen based on a desired low-pass cut-o�
frequency. Measured signal having lower SNR usually needs
more levels of wavelet transform to remove most of its noise.
On the other hand, a factor that also in�uences the optimal
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level decomposition for denoising is the sampling rate of ECG
signal. Sharma et al. [15] use a study of the spectrum of the
detail coe
cient at each level for estimating the optimum
level decomposition for denoising.
ey concluded that noise
content is signi�cant in high frequency detail subbands, while
most of the spectral energy lies in low frequency subbands.
For an ECG signal sampled at @
 = 500Hz, noise content

is signi�cant in detail subbands �(1)� , �(2)� , and �(3)� . 
us,
in order to avoid losing clinically important components of

the signal, such as PQRST morphologies, only detail �(1)� ,�(2)� , and �(3)� should be treated for denoising. Manikandan
andDandapat [20] present a wavelet energy-based diagnostic
distortion measure to assess the reconstructed signal quality
for ECG compression algorithms.
eirwork includes a study
showing, for a given sampling frequency, the information of
the ECG signal and its energy contribution at each frequency
subband.
is helps to understand how the noise perturbs the
detail coe
cients and the e�ect over the energy spectrum.

e authors also show several examples that clarify the
e�ect of applying “zeroing” of detail coe
cients at di�erent
decomposition levels. As an example to clarify the correct
selection of this parameter, Figure 5 shows 4th level wavelet
decomposition for ECG signal DaISy dataset lead 4. It can
be observed that small subbands re�ect the high frequency
components of the signal, and large subbands re�ect the
low frequency components of the signal. 
e e�ect of high

frequency artifacts can be seen in detail subbands �(1)� and�(2)� . 
ese bands are weighted with small values because the
energy contribution to the spectrum is low. For this example,

it should be advisable to treat only detail subbands �(1)� and�(2)� for wavelet denoising in order to maintain the main
features of the ECG signal. It is due, as the �gure shows, to
the fact that detail subbands higher than level 2 contain most
of the signi�cant information for diagnostic. A more detailed
study for the determination of the optimum level for wavelet-
based denoising is shown in Section 4.
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Figure 5: fourth level wavelet decomposition for DaISy dataset lead
4.

3.1.4. 	reshold Limits. Most algorithms are based on the
previous threshold de�nition established in Donogo’s uni-
versal theory [21]. Since this work, modi�ed versions of the
universal threshold and new thresholds have been proposed.
Matlab functions for denoising (wden.m, thselect.m) [22]
and Labview blocks (Wavelet Denoise Express VI) [23]
establish some of these thresholds as prede�ned options:
rigsure, sqtwlog, heursure, and minimax. Taking this into
account, the aim of this work is to develop processing
models for portable computing implementations, so a study
of the proposed threshold based on the following criteria
was made: computational complexity, delays, latency, and
clock frequency. 
e evaluation of these criteria derives the
following threshold classi�cation.

Pre
xed	resholds. For a given signal length,', and a level of
decomposition for wavelet denoising, #, it will be possible to
know the coe
cient length for each level �, denoted by ��, and
thus, some thresholds proposed in the literature [13] could be
calculated using so�ware tools and stored inmemory for later
usage. Some of them are the following:

(i) universal threshold:


uni = √2 log ', (10)

(ii) universal threshold level dependent:


uni,� = √2 log ��, (11)

(iii) universal modi�ed threshold level dependent:


uni, mod ,� = √2 log ��
√�� , (12)
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(iv) exponential threshold:


exp = 2((�−�)/2)√2 log ', (13)

(v) exponential threshold level dependent:


exp,� = 2((�−�)/2)√2 log ��, (14)

(vi) minimax threshold (RefMatlab):


minimax = 0.3936 + 0.1829 ∗ ( log (��)
log (2) ) . (15)

Minimax threshold uses the minimax principle to
estimate the threshold [24].

Nonpre
xed 	resholds. 
ere are more threshold proposals
that have been positively evaluated [15, 22] and, in some cases,
get better results than the pre�xed thresholds. However, a
previous so�ware calculation would not be possible since
samples and/or coe
cient data which are initially unknown
are needed.On the other hand, the estimation of these thresh-
olds could imply complex operations, and thus an important
increment of latency. 
e following are two examples of this
type of thresholds:

(i) maxcoef threshold [22]:


maxcoef = 2�−�,
� = round [log2 (max {�����N������})] ,

(16)

(ii) Kurtosis and ECE-based thresholds [15]:


DF,� = 1Q� ×
max (N�)@jSN ,


D̂F�
= 1̂Q� ×

max (N�)@jSN ,
(17)

where Q� is the energy contribution e
ciency of�th detail subband, Q̂� is detail energy contribution
e
ciency of �th wavelet subband, and @jSN is the ratio
between the Kurtosis value of the signal at subband �
to the Kurtosis value of Gaussian noise:

Q� = S�S� × 100,
Q̂� = S�

Ŝ� × 100,

U� = �4�22 =
(1/')∑
	=1 (&	 −media (&))2

((1/')∑
	=1 (&	 −media (&))2)2 .
(18)

Analyzing this type of thresholds, their data and coef-
�cients dependence makes them di�erent from pre�xed
thresholds. On the hand, the implementation of the involved
operations of these nonpre�xed thresholds requires a high
number of operations, division between them. 
us increas-
ing implementation complexity of these thresholds. On the
other hand, it will consume a big number of clock cycles
and at least two accesses to each stored sample. It could
have devastating e�ects over the total latency and real-time
processing.

3.1.5. 	reshold Rescaling. For signal denoising, once the
threshold to be applied is selected, this threshold is rescaled
using noise variance:

th�,rescaled = 6� ⋅ th�. (19)


e noise variance is used to rescale the threshold at each
level, so other important setting is related to the method for
estimating the noise variance at each level. If the noise is
white, the standard deviation from the wavelet coe
cients at
the �rst level can be used, and the thresholds can be updated
using this value. If the noise is not white, best results for
denoising are obtained when estimating the noise standard
deviation at each level independently and using each one to
rescale the associated wavelet coe
cients.


e 6 is calculated based on median absolute deviation
(MAD) [15, 25, 26]:

6 = � ⋅MAD (N�) , (20)

where � is a constant scale factor, which depends on distri-
bution of noise. For normally distributed data � = 1.4826
is the 75th percentile of the normal distribution with unity
variance. On the other hand, for a univariate dataset of
wavelet details at �th level N�1, N�2, . . . , N��, the MAD is de�ned
as [27]

MAD = median (�����N� −median (N�)�����) . (21)


us, estimated noise variance can be written as

6 = 1.4826 ⋅median (�����N� −median (N�)�����) . (22)

Some prede�ned applications or functions, such as the
wnoisest.mMatlab function, use a simpler expression for 6:

6 = 1.4826 ⋅median (�����N������) . (23)

It must be noted that the rescale factor 6 is not a pre�xed
value since, as (21) and (22) show, it depends on the wavelet
coe
cient values. However, memory access is reduced if
expression (22) is used (expression (21) implies threememory
accesses, while (22) requires only one). Depending on the
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Table 1: BW suppression analysis.

@
 (Hz) ' @� (Hz)
SNR for estimated BWC4 C5 C6 C7 C8 C9 C10 C11 C12

250 5400

0.15 1.866 6.563 12.579 25.986 25.484 7.826 −7.957 −8.948 −9.199
0.19 1.866 6.563 12.570 25.636 22.445 −0.216 −8.630 −9.072 −9.193
0.23 1.866 6.563 12.555 24.591 16.422 2.536 −8.981 −9.003 −9.035
0.27 1.866 6.563 12.548 23.882 10.589 −7.621 −8.874 −8.943 −8.977
0.31 1.866 6.563 12.561 24.063 6.442 −8.311 −8.886 −9.212 −9.339

500 10800

0.15 0.612 4.491 10.172 16.583 30.755 24.674 5.845 −9.762 −10.373
0.19 0.612 4.491 10.170 16.541 29.129 21.425 −2.123 −10.440 −10.866
0.23 0.612 4.491 10.168 16.485 26.036 14.864 0.825 −10.778 −10.796
0.27 0.612 4.491 10.168 16.469 25.625 8.869 −9.412 −10.669 −10.750
0.31 0.612 4.491 10.170 16.521 25.237 4.688 −10.16 −10.726 −10.064

1000 21600

0.15 0.104 1.040 5.684 11.679 18.344 33.993 23.436 4.831 −10.805
0.19 0.104 1.040 5.684 11.678 18.319 31.447 20.792 −3.154 −11.545
0.23 0.104 1.040 5.684 11.677 18.271 26.531 13.913 −0.238 −11.897
0.27 0.104 1.040 5.684 11.677 18.255 24.680 7.822 −10.512 −11.771
0.31 0.104 1.040 5.684 11.679 18.300 25.393 3.629 −11.258 −11.807

Table 2: Denoising evaluation using synthetic ECG signals.

M 
reshold Wavelet SNR SNRIMP M 
reshold Wavelet SNR SNRIMP

So� thresholding 15 dB Hard thresholding 15 dB

3 
exp coif3 21.2631 6.4015 4 
minimax sym7 20.8648 5.9319

3 
exp db7 21.4798 6.3944 4 
minimax sym7 21.0110 5.9256

3 
exp coif3 21.4773 6.3919 4 
minimax sym7 20.7633 5.9017

3 
exp db7 21.2360 6.3743 5 
minimax sym7 20.8288 5.8958

3 
exp sym7 21.4286 6.3432 5 
minimax sym7 20.7219 5.8603

3 
exp db5 21.4274 6.3420 5 
minimax sym7 20.9024 5.8170

3 
exp db5 21.2008 6.3391 3 
minimax sym7 20.8818 5.7964

So� thresholding 25 dB Hard thresholding 25 dB

3 
exp bior3.9 29.5524 4.4960 3 
minimax bior6.8 29.5025 4.5809

3 
exp bior3.9 29.2865 4.3649 3 
minimax bior6.8 29.6610 4.5534

3 
exp sym7 29.2657 4.3440 4 
minimax bior6.8 29.5801 4.4725

3 
exp sym7 29.3678 4.3114 4 
minimax bior6.8 29.3823 4.4607

3 
exp bior3.9 29.3712 4.2784 3 
minimax bior6.8 29.5049 4.4485

3 
exp bior6.8 29.2479 4.1915 3 
minimax sym6 29.5035 4.4471

3 
minimax bior3.9 29.0937 4.1720 5 
minimax bior6.8 29.5436 4.4360

system architecture and data processing, a higher number of
memory accesses could increase the system latency and thus
jeopardize real-time processing.

3.1.6. 	resholding Rules. 
resholding can be done using
so� or hard thresholding. Hard thresholding is the simplest
method. It can be described as the usual process of setting
to zero the elements whose absolute values are lower than
the threshold. So� thresholding is an extension of hard
thresholding, �rst setting to zero the elements whose absolute
values are lower than the threshold and then shrinking the
nonzero coe
cients towards 0. 
e hard procedure creates
discontinuities, while the so� procedure does not. 
e so�

and hard thresholding is shown in (24) and (25), respectively:

�̂(�)� = {sign (�(�)� ) (������(�)� ����� − th�) if
������(	)� ����� ≥ th�0 if
������(	)� ����� < th�, (24)

�̃(�)� = {{{
�(�)� if

������(	)� ����� ≥ th�

0 if
������(	)� ����� < th�,

(25)

where �̂(�)� and �̃(�)� represent the modi�ed values of �th level
detail coe
cient based on the selected threshold and th� and
are an approximation of the detail coe
cients of the de-

noised transform.
enewdetail coe
cients, �̂(�)� or �̃(�)� , have
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Figure 6: DaIsy database signals: (a) lead 1 and noise and BW corrected signal; (b) lead 2 and noise and BW corrected signals.
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Figure 7: ecgca 746 abdomen lead 1 Noninvasive Fetal ECG Database (Physionet Dataset): (a) signal; (b) BW and noise corrected signal; (c)
signals detail.
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Figure 8: Noninvasive Fetal ECGDatabase (Physionet Dataset): (a) ecgca 906 lead 1 signal, BW and noise corrected signal; (b) ecgca 473 lead
1 signal, BW and noise corrected signal; (c) ecgca 840 lead 1 signal, BW and noise corrected signal.

to be calculated for the wavelet transform levels considered
for denoising, as it was pointed previously.

4. Results


is section is devoted to analyze the one-step proposed
method through quantitative parameters. When working
with real noisy ECG signals, it is not trivial to calculate a
parameter that provides a quantitativemeasure of the bene�ts
of the applied technique. In order to better analyze our
proposed one-step model, a separate study of BW and noise
suppression has been carried out using synthetic ECG signals.
For a quantitative evaluation of the BW suppression, we
have employed three types of synthetic ECG signals. 
ese
synthetic signals were elaborated from the ecg.m Matlab
function [28] and are 21.6 second long and contain 5400,

10800, and 21600 samples thus the resulting sample rates
are 250, 500, and 1000 sps, respectively. Signals a�ected by
BW are obtained adding a sine wave plus a DC level, using
frequencies from 0.15 to 0.31Hz that �t to the frequency band
in real BW. Our study has estimated the BW of the signals as
the approximations from level 1 to 12 and has reconstructed
the signal removing the estimated BW. Table 1 resumes the
main results, showing the SNRs between the synthetic and
the BW corrected signal. According to the expression of �,
for signals sampled at 250, 500, and 1000 sps, the adequate
decomposition level for BW suppression will be 7, 8, and 9,
respectively, which is corroborated by Table 1.
is study also
re�ects that better BW suppression (higher SNR) is achieved
if the signal is sampled at higher rate.

Synthetic ECG signals were also used to evaluate the
performance of the noise suppression. 
ese signals were
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Figure 9: r1 abdomen 1 Abdominal and Direct Fetal Electrocar-
diogram Database (Physionet Dataset) signal and BW and noise
corrected signals using di�erent levels for denoising.
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Figure 10: r4 abdomen 1 Abdominal and Direct Fetal Electrocar-
diogram Database (Physionet Dataset) signal and BW and noise
corrected signals usingmultiple and simple rescaling.

contaminated adding Gaussian white noise. 
us, the noisy
signal is processed by the proposed method to obtain the
denoised signal. 
is scenario is used by several authors
[29] and allows visual inspection and quantitative evaluation.

ere are several parameters to measure the quality of the
denoised signal [15, 29], as the SNR Improvement Measure
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Figure 11: r7 abdomen 2 Abdominal and Direct Fetal Electrocar-
diogram Database (Physionet Dataset) signal and BW and noise
corrected signals using the two types of thresholding rules.
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Figure 12: r10 abdomen 2 Abdominal and Direct Fetal Electrocar-
diogram Database (Physionet Dataset) signal and BW and noise
corrected signals using two types of thresholds.

SNRIMP [29]. A study using 3, 4, and 5 as maximum levels
for wavelet denoising9, universal, exponential, andminimax
as threshold limits, and simple rescaling and so
 and hard
thresholding was carried out. A total of 12 wavelet functions
were used for this evaluation. 
e study also considers two
noise levels, approximately 15 dB and 25 dB and a maximum
of three attempts for each case (for each attempt, all the
parameters are the same, including noise level, but the noisy
signal is di�erent due to the randomdistribution of it over the
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original signal). Table 2 shows the best results for denoising.
Observing these summarized results and all the generated
data, we can conclude that there are no large di�erences
for the SNRIMP values of the di�erent wavelet functions.
Comparing so
 and hard thresholding, so
 gets for both
noise levels higher SNRIMP using a less number of levels.
Regarding thresholds, Thexp achieves best denoising if it is
used along with so
 thresholding, as it is the case with the
combination
minimax and hard thresholding.

To study BW suppression and denoising for our one-step
denoising and BW suppression proposal, visual inspection
of the obtained signals is also important, and in some
cases it is even more conclusive than quantitative measures.
DaISy dataset and Physionet Dataset [30] are targeted for
evaluating the proposed one-step BW and noise suppression.

e recordings from Noninvasive Fetal ECG Database [30]
have two thoracic and four abdominal channels sampled at
1 ksps, all 60 seconds long. 
e signal bandwidth is 0.01Hz–
100Hz. In addition, recordings from the Abdominal and
Direct Fetal ElectrocardiogramDatabase [31] have been used.
Each recording comprises four di�erential signals acquired
frommaternal abdomen and the reference direct fetal electro-
cardiogram registered from the fetus’s head.
e fetal �-wave
locations were automatically determined in the direct FECG
signal bymeans of online analysis applied in theKOMPOREL
system [31]. 
e recordings, sampled at 1 ksps, are 5-minute
long, and the signal bandwidth is 1Hz–150Hz.

For these signals the selected parameters were wavelet
function db6, 9 = 3, universal threshold, so
 thresholding,
simple rescaling for DaIsy dataset, and multiple rescaling
for Noninvasive Fetal ECG Database. Figure 6 includes the
obtained result for lead 1 and lead 2 from DaIsy dataset, with
BW and noise corrected signals being shown. Figure 7 shows
an example of results for ecgca 746 signal of Noninvasive
Fetal ECG Database, including the detail of one of the fetal
QRS complexes before and a�er processing. 
ese �gures
show that the abdominal ECG signals are BW corrected and
denoised while retaining their main characteristics, as the
fetal QRS complexes, which are very important for future
parameter extraction [7]. Figure 8 shows more examples of
results for signals of Noninvasive Fetal ECG Database.

Figures 9, 10, 11, and 12 show processing examples for
signals of Abdominal and Direct Fetal Electrocardiogram
Database displayed. Figure 9 uses signal r1 abdomen 1 to
make a study of the BW and noise corrected signals using
three di�erent levels for signal denoising, 9 = 3, 9 =4, and 9 = 5; as this level increases, the denoised signal
loses its main characteristics (i.e., fetal QRS complexes).
Figure 10 shows the denoising of r4 signals using multiple
rescaling and simple rescaling. It can be observed that the best
denoising is obtained using multiple rescaling. On the other
hand, Figure 11 shows the results for r7 abdomen 2 signal
using so
 and hard thresholding; so
 thresholding gets better
denoised signal since hard thresholding introduces some
discontinuities into the denoised signal. Finally, universal and
minimax thresholds are used for denoising r10 abdomen 2
signal, as Figure 12 shows. Similar results are obtained for
these two thresholds, but observing signal details, minimax
threshold provides better results.

5. Conclusion


is paper presents the mathematical bases for electro-
cardiogram signal denoising by means of discrete wavelet
processing. A novel one-step wavelet-based method has been
introduced performing both BW and noise suppression,
which makes computationally feasible real-time implemen-
tations. 
e presented approach is performed by only one
wavelet decomposition and reconstruction step, which is
required for eliminating both types of perturbations. 
is
approach has been linked to an exhaustive study of the
related parameters, such as number of decomposition levels,
threshold edges, rescaling, and rules that allow an optimal
signal denoising and meeting speci�c ECG signal character-
istics including signal shape, sample rate, and noise levels.

e presented results for synthetic ECG signals validate
this method, while applications on real AECG signal from
three di�erent databases have led to improved signals that
are valid for further analysis and extraction of parameters
such as heart rate variability. 
e de�ned algorithm will also
allow its compact implementation, thus �tting portable ECG
applications.
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