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Abstract

We apply basic statistical reasoning to signal re-

construction by machine learning – learning to

map corrupted observations to clean signals – with

a simple and powerful conclusion: it is possi-

ble to learn to restore images by only looking at

corrupted examples, at performance at and some-

times exceeding training using clean data, without

explicit image priors or likelihood models of the

corruption. In practice, we show that a single

model learns photographic noise removal, denois-

ing synthetic Monte Carlo images, and reconstruc-

tion of undersampled MRI scans – all corrupted

by different processes – based on noisy data only.

1. Introduction

Signal reconstruction from corrupted or incomplete mea-

surements is an important subfield of statistical data analysis.

Recent advances in deep neural networks have sparked sig-

nificant interest in avoiding the traditional, explicit a priori

statistical modeling of signal corruptions, and instead learn-

ing to map corrupted observations to the unobserved clean

versions. This happens by training a regression model, e.g.,

a convolutional neural network (CNN), with a large number

of pairs (x̂i, yi) of corrupted inputs x̂i and clean targets yi
and minimizing the empirical risk

argmin
θ

∑

i

L (fθ(x̂i), yi) , (1)

where fθ is a parametric family of mappings (e.g., CNNs),

under the loss function L. We use the notation x̂ to un-

derline the fact that the corrupted input x̂ ∼ p(x̂|yi) is a

random variable distributed according to the clean target.

Training data may include, for example, pairs of short and

long exposure photographs of the same scene, incomplete

and complete k-space samplings of magnetic resonance

images, fast-but-noisy and slow-but-converged ray-traced
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renderings of a synthetic scene, etc. Significant advances

have been reported in several applications, including Gaus-

sian denoising, de-JPEG, text removal (Mao et al., 2016),

super-resolution (Ledig et al., 2017), colorization (Zhang

et al., 2016), and image inpainting (Iizuka et al., 2017). Yet,

obtaining clean training targets is often difficult or tedious:

a noise-free photograph requires a long exposure; full MRI

sampling precludes dynamic subjects; etc.

In this work, we observe that we can often learn to turn

bad images into good images by only looking at bad images,

and do this just as well – sometimes even better – as if we

were using clean examples. Further, we require neither an

explicit statistical likelihood model of the corruption nor

an image prior, and instead learn these indirectly from the

training data. (Indeed, in one of our examples, synthetic

Monte Carlo renderings, the non-stationary noise cannot

be characterized analytically.) In addition to denoising, our

observation is directly applicable to inverse problems such

as MRI reconstruction from undersampled data. While our

conclusion is almost trivial from a statistical perspective, it

significantly eases practical learned signal reconstruction by

lifting requirements on availability of training data.

2. Theoretical Background

Assume that we have a set of unreliable measurements

(y1, y2, ...) of the room temperature. A common strategy

for estimating the true unknown temperature is to find a

number z that has the smallest average deviation from the

measurements according to some loss function L:

argmin
z

Ey{L(z, y)}. (2)

For the L2 loss L(z, y) = (z − y)2, this minimum is found

at the arithmetic mean of the observations:

z = Ey{y}. (3)

The L1 loss, the sum of absolute deviations L(z, y) = |z −
y|, in turn, has its optimum at the median of the observations.

The general class of deviation-minimizing estimators are

known as M-estimators (Huber, 1964). From a statistical

viewpoint, summary estimation using these common loss

functions can be seen as ML estimation by interpreting the

loss function as the negative log likelihood.
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Training neural network regressors is a generalization of

this point estimation procedure. Observe the form of the

typical training task for a set of input-target pairs (xi, yi),
where the network function fθ(x) is parameterized by θ:

argmin
θ

E(x,y){L(fθ(x), y)}. (4)

Indeed, if we remove the dependency on input data, and

use a trivial fθ that merely outputs a learned scalar, the task

reduces to (2). Conversely, the full training task decomposes

to the same minimization problem at every training sample;

simple manipulations show that (4) is equivalent to

argmin
θ

Ex{Ey|x{L(fθ(x), y)}}. (5)

The network can, in theory, minimize this loss by solving the

point estimation problem separately for each input sample.

Hence, the properties of the underlying loss are inherited by

neural network training.

The usual process of training regressors by Equation 1 over

a finite number of input-target pairs (xi, yi) hides a subtle

point: instead of the 1:1 mapping between inputs and tar-

gets (falsely) implied by that process, in reality the mapping

is multiple-valued. For example, in a superresolution task

(Ledig et al., 2017) over all natural images, a low-resolution

image x can be explained by many different high-resolution

images y, as knowledge about the exact positions and ori-

entations of the edges and texture is lost in decimation. In

other words, p(y|x) is the highly complex distribution of

natural images consistent with the low-resolution x. Train-

ing a neural network regressor using training pairs of low-

and high-resolution images using the L2 loss, the network

learns to output the average of all plausible explanations

(e.g., edges shifted by different amounts), which results in

spatial blurriness for the network’s predictions. A signif-

icant amount of work has been done to combat this well

known tendency, for example by using learned discriminator

functions as losses (Ledig et al., 2017; Isola et al., 2017).

Our observation is that for certain problems this tendency

has an unexpected benefit. A trivial, and, at first sight, use-

less, property of L2 minimization is that on expectation, the

estimate remains unchanged if we replace the targets with

random numbers whose expectations match the targets. This

is easy to see: Equation (3) holds, no matter what particu-

lar distribution the ys are drawn from. Consequently, the

optimal network parameters θ of Equation (5) also remain

unchanged, if input-conditioned target distributions p(y|x)
are replaced with arbitrary distributions that have the same

conditional expected values. This implies that we can, in

principle, corrupt the training targets of a neural network

with zero-mean noise without changing what the network

learns. Combining this with the corrupted inputs from Equa-

tion 1, we are left with the empirical risk minimization task

argmin
θ

∑

i

L (fθ(x̂i), ŷi) , (6)

where both the inputs and the targets are now drawn from

a corrupted distribution (not necessarily the same), condi-

tioned on the underlying, unobserved clean target yi such

that E{ŷi|x̂i} = yi. Given infinite data, the solution is the

same as that of (1). For finite data, the variance is the av-

erage variance of the corruptions in the targets, divided by

the number of training samples (see supplemental material).

Interestingly, none of the above relies on a likelihood model

of the corruption, nor a density model (prior) for the un-

derlying clean image manifold. That is, we do not need an

explicit p(noisy|clean) or p(clean), as long as we have data

distributed according to them.

In many image restoration tasks, the expectation of the cor-

rupted input data is the clean target that we seek to restore.

Low-light photography is an example: a long, noise-free ex-

posure is the average of short, independent, noisy exposures.

With this in mind, the above suggests the ability to learn to

remove photon noise given only pairs of noisy images, with

no need for potentially expensive or difficult long exposures.

Similar observations can be made about other loss functions.

For instance, the L1 loss recovers the median of the targets,

meaning that neural networks can be trained to repair im-

ages with significant (up top 50%) outlier content, again

only requiring access to pairs of such corrupted images.

In the next sections, we present a wide variety of examples

demonstrating that these theoretical capabilities are also

efficiently realizable in practice.

3. Practical Experiments

We now experimentally study the practical properties of

noisy-target training. We start with simple noise distribu-

tions (Gaussian, Poisson, Bernoulli) in Sections 3.1 and 3.2,

and continue to the much harder, analytically intractable

Monte Carlo image synthesis noise (Section 3.3). In Sec-

tion 3.4, we show that image reconstruction from sub-

Nyquist spectral samplings in magnetic resonance imaging

(MRI) can be learned from corrupted observations only.

3.1. Additive Gaussian Noise

We will first study the effect of corrupted targets using

synthetic additive Gaussian noise. As the noise has zero

mean, we use the L2 loss for training to recover the mean.

Our baseline is a recent state-of-the-art method ”RED30”

(Mao et al., 2016), a 30-layer hierarchical residual net-

work with 128 feature maps, which has been demonstrated

to be very effective in a wide range of image restoration

tasks, including Gaussian noise. We train the network us-

ing 256×256-pixel crops drawn from the 50k images in
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Figure 1. Denoising performance (dB in KODAK dataset) as a function of training epoch for additive Gaussian noise. (a) For i.i.d. (white)

Gaussian noise, clean and noisy targets lead to very similar convergence speed and eventual quality. (b) For brown Gaussian noise, we

observe that increased inter-pixel noise correlation (wider spatial blur; one graph per bandwidth) slows convergence down, but eventual

performance remains close. (c) Effect of different allocations of a fixed capture budget to noisy vs. clean examples (see text).

Table 1. PSNR results from three test datasets KODAK, BSD300,

and SET14 for Gaussian, Poisson, and Bernoulli noise. The com-

parison methods are BM3D, Inverse Anscombe transform (ANSC),

and deep image prior (DIP).

clean noisy BM3D clean noisy ANSC clean noisy DIP

Kodak 32.50 32.48 31.82 31.52 31.50 29.15 33.01 33.17 30.78

BSD300 31.07 31.06 30.34 30.18 30.16 27.56 31.04 31.16 28.97

Set14 31.31 31.28 30.50 30.07 30.06 28.36 31.51 31.72 30.67

Average 31.63 31.61 30.89 30.59 30.57 28.36 31.85 32.02 30.14

Bernoulli (p=0.5)Gaussian (σ=25) Poisson (λ=30)

the IMAGENET validation set. We furthermore random-

ize the noise standard deviation σ ∈ [0, 50] separately for

each training example, i.e., the network has to estimate the

magnitude of noise while removing it (“blind” denoising).

We use three well-known datasets: BSD300 (Martin et al.,

2001), SET14 (Zeyde et al., 2010), and KODAK
1. As sum-

marized in Table 1, the behavior is qualitatively similar

in all three sets, and thus we discuss the averages. When

trained using the standard way with clean targets (Equa-

tion 1), RED30 achieves 31.63 ± 0.02 dB with σ = 25. The

confidence interval was computed by sampling five random

initializations. The widely used benchmark denoiser BM3D

(Dabov et al., 2007) gives ∼0.7 dB worse results. When we

modify the training to use noisy targets (Equation 6) instead,

the denoising performance remains equally good. Further-

more, the training converges just as quickly, as shown in

Figure 1a. This leads us to conclude that clean targets are

unnecessary in this application. This perhaps surprising

observation holds also with different networks and network

capacities. Figure 2a shows an example result.

For all further tests, we switch from RED30 to a shallower

U-Net (Ronneberger et al., 2015) that is roughly 10× faster

to train and gives similar results (−0.2 dB in Gaussian noise).

1http://r0k.us/graphics/kodak/

The architecture and training parameters are described in

the supplemental material.

Convergence speed Clearly, every training example asks

for the impossible: there is no way the network could suc-

ceed in transforming one instance of the noise to another.

Consequently, the training loss does actually not decrease

during training, and the loss gradients continue to be quite

large. Why do the larger, noisier gradients not affect con-

vergence speed? While the activation gradients are indeed

noisy, the weight gradients are in fact relatively clean be-

cause Gaussian noise is independent and identically dis-

tributed (i.i.d.) in all pixels, and the weight gradients get

averaged over 216 pixels in our fully convolutional network.

Figure 1b makes the situation harder by introducing inter-

pixel correlation to the noise. This brown additive noise

is obtained by blurring white Gaussian noise by a spatial

Gaussian filter of different bandwidths and scaling to retain

σ = 25. An example is shown in Figure 1b. As the correla-

tion increases, the effective averaging of weight gradients

decreases, and the weight updates become noisier. This

makes the convergence slower, but even with extreme blur,

the eventual quality is similar (within 0.1 dB).

Finite data and capture budget The previous studies re-

lied on the availability of infinitely many noisy examples

produced by adding synthetic noise to clean images. We

now study corrupted vs. clean training data in the realis-

tic scenario of finite data and a fixed capture budget. Our

experiment setup is as follows. Let one ImageNet image

with white additive Gaussian noise at σ = 25 correspond to

one “capture unit” (CU). Suppose that 19 CUs are enough

for a clean capture, so that one noisy realization plus the

clean version (the average of 19 noisy realizations) con-

sumes 20 CU. Let us fix a total capture budget of, say, 2000

CUs. This budget can be allocated between clean latents

(N ) and noise realizations per clean latent (M ) such that

N ∗M = 2000. In the traditional scenario, we have only

100 training pairs (N = 100, M = 20): a single noisy
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realization and the corresponding clean image (= average

of 19 noisy images; Figure 1c, Case 1). We first observe

that using the same captured data as 100 ∗ 20 ∗ 19 = 38000
training pairs with corrupted targets — i.e., for each latent,

forming all the 19 ∗ 20 possible noisy/clean pairs — yields

notably better results (several .1s of dB) than the traditional,

fixed noisy+clean pairs, even if we still only have N = 100
latents (Figure 1c, Case 2). Second, we observe that setting

N = 1000 and M = 2, i.e., increasing the number of clean

latents but only obtaining two noisy realizations of each

(resulting in 2000 training pairs) yields even better results

(again, by several .1s of dB, Figure 1c, Case 3).

We conclude that for additive Gaussian noise, corrupted

targets offer benefits — not just the same performance but

better — over clean targets on two levels: both 1) seeing

more realizations of the corruption for the same latent clean

image, and 2) seeing more latent clean images, even if just

two corrupted realizations of each, are beneficial.

3.2. Other Synthetic Noises

We will now experiment with other types of synthetic noise.

The training setup is the same as described above.

Poisson noise is the dominant source of noise in pho-

tographs. While zero-mean, it is harder to remove because it

is signal-dependent. We use the L2 loss, and vary the noise

magnitude λ ∈ [0, 50] during training. Training with clean

targets results in 30.59 ± 0.02 dB, while noisy targets give

an equally good 30.57 ± 0.02 dB, again at similar conver-

gence speed. A comparison method (Mäkitalo & Foi, 2011)

that first transforms the input Poisson noise into Gaussian

(Anscombe transform), then denoises by BM3D, and finally

inverts the transform, yields 2 dB less.

Other effects, e.g., dark current and quantization, are domi-

nated by Poisson noise, can be made zero-mean (Hasinoff

et al., 2016), and hence pose no problems for training with

noisy targets. We conclude that noise-free training data is

unnecessary in this application. That said, saturation (gamut

clipping) renders the expectation incorrect due to removing

part of the distribution. As saturation is unwanted for other

reasons too, this is not a significant limitation.

Multiplicative Bernoulli noise (aka binomial noise) con-

structs a random mask m that is 1 for valid pixels and 0 for

zeroed/missing pixels. To avoid backpropagating gradients

from missing pixels, we exclude them from the loss:

argmin
θ

∑

i

(m⊙ (fθ(x̂i)− ŷi))
2, (7)

as described by Ulyanov et al. (2017) in the context of their

deep image prior (DIP).

The probability of corrupted pixels is denoted with p; in our

training we vary p ∈ [0.0, 0.95] and during testing p = 0.5.
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Figure 2. Example results for Gaussian, Poisson, and Bernoulli

noise. Our result was computed by using noisy targets — the

corresponding result with clean targets is omitted because it is

virtually identical in all three cases, as discussed in the text. A

different comparison method is used for each noise type.

Training with clean targets gives an average of 31.85 ±
0.03 dB, noisy targets (separate m for input and target) give

a slightly higher 32.02 ± 0.03 dB, possibly because noisy

targets effectively implement a form of dropout (Srivastava

et al., 2014) at the network output. DIP was almost 2 dB

worse – DIP is not a learning-based solution, and as such

very different from our approach, but it shares the property

that neither clean examples nor an explicit model of the

corruption is needed. We used the “Image reconstruction”

setup as described in the DIP supplemental material.2

Text removal Figure 3 demonstrates blind text removal.

The corruption consists of a large, varying number of ran-

dom strings in random places, also on top of each other, and

furthermore so that the font size and color are randomized

as well. The font and string orientation remain fixed.

The network is trained using independently corrupted input

and target pairs. The probability of corrupted pixels p is

approximately [0, 0.5] during training, and p ≈ 0.25 during

2https://dmitryulyanov.github.io/deep image prior
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p ≈ 0.04 p ≈ 0.42

Example training pairs Input (p ≈ 0.25) L2 L1 Clean targets Ground truth

17.12 dB 26.89 dB 35.75 dB 35.82 dB PSNR

Figure 3. Removing random text overlays corresponds to seeking the median pixel color, accomplished using the L1 loss. The mean (L2

loss) is not the correct answer: note shift towards mean text color. Only corrupted images shown during training.

p = 0.22 p = 0.81

Example training pairs Input (p = 0.70) L2 / L1 L0 Clean targets Ground truth

8.89 dB 13.02 dB / 16.36 dB 28.43 dB 28.86 dB PSNR

Figure 4. For random impulse noise, the approx. mode-seeking L0 loss performs better than the mean (L2) or median (L1) seeking losses.
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L0 L1

Figure 5. PSNR of noisy-target training relative to clean targets

with a varying percentage of target pixels corrupted by RGB im-

pulse noise. In this test a separate network was trained for each cor-

ruption level, and the graph was averaged over the KODAK dataset.

testing. In this test the mean (L2 loss) is not the correct

answer because the overlaid text has colors unrelated to the

actual image, and the resulting image would incorrectly tend

towards a linear combination of the right answer and the

average text color (medium gray). However, with any rea-

sonable amount of overlaid text, a pixel retains the original

color more often than not, and therefore the median is the

correct statistic. Hence, we use L1 = |fθ(x̂)− ŷ| as the loss

function. Figure 3 shows an example result.

Random-valued impulse noise replaces some pixels with

noise and retains the colors of others. Instead of the standard

salt and pepper noise (randomly replacing pixels with black

or white), we study a harder distribution where each pixel

is replaced with a random color drawn from the uniform

distribution [0, 1]3 with probability p and retains its color

with probability 1− p. The pixels’ color distributions are a

Dirac at the original color plus a uniform distribution, with

relative weights given by the replacement probability p. In

this case, neither the mean nor the median yield the correct

result; the desired output is the mode of the distribution

(the Dirac spike). The distribution remains unimodal. For

approximate mode seeking, we use an annealed version

of the “L0 loss” function defined as (|fθ(x̂) − ŷ| + ǫ)γ ,

where ǫ = 10−8, where γ is annealed linearly from 2 to 0
during training. This annealing did not cause any numerical

issues in our tests. The relationship of the L0 loss and mode

seeking is analyzed in the supplement.

We again train the network using noisy inputs and noisy

targets, where the probability of corrupted pixels is random-

ized separately for each pair from [0, 0.95]. Figure 4 shows

the inference results when 70% input pixels are randomized.

Training with L2 loss biases the results heavily towards gray,

because the result tends towards a linear combination the
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correct answer and and mean of the uniform random corrup-

tion. As predicted by theory, the L1 loss gives good results

as long as fewer than 50% of the pixels are randomized,

but beyond that threshold it quickly starts to bias dark and

bright areas towards gray (Figure 5). L0, on the other hand,

shows little bias even with extreme corruptions (e.g. 90%

pixels), because of all the possible pixel values, the correct

answer (e.g. 10%) is still the most common.

3.3. Monte Carlo Rendering

Physically accurate renderings of virtual environments are

most often generated through a process known as Monte

Carlo path tracing. This amounts to drawing random se-

quences of scattering events (“light paths”) in the scene that

connect light sources and virtual sensors, and integrating

the radiance carried by them over all possible paths (Veach

& Guibas, 1995). The Monte Carlo integrator is constructed

such that the intensity of each pixel is the expectation of

the random path sampling process, i.e., the sampling noise

is zero-mean. However, despite decades of research into

importance sampling techniques, little else can be said about

the distribution. It varies from pixel to pixel, heavily de-

pends on the scene configuration and rendering parameters,

and can be arbitrarily multimodal. Some lighting effects,

such as focused caustics, also result in extremely long-tailed

distributions with rare, bright outliers.

All of these effects make the removal of Monte Carlo noise

much more difficult than removing, e.g., Gaussian noise.

On the other hand, the problem is somewhat alleviated by

the possibility of generating auxiliary information that has

been empirically found to correlate with the clean result

during data generation. In our experiments, the denoiser

input consists of not only the per-pixel luminance values,

but also the average albedo (i.e., texture color) and normal

vector of the surfaces visible at each pixel.

High dynamic range (HDR) Even with adequate sam-

pling, the floating-point pixel luminances may differ from

each other by several orders of magnitude. In order to con-

struct an image suitable for the generally 8-bit display de-

vices, this high dynamic range needs to be compressed to a

fixed range using a tone mapping operator (Cerdá-Company

et al., 2016). We use a variant of Reinhard’s global op-

erator (Reinhard et al., 2002): T (v) = (v/(1 + v))1/2.2,

where v is a scalar luminance value, possibly pre-scaled

with an image-wide exposure constant. This operator maps

any v ≥ 0 into range 0 ≤ T (v) < 1.

The combination of virtually unbounded range of lumi-

nances and the nonlinearity of operator T poses a problem.

If we attempt to train a denoiser that outputs luminance

values v, a standard MSE loss L2 = (fθ(x̂)− ŷ)2 will be

dominated by the long-tail effects (outliers) in the targets,

and training does not converge. On the other hand, if the

denoiser were to output tonemapped values T (v), the non-

linearity of T would make the expected value of noisy target

images E{T (v)} different from the clean training target

T (E{v}), leading to incorrect predictions.

A metric often used for measuring the quality of HDR im-

ages is the relative MSE (Rousselle et al., 2011), where

the squared difference is divided by the square of approx-

imate luminance of the pixel, i.e., (fθ(x̂)− ŷ)2/(ŷ + ǫ)2.

However, this metric suffers from the same nonlinearity

problem as comparing of tonemapped outputs. Therefore,

we propose to use the network output, which tends to-

wards the correct value in the limit, in the denominator:

LHDR = (fθ(x̂)− ŷ)2/(fθ(x̂) + 0.01)2. It can be shown

that LHDR converges to the correct expected value as long

as we consider the gradient of the denominator to be zero.

Finally, we have observed that it is beneficial to tone map

the input image T (x̂) instead of using HDR inputs. The

network continues to output non-tonemapped (linear-scale)

luminance values, retaining the correctness of the expected

value. Figure 6 evaluates the different loss functions.

Denoising Monte Carlo rendered images We trained a

denoiser for Monte Carlo path traced images rendered using

64 samples per pixel (spp). Our training set consisted of

860 architectural images, and the validation was done using

34 images from a different set of scenes. Three versions of

the training images were rendered: two with 64 spp using

different random seeds (noisy input, noisy target), and one

with 131k spp (clean target). The validation images were

rendered in both 64 spp (input) and 131k spp (reference)

versions. All images were 960×540 pixels in size, and as

mentioned earlier, we also saved the albedo and normal

buffers for all of the input images. Even with such a small

dataset, rendering the 131k spp clean images was a stren-

uous effort — for example, Figure 7d took 40 minutes to

render on a high-end graphics server with 8 × NVIDIA

Tesla P100 GPUs and a 40-core Intel Xeon CPU.

The average PSNR of the 64 spp validation inputs with re-

spect to the corresponding reference images was 22.31 dB

(see Figure 7a for an example). The network trained for

2000 epochs using clean target images reached an average

PSNR of 31.83 dB on the validation set, whereas the simi-

larly trained network using noisy target images gave 0.5 dB

less. Examples are shown in Figure 7b,c – the training took

12 hours with a single NVIDIA Tesla P100 GPU.

At 4000 epochs, the noisy targets matched 31.83 dB, i.e.,

noisy targets took approximately twice as long to converge.

However, the gap between the two methods had not nar-

rowed appreciably, leading us to believe that some quality

difference will remain even in the limit. This is not sur-

prising, since the training dataset contained only a limited

number of training pairs (and thus noise realizations) due
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Input, 8 spp L2 with x̂, ŷ L2 with T (x̂), ŷ L2 with T (x̂), T (ŷ) LHDR with x̂, ŷ LHDR with T (x̂), ŷ Reference, 32k spp

11.32 dB 25.46 dB 25.39 dB 15.50 dB 29.05 dB 30.09 dB PSNR

Figure 6. Comparison of various loss functions for training a Monte Carlo denoiser with noisy target images rendered at 8 samples per

pixel (spp). In this high-dynamic range setting, our custom relative loss LHDR is clearly superior to L2. Applying a non-linear tone map to

the inputs is beneficial, while applying it to the target images skews the distribution of noise and leads to wrong, visibly too dark results.

(a) Input (64 spp), 23.93 dB (b) Noisy targets, 32.42 dB (c) Clean targets, 32.95 dB (d) Reference (131k spp)

Figure 7. Denoising a Monte Carlo rendered image. (a) Image rendered with 64 samples per pixel. (b) Denoised 64 spp input, trained

using 64 spp targets. (c) Same as previous, but trained on clean targets. (d) Reference image rendered with 131 072 samples per pixel.

PSNR values refer to the images shown here, see text for averages over the entire validation set.
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Figure 8. Online training PSNR during a 1000-frame flythrough

of the scene in Figure 6. Noisy target images are almost as good

for learning as clean targets, but are over 2000× faster to render

(190 milliseconds vs 7 minutes per frame in this scene). Both

denoisers offer a substantial improvement over the noisy input.

to the cost of generating the clean target images, and we

wanted to test both methods using matching data. That

said, given that noisy targets are 2000 times faster to pro-

duce, one could trivially produce a larger quantity of them

and still realize vast gains. The finite capture budget study

(Section 3.1) supports this hypothesis.

Online training Since it can be tedious to collect a suf-

ficiently large corpus of Monte Carlo images for training

a generally applicable denoiser, a possibility is to train a

model specific to a single 3D scene, e.g., a game level or a

movie shot (Chaitanya et al., 2017). In this context, it can

even be desirable to train on-the-fly while walking through

the scene. In order to maintain interactive frame rates, we

can afford only few samples per pixel, and thus both input

and target images will be inherently noisy.

Figure 8 shows the convergence plots for an experiment

where we trained a denoiser from scratch for the duration

of 1000 frames in a scene flythrough. On an NVIDIA Titan

V GPU, path tracing a single 512×512 pixel image with

8 spp took 190 ms, and we rendered two images to act

as input and target. A single network training iteration

with a random 256×256 pixel crop took 11.25 ms and we

performed eight of them per frame. Finally, we denoised

both rendered images, each taking 15 ms, and averaged

the result to produce the final image shown to the user.

Rendering, training and inference took 500 ms/frame.

Figure 8 shows that training with clean targets does not

perform appreciably better than noisy targets. As rendering

a single clean image takes approx. 7 minutes in this scene

(resp. 190 ms for a noisy target), the quality/time tradeoff

clearly favors noisy targets.

3.4. Magnetic Resonance Imaging (MRI)

Magnetic Resonance Imaging (MRI) produces volumetric

images of biological tissues essentially by sampling the

Fourier transform (the “k-space”) of the signal. Modern

MRI techniques have long relied on compressed sensing
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(CS) to cheat the Nyquist-Shannon limit: they undersample

k-space, and perform non-linear reconstruction that removes

aliasing by exploiting the sparsity of the image in a suitable

transform domain (Lustig et al., 2008).

We observe that if we turn the k-space sampling into a ran-

dom process with a known probability density p(k) over the

frequencies k, our main idea applies. In particular, we model

the k-space sampling operation as a Bernoulli process where

each individual frequency has a probability p(k) = e−λ|k|

of being selected for acquisition.3 The frequencies that are

retained are weighted by the inverse of the selection proba-

bility, and non-chosen frequencies are set to zero. Clearly,

the expectation of this “Russian roulette” process is the

correct spectrum. The parameter λ controls the overall frac-

tion of k-space retained; in the following experiments, we

choose it so that 10% of the samples are retained relative to a

full Nyquist-Shannon sampling. The undersampled spectra

are transformed to the primal image domain by the standard

inverse Fourier transform. An example of an undersam-

pled input/target picture, the corresponding fully sampled

reference, and their spectra, are shown in Figure 9(a, d).

Now we simply set up a regression problem of the form (6)

and train a convolutional neural network using pairs of two

independent undersampled images x̂ and ŷ of the same vol-

ume. As the spectra of the input and target are correct on ex-

pectation, and the Fourier transform is linear, we use the L2

loss. Additionally, we improve the result slightly by enforc-

ing the exact preservation of frequencies that are present in

the input image x̂ by Fourier transforming the result fθ(x̂),
replacing the frequencies with those from the input, and

transforming back to the primal domain before computing

the loss: the final loss reads (F−1(Rx̂(F(fθ(x̂)))) − ŷ)2,

where R denotes the replacement of non-zero frequencies

from the input. This process is trained end-to-end.

We perform experiments on 2D slices extracted from the

IXI brain scan MRI dataset.4 To simulate spectral sampling,

we draw random samples from the FFT of the (already re-

constructed) images in the dataset. Hence, in deviation from

actual MRI samples, our data is real-valued and has the

periodicity of the discrete FFT built-in. The training set con-

tained 4936 images in 256×256 resolution from 50 subjects,

and for validation we chose 500 random images from 10 dif-

ferent subjects. The baseline PSNR of the sparsely-sampled

input images was 20.03 dB when reconstructed directly us-

ing IFFT. The network trained for 300 epochs with noisy

targets reached an average PSNR of 31.10 dB on the valida-

tion data, and the network trained with clean targets reached

3Our simplified example deviates from practical MRI in the
sense that we do not sample the spectra along 1D trajectories.
However, we believe that designing pulse sequences that lead to
similar pseudo-random sampling characteristics is straightforward.

4http://brain-development.org/ixi-dataset → T1 images.
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Figure 9. MRI reconstruction example. (a) Input image with only

10% of spectrum samples retained and scaled by 1/p. (b) Recon-

struction by a network trained with noisy target images similar

to the input image. (c) Same as previous, but training done with

clean target images similar to the reference image. (d) Original,

uncorrupted image. PSNR values refer to the images shown here,

see text for averages over the entire validation set.

31.14 dB. Here the training with clean targets is similar to

prior art (Wang et al., 2016; Lee et al., 2017). Training took

13 hours on an NVIDIA Tesla P100 GPU. Figure 9(b, c)

shows an example of reconstruction results between con-

volutional networks trained with noisy and clean targets,

respectively. In terms of PSNR, our results quite closely

match those reported in recent work.

4. Discussion

We have shown that simple statistical arguments lead to new

capabilities in learned signal recovery using deep neural

networks; it is possible to recover signals under complex

corruptions without observing clean signals, without an

explicit statistical characterization of the noise or other cor-

ruption, at performance levels equal or close to using clean

target data. That clean data is not necessary for denoising

is not a new observation: indeed, consider, for instance, the

classic BM3D algorithm (Dabov et al., 2007) that draws

on self-similar patches within a single noisy image. We

show that the previously-demonstrated high restoration per-

formance of deep neural networks can likewise be achieved

entirely without clean data, all based on the same general-

purpose deep convolutional model. This points the way to

significant benefits in many applications by removing the

need for potentially strenuous collection of clean data.

AmbientGAN (Ashish Bora, 2018) trains generative adver-

sarial networks (Goodfellow et al., 2014) using corrupted

observations. In contrast to our approach, AmbientGAN

needs an explicit forward model of the corruption. We find

combining ideas along both paths intriguing.
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