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Abstract—Recently, many deep learning-based methods have
been developed for solving remote sensing (RS) scene classification
or retrieval tasks. Most of the adopted loss functions for training
these models require accurate annotations. However, the presence
of noise in such annotations (also known as label noise) cannot
be avoided in large-scale RS benchmark archives, resulting from
geo-location/registration errors, land-cover changes, and diverse
knowledge background of annotators. To overcome the influence
of noisy labels on the learning process of deep models, we pro-
pose a new loss function called noise-tolerant deep neighborhood
embedding which can accurately encode the semantic relation-
ships among RS scenes. Specifically, we target at maximizing the
leave-one-out K-NN score for uncovering the inherent neighbor-
hood structure among the images in feature space. Moreover, we
down-weight the contribution of potential noisy images by learning
their localized structure and pruning the images with low leave-
one-out K-NN scores. Based on our newly proposed loss func-
tion, classwise features can be more robustly discriminated. Our
experiments, conducted on two benchmark RS datasets, validate
the effectiveness of the proposed approach on three different RS
scene interpretation tasks, including classification, clustering, and
retrieval. The codes of this article will be publicly available from
https://github.com/jiankang1991.

Index Terms—Deep metric learning, image characterization,
image retrieval, label noise, remote sensing (RS).

I. INTRODUCTION

W
ITH the rapid development of satellite sensors, re-

mote sensing (RS) has entered the big data era. The

availability of massive RS datasets now support a wide range

of applications, such as object detection [1]–[5], land-cover
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characterization [6]–[16], or disaster monitoring [17], [18],

among others. To successfully solve these tasks, accurate in-

terpretation of the semantics within RS scenes is fundamental,

with scene interpretation being a mainstream research topic [19].

Most existing scene interpretation methods can be categorized

into two types: 1) handcrafted feature-based methods [20], [21];

and 2) data-driven feature-based methods [22]–[27]. Although

handcrafted features can characterize most RS scenes, their

performance is more limited as the complexity of the seman-

tic contents increases. More recently, deep-learning methods

(which directly summarize high-level semantics from large-

scale RS data through end-to-end neural networks) have ex-

hibited prominent performance for intelligently interpreting RS

scenes [28], [29]. Specifically, deep metric learning methods

have received particular attention in this context, owing to

their good performance in the task of discriminating interclass

features and discovering the inherent structure of intraclass

features [30]–[32]. The main goal of these methods is to separate

and group the features extracted from semantically similar and

dissimilar images, respectively. To achieve this goal, most deep

metric learning methods require supervised information (such

as image annotations) for constructing image pairs or triplets

with semantic relationships, where semantically similar images

share the same label and dissimilar images have different la-

bels. With the rapid growth of RS data archives, accurately

annotating RS scenes has become a major challenge. Most RS

scene benchmark datasets [33]–[38] are annotated by human

experts with sufficient background knowledge. However, such

labeling procedure is very expensive and time-consuming for

large-scale RS datasets. Moreover, different annotators with dif-

ferent background knowledge may not reach an agreement when

labeling semantically complex RS scenes, which may induce

label noise in the dataset. An alternative way for scalable RS

scene annotation is crowd-sourcing geospatial information, e.g.,

Google Maps, OpenStreetMap (OSM), CORINE Land Cover

(CLC), etc. [39]–[41]. Although such approach can automat-

ically annotate RS scenes in a scalable manner, some factors

(such as geo-location/registration errors, land-cover changes,

or even low-quality volunteered geographic information) could

also introduce label noise. When noisy labels exist in the RS

benchmark dataset, they will lead to performance degradation

of trained deep models on different scene characterization tasks,

such as classification or image retrieval, among others [42]. As

a result, most existing methods for scene characterization based

on deep metric learning are not robust to label noise.
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In order to solve this pressing issue, we propose a new

deep metric learning loss function, termed as noise-tolerant

deep neighborhood embedding (NTDNE), which can accurately

capture the semantic relations among RS scenes in feature space.

To model the inherent neighborhood structure of images in such

space, we stochastically maximize the leave-one-out K-NN

score, inspired by the concept of scalable neighborhood com-

ponent analysis (SNCA) [43], [44]. Furthermore, considering

the presence of label noise, we improve the robustness of the

log-likelihood loss function of leave-one-out K-NN scores by

replacing the logarithm function with the negative Box–Cox

transformation [45], [46], which can down-weight the contri-

bution of potentially noisy images by learning their localized

structure in feature space. In addition, we apply a truncation

mechanism on the loss function to further improve its robustness,

especially when a large percentage of the datasets contain noisy

labels. To this end, the contributions of this article can be

summarized as follows.

1) We propose a novel deep metric learning loss function for

modeling the inherent neighborhood structure of images

in feature space in a robust manner.

2) The newly proposed loss function exhibits prominent per-

formance in the task of feature generation (particularly in

the presence of label noise) compared with other state-of-

the-art deep metric learning losses.

The remainder of this article is organized as follows. Section II

describes some related works. Section III details our newly

proposed robust deep metric learning scheme to characterize

RS images with label noise. Section IV presents the conducted

experiments and discusses the obtained results. Section V con-

cludes the article with some remarks and hints at plausible future

research lines.

II. RELATED WORK

A. RS Scene Characterization

Traditional RS scene characterization methods are developed

in a handcrafted manner. Most of these methods exploit low-

level visual descriptors to summarize color, texture, structure

and shape information of land-use and land-cover objects within

RS scenes. For example, [47] proposed a feature extraction

method based on morphological texture for discriminating three

mangrove species (and the surrounding environment) with mul-

tispectral IKONOS imagery. A gist feature-based method was

proposed in [48] for automatically detecting and classifying

targets in high-resolution broad-area satellite images. [49] ex-

ploited multiscale histogram of oriented gradients feature pyra-

mids for extracting the features of objects and utilized support

vector machine to achieve the classification. Other popular

descriptors, such as local binary patterns and scale-invariant

feature transform, have been also adopted to characterize the

contents of RS scenes [50], [51]. Despite their advantages,

they cannot sufficiently capture the features of some RS scenes

with high semantic complexity. To solve this issue, data-driven

RS scene characterization methods based on sparse coding,

topic modeling, and auto-encoders [22], [52], [53] have been

developed during the last decades. Most recently, deep learning

techniques have attracted significant attention for characterizing

the semantics of RS scenes, owing to the prominent capabilities

of convolutional neural networks (CNN) in the task of extracting

discriminative features from images [28]. For instance, Li et al.

[54] integrated multilayer features of different pretrained CNN

models for characterizing aerial scenes. Multiscale CNN fea-

tures via spatial pyramid pooling were exploited in [55] for RS

scene characterization. Zheng et al. [56] proposed a deep scene

representation method utilizing pretrained CNN features, multi-

scale pooling, and Fisher vectors to achieve invariance of CNN

features and enhance the discriminative capabilities. Huang

et al. [26] first combined the multiscale deep feature learning

strategy with manifold-learning-based dimension reduction for

further feature embedding, which significantly improved the

ability to embed local contextual information and learn discrim-

inative features. Among various deep learning techniques, the

so-called deep metric learning scheme has recently become a

prominent trend to effectively encode the semantic contents of

RS scenes with low-dimensional features, which can sufficiently

model the semantic relationships among the images in the fea-

ture space. To improve the discriminative capability of CNN

models, Cheng et al. [31] introduced a pairwise loss function as

the regularizer of the cross-entropy loss, and proposed a discrim-

inative CNN (D-CNN) accordingly. Yan et al. [32] exploited a

deep metric learning scheme to reduce the data distribution bias

in the embedding space, so that the scene classification accuracy

on the target dataset (coming from a different domain) could be

preserved. Cao et al. defined a content-based RS image retrieval

framework based on the triplet loss, which exploits both positive

and negative examples to learn the feature space more accurately.

Yun et al. [57] proposed a new triangular loss function within a

coarse-to-fine strategy for retrieving semantically similar images

with certain variations of the image contents. Hong et al. [24]

for the first time summarized several state-of-the-art fusion

strategies into a general deep learning framework for multimodal

RS image classification. This work has been widely recognized

as a pioneering work in multimodal RS data analysis. Although

the abovementioned deep metric learning methods can model

the semantic relations among RS scenes, they are not robust to

benchmark datasets containing noisy labels.

B. Robust Loss Function for Deep Learning

Due to different factors, benchmark datasets may be strongly

affected by noisy labels which can severely decrease the clas-

sification performance of pretrained CNN models [58]–[60].

As the scale of data rapidly grows, such issue has become

more important in the machine learning field. Ghosh et al. [61]

investigated the robustness of the commonly utilized categorical

cross entropy (CCE) loss, together with the mean absolute value

of error (MAE), and empirically demonstrated that MAE is more

noise-tolerant than CCE. Zhang et al.[46] further illustrated that

the robustness improvements of MAE over CCE are due to the

weight scheme of the loss gradients, and proposed a novel loss

function, named generalized cross entropy. Wang et al. [62] ex-

ploited the idea of symmetric Kullback–Leibler divergence and

proposed a symmetric cross entropy loss to tackle noisy labels.
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Fig. 1. Proposed framework based on NTDNE for RS scene characterization.

On the basis of 0−1 loss (with some robust properties), Lyu et al.

[63] proposed the curriculum loss as a tighter upper bound of the

0−1 loss, which can be efficiently optimized. Moreover, robust

deep learning methods have been recently reviewed in [64] and

[65]. Although extensive research on robust deep learning has

been done in machine learning and computer vision fields, most

of the proposed losses are targeted to robustly predicting the

categories of the input images. There is a lack of deep metric

learning methods for robustly characterizing the semantics of

RS scenes, which certainly motivates the development of new

noise-tolerant deep metric learning models.

III. NOISE-TOLERANT DEEP NEIGHBORHOOD EMBEDDING

With the guidance of supervised information, such as se-

mantic labels, deep metric learning methods aim to produce

CNN encoders which can preserve the semantic relations of

images in the low-dimensional feature space. When label noise

exists in the datasets, the trained CNN models cannot sufficiently

capture the semantic contents of the images, which leads to a

degraded discrimination capability of the generated features. To

solve this issue, we introduce a new robust deep metric learning

method in this section, which is mainly composed of two parts:

1) a backbone CNN architecture for modeling the semantics of

RS images, based on low-dimensional features; and 2) a novel

loss function, i.e., NTDNE, for learning the noise-tolerant CNN

encoders, which can robustly capture the semantic similarities

among the RS images. Fig. 1 provides a graphical illustration of

our newly proposed method. In the following sections, we first

introduce some notations, and then provide a review of SNCA

and a description of the proposed NTDNE loss.

A. Notations

Let X = {x1, . . . ,xN} be a RS image dataset containing

N images with label annotations, and Y = {y1, . . . ,yN} be

the associated set of labels, where each label is denoted by a

one-hot vector, i.e., yi ∈ {0, 1}C and C is the total number of

categories. When the image xi is annotated with the cth class,

the cth element of yi is 1, i.e., yci = 1, and the others are 0. F(·)
is the nonlinear function modeled by the CNN encoders, which

transform the input RS images into low-dimensional features

fi ∈ R
D with dimensionality D. The normalized features, i.e.,

fi = F(xi)/‖F(xi)‖2, are exploited in this article. When the

dataset is corrupted by label noise, the noisy label set is denoted

as Ŷ = {ŷ1, . . . , ŷN}, where ŷi represents the noisy label vec-

tor. In this article, we assume that the noise is conditionally

independent of the input images given the true labels [46]

p(k|c,xi) = p(k|c) = ηck (1)

where ηck is the noise rate, drawn as the (c, k)th component from

aC × C probability transition matrixQ [66]. Two types of label

noise are considered in this article, including uniform noise and

label-dependent noise. In the case of uniform noise, a true label is

randomly flipped into other labels with equal probability ηck =
η

C−1 or preserved as the true label with probability ηck = 1− η.

In the case of label-dependent noise, a true label is more likely

to be mistakenly labeled with a particular class with probability

ηck = η, or preserved as the true label with probability ηck =
1− η.

B. Review of SNCA and Its Limitations With Label Noise

Neighborhood component analysis [67] and its extension

with a deep learning technique, i.e., SNCA [43] aim to maximize

the averaged leave-one-out classification performance based on

the input dataset. Specifically, given a pair of images (xi,xj)
and the corresponding features (fi, fj), the semantic similarity

of these two images can be measured by the cosine between the

features

sij = fTi fj . (2)

For the image xi, we assume that an image xj is located as

its neighbor in feature space with probability pij , which can be

defined as

pij =
exp(sij/σ)

∑

k �=i exp(sik/σ)
, pii = 0 (3)

whereσ is a temperature parameter controlling the concentration

level of the sample distribution [68], [69]. If sij is larger, xj is

more probably chosen as a neighbor of xi in the feature space

than another image xk. pii = 0 indicates that each image cannot

be considered as its own neighbor. The probability pi that xi can

be correctly classified is

pi =
∑

j∈Ωi

pij (4)

whereΩi = {j|yi = yj} is the index set of training images shar-

ing the same label with xi. In order to maximize the leave-one-

out classification score, the SNCA loss minimizes the expected

negative log-likelihood over the training set, represented as

LSNCA = −
1

|T |

∑

i

log(pi) (5)
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where T denotes the training set and |T | represents the number

of training images. By calculating the gradients of LSNCA with

respect to fi and fj (j �= i), we obtain

∂LSNCA

∂fi
=

1

σ

∑

k

pikfk −
1

σ

∑

k∈Ωi

p̃ikfk (6)

∂LSNCA

∂fj
=

{

1
σ
(pij − p̃ij)fi, j ∈ Ωi

1
σ
pijfi, j /∈ Ωi

(7)

where p̃ik = pik/
∑

j∈Ωi
pij is the normalized distribution of

the ground-truth class. The robustness limitation of LSNCA can

be analyzed from the above two equations.

1) According to (6), the gradient of LSNCA with respect to fi
depends on the two terms:1

∑

k pikfk and
∑

k∈Ωi
p̃ikfk.

Regarding the first term, its value does not depend on the

annotated labels of the images, since it just calculates a

weighted summation of all the other image features except

fi, with the associated weight pij . Regarding the second

term, its value is basically dependent on the weighted

summation of all the other image features sharing the

same label with respect to image xi, where the weights

are mainly determined by the similarities sik. When label

noise exists in the set Ωi, the similarity sik between the

image xi and the noisy ones xk will be small, and this will

lead to a large gradient value ∂LSNCA

∂fi
. In other words, the

images with lower similarities (which are most probably

the ones with label noise) with respect to the image xi

have a stronger impact on the learning of feature fi.

2) For (7), when j ∈ Ωi, (pij − p̃ij) can be formulated as

pij

(

1−
1

∑

k∈Ωi
pik

)

. (8)

Since 1− 1∑
k∈Ωi

pik
≤ 0, a low value of pij will lead to a

large gradient ∂LSNCA

∂fj
. Thus, when label noise exists inΩi,

the associated images with lower similarity with respect

to the image xi will contribute more to the learning of the

feature fj than the other images. In the case of j /∈ Ωi,

when some images are annotated with wrong labels, j ∈
Ωi may happen for some values of j. Thus, the associated

pij will be large, which will also lead to a large gradient
∂LSNCA

∂fj
when learning fj .

Based on the above analysis, we can note that the images with

noisy labels will contribute more to the optimization of features

fi and fj than the other images, which will cause the overfitting

of the learned CNN models due to label noise.

C. Proposed NTDNE

1) Loss Function: To improve the noise-tolerant capability

of SNCA, we observe that the SNCA loss is the negative sum-

mation of all the leave-one-out classification scores wrapped

by the logarithm function. The gradient values with respect to

the learned features are mainly dependent on the adopted wrap

function. Inspired by [46], we exploit the negative Box–Cox

transformation [45] to replace the logarithm function in SNCA,

1For simplicity, 1

σ
is omitted here.

owing to its down-weighting effect on small values of pi, which

results in the proposed NTDNE loss

LNTDNE =
1

|T |

∑

i

1− (pi)
q

q
, q ∈ (0, 1). (9)

Lemma 1: limq→0 LNTDNE = LSNCA.

Proof: Based on L’Hôpital’s rule, we have

lim
q→0

1

|T |

∑

i

1− (pi)
q

q
=

1

|T |

∑

i

lim
q→0

d
dq

(1− (pi)
q)

d
dq
q

=
1

|T |

∑

i

lim
q→0

−(pi)
q log(pi)

= −
1

|T |

∑

i

log(pi). (10)

As q gets smaller, the proposed NTDNE loss will approximate

the SNCA loss. By calculating the gradients of LNTDNE with

respect to fi and fj , we can obtain

∂LNTDNE

∂fi
= (pi)

q

(

−
1

pi

∂pi
∂fi

)

= (pi)
q

(

−
∂ (log(pi))

∂fi

)

= (pi)
q

(

1

σ

∑

k

pikfk −
1

σ

∑

k∈Ωi

p̃ikfk

)

(11)

∂LNTDNE

∂fj
=

{

(pi)
q
(

1
σ
(pij − p̃ij)fi

)

, j ∈ Ωi

(pi)
q( 1

σ
pijfi), j /∈ Ωi.

(12)

Differently to the gradients of the SNCA loss with respect to

the image features in (6) and (7), the gradients in (11) and (12)

involve one scaling factor (pi)
q . Since q < 1 and pi ≤ 1, (pi)

q

will have a down-weighting effect on the gradients ∂LSNCA

∂fi
and

∂LSNCA

∂fj
. When label noise exists in the dataset, large gradients

induced by the noisy samples for learning the features can

be down-weighted by (pi)
q . Thus, the proposed NTDNE loss

function can improve the robustness to existing label noise in

the dataset as compared with the SNCA loss. Although this

down-weighting scheme can suppress the contributions of noisy

images when learning the image features, they still can affect

the optimization progress of the features, especially when the

noise level is large. To further increase robustness, we adopt a

“pruning” strategy during the training phase with the following

modification of the NTDNE loss

LNTDNE =
1

|T |

∑

i

{

1−kq

q
, if pi ≤ k

1−(pi)
q

q
if pi > k

(13)

where k ∈ (0, 1) denotes a threshold value. When the leave-

one-out-classification score is less than k, the loss induced by

the associated image will be cut to a constant value. Only if it is

greater than k, the score can contribute to the overall NTDNE

loss. By doing so, the samples with lower value of pi (most

probably these are the samples with label noise) can be “filtered

out” during the learning progress of the features which, in turn,

can further improve the noise-tolerance of NTDNE. To this end,

a graphical illustration demonstrating the difference between

SNCA and the proposed loss is given in Fig. 2.
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Fig. 2. Simplified graphical illustration of the differences between SNCA
and NTDNE, where different colors refer to the features with different classes.
Since the SNCA loss is constructed by the summation of all the leave-one-out
K-NN classification scores, it cannot avoid that existing noisy labels in the
dataset negatively impact the learning of features. By pruning some images with
potentially noisy labels, our NTDNE loss will be less affected by the associated
classification scores, which can robustly model the semantic relations among
the images based on the learned features.

2) Optimization Strategy: To optimize LNTDNE in (13), it

can be reformulated as follows:

LNTDNE =

1

|T |

∑

i

(

[pi > k]
1− (pi)

q

q
+ (1− [pi > k])

1− kq

q

)

(14)

where [·] denotes the Iverson bracket. To practically optimize it,

an indicator vector w is created, where each element indicates

whether the condition pi > k is triggered or not. Within the first

several training epochs, the CNN models cannot discriminate

enough image features for accurate similarity measurement.

Therefore, we first exploit the NTDNE loss in (9) to optimize the

CNN models for T epochs. Then, the loss function is switched

to the truncated version in (14). Following [43], a memory

bank B is adopted to store the normalized features online, i.e.,

B = {fi, . . . , f|T |}. In each iteration, the gradients are obtained

through (11) and (12), and the parameters are updated by using

the backpropagation technique. The update of B is done with

the following empirical weighted average

f
(t+1)
i ← λf

(t)
i + (1− λ)fi (15)

where f
(t+1)
i denotes the updated feature in B, f

(t)
i denotes the

obtained feature based on the CNN model at the current iteration,

and fi is the previous feature stored in B.

3) Complexity Analysis: The storage complexity of the on-

line memory bankB isO(DN). The indicator matrixw requires

anO(N) increase in memory. Let us assume that the batch size is

b. The image similarities and leave-one-out classification scores

both require O(bN) complexity for storing the values and their

gradients. Compared with SNCA, the proposed method only

introduces the indicator matrix w, which will lead to a storage

memory increase with O(N) complexity.

IV. EXPERIMENTS

A. Experimental Setup

Several RS benchmark datasets have been considered in our

experiments, including: 1) aerial image dataset (AID) [36];

and 2) NWPU-RESISC45 [19]. Both the AID and NWPU-

RESISC45 datasets are designed for land-cover or land-use

classification. The datasets are randomly split into training,

validation, and test sets with percentages of 70% (training), 10%

(validation), and 20% (testing). Two kinds of noise, including

uniform and label-dependent, are added to the training sets with

different noise rates, i.e., η = 0.1, 0.3, 0.5, 0.7. The design of

label-dependent noise is consistent with our previous work [42].

To evaluate the performance of our newly proposed deep metric

learning method, three downstream tasks are considered, includ-

ing: 1)K-NN classification; 2) clustering; and 3) image retrieval.

1) K-NN Classification: The labels of the test images can be

decided by majority voting based on their K nearest neighbors

retrieved from the training sets. The Euclidean distance is ex-

ploited for the metric measurement in feature space. Note that we

utilize the training sets with true labels in the evaluation phase.

The overall accuracy is calculated for evaluation purposes.

2) Clustering: Based on the extracted features of the test

images in the feature space, we first apply K-means clustering,

then the clustered results are evaluated by normalized mutual

information (NMI) [70] and unsupervised clustering accuracy

(ACC), formulated as follows:

NMI =
2× I(Y;C)

H(Y) +H(C)
(16)

whereY represents the ground-truth class labels, andC denotes

the cluster labels based on the clustering method. I(·; ·) and

H(·) represent the mutual information and entropy function,

respectively.

ACC = max
M

∑N
i=1 δ(li = M(ci))

N
(17)

where li denotes the ground-truth class, ci is the assigned cluster

of image xi, and δ(·) represents the Dirac delta function. M is a

function than finds the best mapping between the estimated and

ground-truth labels. These two metrics are utilized for validating

the discrimination of the extracted features based on deep metric

learning methods.

3) Image Retrieval: Given the query images, image retrieval

aims to accurately and effectively find the most semantically

similar images in a database by measuring the similarities of

the features through the Euclidean distance in feature space.

To evaluate the image retrieval performance, we demonstrate

the precision-recall (PR) curve and calculate the mean average

precision (MAP) with the form

AP =
1

Q

R
∑

r=1

P (r)δ(r) (18)

where Q is the number of ground-truth RS images in the dataset

that are relevant with respect to the query image, P (r) denotes

the precision for the top r retrieved images, and δ(r) is an

indicator function to specify whether the rth relevant image is

truly relevant to the query. During the evaluation phase, the test

sets are exploited for querying and the training set is the database

to be retrieved.
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TABLE I
K-NN (K = 10) CLASSIFICATION ACCURACIES (%) OF THE CONSIDERED METHODS ON TWO BENCHMARK DATASETS WITH TWO TYPES OF NOISE AT

DIFFERENT LEVELS (UNI:UNIFORM, LD:LABEL-DEPENDENT)

We utilize ResNet18 [71] as the CNN backbone to extract

image features. Other CNN architectures, such as ResNet50,

can be also adopted. The input images are all resized to

256× 256 pixels. Three data augmentation methods including:

1) RandomGrayscale; 2) ColorJitter; and 3) RandomHorizon-

talFlip are exploited for increasing the variation of the training

sets. The parameters D,σ, k, q, and T are empirically set to

128, 0.1, 0.3, 0.7, and 20, respectively. The stochastic gradient

descent (SGD) optimizer (with initial learning rate set to 0.01)

is utilized for the optimization, and the learning rate is decayed

by a factor of 0.5 every 30 epochs. The batch size is set to 256

and the CNN models are trained for 100 epochs. We compare

the proposed method with several state-of-the-art deep metric

learning methods including the following:

1) D-CNN [31] where a joint loss composed of cross entropy

term and metric learning term is proposed to achieve better

discrimination of CNNs;

2) Triplet [72] where the negative features should be pushed

away with a certain distance from the anchors with respect

to the positive features;

3) SNCA [43];

4) NSL [73] which is a normalized version of the cross

entropy loss;

5) ArcFace [74] which is a marginalized version of the cross

entropy loss;

6) MAE [61] which minimizes the mean absolute errors

between the softmax scores and the one-hot label vectors;

7) SCE [62] which is a symmetric cross entropy loss for

robust classification; and

8) t-RNSL [42] which is the robust version of the normal-

ized cross entropy loss in the framework of deep metric

learning.

The parameters of the baseline methods are tuned to obtain

optimal performance. The proposed method is implemented in

PyTorch [75]. All the experiments are performed on an NVIDIA

Tesla P100 graphics processing unit.

B. Experimental Results

1) KNN Classificaiton: Table I provides the K-NN classifi-

cation (K = 10) results on the test sets with the aim of evaluating

the trained CNN models on the noisy data via all the considered

losses. It can be observed that the proposed method can achieve

the best performance on both datasets with different levels of

label noise. Since D-CNN, Triplet, NSL, SNCA, and ArcFace

are not robust to noisy labels, their classification performances

decrease as the noise rate increases. In comparison, NTDNE

exhibits performance stability against label noise, especially

when the noise rate is large (η = 0.7). Compared with MAE and

SCE, NTDNE also achieves better classification results. Since

both MAE and SCE are designed for learning deep classifiers,

they are not focused on modeling the semantic relations among

the deep features extracted from the images. Although they are

robust deep classifiers, their K-NN classification performances

(determined by the distance measurements among the deep

features) cannot achieve comparable accuracies with respect

to deep metric learning losses, such as t-RNSL and NTDNE.

The t-RNSL is utilized for learning optimal class prototypes by

pulling within-class deep features toward the associated pro-

totype during the training phase. However, the t-RNSL cannot

discover the inherent neighborhood structure of the images in

feature space. In comparison, for each image in the feature space,

NTDNE aims at selecting the most semantically similar images

as its neighbors, so that the localized feature structure can be

well preserved.

2) Clustering: In order to evaluate the clustering perfor-

mance of CNN models trained with different losses, we first

extract the deep features of the test sets and calculate the NMI

and ACC scores displayed in Tables II and III, separately. As

in the previous section, NTDNE outperforms the other meth-

ods in terms of both metrics by a large margin. For example,

when η = 0.7, NTDNE can achieve a significant performance

improvement (more than 5%) compared with other methods for
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TABLE II
NMI SCORES (%) OF THE CONSIDERED METHODS ON TWO BENCHMARK DATASETS WITH TWO TYPES OF NOISE AT DIFFERENT LEVELS

(UNI:UNIFORM, LD:LABEL-DEPENDENT)

TABLE III
ACC SCORES (%) OF THE CONSIDERED METHODS ON TWO BENCHMARK DATASETS WITH TWO TYPES OF NOISE AT DIFFERENT LEVELS

(UNI:UNIFORM, LD:LABEL-DEPENDENT)

both NMI and ACC metrics. For illustrative purposes, we project

the features of the AID test set, which are obtained via the CNN

models trained on all the considered losses, into a 2-D space

by the t-distributed stochastic neighbour embedding (t-SNE)

and visualize the obtained results in Fig. 3. As it can be seen,

when the noise rate increases, most losses cannot be utilized for

learning the discriminative classwise features. In comparison,

the interclass separability and the intraclass compactness of

the features produced via NTDNE can be very well preserved

when η changes. Therefore, when NTDNE is exploited, the

pseudo-labels generated by K-means clustering of the features

can match better the ground-truth labels.

3) Image Retrieval: Fig. 4 shows the PR curves of all the

considered methods (based on the trained CNN models) when

the datasets are corrupted by uniform label noise with η = 0.5.

Compared with other methods, the proposed approach exhibits

the best image retrieval performance, since it is robust to the

label noise and can discover the neighborhood structure of the

image features. Moreover, the MAP results are demonstrated in

Table IV. It can be seen that our NTDNE can achieve the best

retrieval accuracy with all the experimental settings, which indi-

cates that the proposed method can be exploited for large-scale

RS image retrieval in a robust manner. Fig. 5 provides some im-

age retrieval examples based on SNCA, t-RNSL, and NTDNE.

For the considered query images (with complex semantic con-

tent) both SNCA and t-RNSL cannot accurately retrieve the most

semantically similar images from the database. For example, for

the t-RNSL, intersection is confused with basketball court and
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Fig. 3. 2-D projection of the extracted features from the AID test set (via the trained CNN models) on the training set with different levels of uniform label noise,
i.e., η = 0.1, 0.3, 0.5, 0.7 –from left to right–. (a) D-CNN. (b) Triplet. (c) NSL. (d) SNCA. (e) ArcFace. (f) MAE. (g) SCE. (h) t-RNSL. (i) NTDNE.

Fig. 4. Image retrieval results described by the PR curves of all the methods when the training sets contain uniform label noise with η = 0.5. (a) AID.
(b) NWPU-RESISC45.

dense residential, while NTDNE can correctly retrieve the most

semantically similar images for the same classes.

4) Hyperparameter Analysis: One of the main hyperparam-

eters in the proposed method is k, which is the threshold value

controlling when the loss starts to be effective. We analyze its

sensitivity based on K-NN classification on the features of the

test sets, considering the case when the training sets are with

uniform label noise (η = 0.5). Fig. 6 shows the classification

results obtained when k varies from 0.1 to 0.5. It can be observed

that the performance of NTDNE is stable when k is in the range

from 0.1 to 0.5. As a result, it is suggested to set q to a constant

value (e.g. 0.7) [42], [46], and σ to a relatively small number

(e.g. 0.05 or 0.1). Another hyperparameter T is the number of

epochs from which the truncation starts. Empirically, it can be

set as a number during the early stage of the training phase, e.g.,

20 out of 100 total epochs.
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TABLE IV
MAP SCORES (%) OF THE CONSIDERED METHODS ON TWO BENCHMARK DATASETS WITH TWO TYPES OF NOISE AT DIFFERENT LEVELS AND R = 20

(UNI:UNIFORM, LD:LABEL-DEPENDENT)

Fig. 5. Top five nearest neighbors retrieved from the training sets with respect to the query images based on SNCA, t-RNSL, and NTDNE. (a) and (e) are the
query images from AID and NWPU-RESISC45, respectively. (b) and (f) are the retrieved results based on SNCA. (c) and (g) are the retrieved results based on
t-RNSL. (d) and (h) are the retrieved results based on NTDNE.
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Fig. 6. Sensitivity analysis of hyperparameter k on two benchmark datasets
when k varies from 0.1 to 0.5.

V. CONCLUSION

We propose a novel deep metric learning loss function for

characterizing the semantic content of RS scenes in a robust

manner. We stochastically maximize the leave-one-out K-NN

score, which is inspired by SNCA, to model the inherent neigh-

borhood structure of images in feature space. Considering the

existence of label noise, we improve the robustness of the

log-likelihood loss function of the leave-one-out K-NN score

by replacing the logarithm function with the negative Box–Cox

transformation, which can down-weight the contribution of po-

tentially noisy images by learning their localized structure in

feature space. In addition, we apply a truncation mechanism on

the loss function to further improve the robustness capability,

especially when a large percentage of the database contains noisy

labels. Compared with several state-of-the-art metric learning

losses, the proposed method exhibits superior performance on

three downstream tasks, including K-NN classification, clus-

tering, and image retrieval based on the features extracted the

trained CNN models. In practice, the proposed method can

be utilized for large-scale RS scene classification and retrieval

tasks, without the need for accurate land-use or land-cover

labels. As a future work, we will extend the proposed method to

the multilabel case.
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