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Abstract

We propose a general framework for denoising

high-dimensional measurements which requires

no prior on the signal, no estimate of the noise,

and no clean training data. The only assumption

is that the noise exhibits statistical independence

across different dimensions of the measurement,

while the true signal exhibits some correlation.

For a broad class of functions (“J -invariant”), it

is then possible to estimate the performance of

a denoiser from noisy data alone. This allows

us to calibrate J -invariant versions of any pa-

rameterised denoising algorithm, from the single

hyperparameter of a median filter to the millions

of weights of a deep neural network. We demon-

strate this on natural image and microscopy data,

where we exploit noise independence between

pixels, and on single-cell gene expression data,

where we exploit independence between detec-

tions of individual molecules. This framework

generalizes recent work on training neural nets

from noisy images and on cross-validation for

matrix factorization.

1. Introduction

We would often like to reconstruct a signal from high-

dimensional measurements that are corrupted, under-

sampled, or otherwise noisy. Devices like high-resolution

cameras, electron microscopes, and DNA sequencers are

capable of producing measurements in the thousands to mil-

lions of feature dimensions. But when these devices are

pushed to their limits, taking videos with ultra-fast frame

rates at very low-illumination, probing individual molecules

with electron microscopes, or sequencing tens of thousands

of cells simultaneously, each individual feature can become

quite noisy. Nevertheless, the objects being studied are of-

ten very structured and the values of different features are
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highly correlated. Speaking loosely, if the “latent dimen-

sion” of the space of objects under study is much lower than

the dimension of the measurement, it may be possible to

implicitly learn that structure, denoise the measurements,

and recover the signal without any prior knowledge of the

signal or the noise.

Traditional denoising methods each exploit a property of

the noise, such as Gaussianity, or structure in the signal,

such as spatiotemporal smoothness, self-similarity, or hav-

ing low-rank. The performance of these methods is limited

by the accuracy of their assumptions. For example, if the

data are genuinely not low rank, then a low rank model

will fit it poorly. This requires prior knowledge of the sig-

nal structure, which limits application to new domains and

modalities. These methods also require calibration, as hy-

perparameters such as the degree of smoothness, the scale of

self-similarity, or the rank of a matrix have dramatic impacts

on performance.

In contrast, a data-driven prior, such as pairs (xi, yi) of

noisy and clean measurements of the same target, can be

used to set up a supervised learning problem. A neural

net trained to predict yi from xi may be used to denoise

new noisy measurements (Weigert et al., 2018). As long

as the new data are drawn from the same distribution, one

can expect performance similar to that observed during

training. Lehtinen et al. demonstrated that clean targets are

unnecessary (2018). A neural net trained on pairs (xi, x
′
i)

of independent noisy measurements of the same target will,

under certain distributional assumptions, learn to predict the

clean signal. These supervised approaches extend to image

denoising the success of convolutional neural nets, which

currently give state-of-the-art performance for a vast range

of image-to-image tasks. Both of these methods require an

experimental setup in which each target may be measured

multiple times, which can be difficult in practice.

In this paper, we propose a framework for blind denoising

based on self-supervision. We use groups of features whose

noise is independent conditional on the true signal to predict

one another. This allows us to learn denoising functions

from single noisy measurements of each object, with per-

formance close to that of supervised methods. The same

approach can also be used to calibrate traditional image de-

noising methods such as median filters and non-local means,
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Figure 1. (a) The box represents the dimensions of the measurement x. J is a subset of the dimensions, and f is a J-invariant function: it

has the property that the value of f(x) restricted to dimensions in J , f(x)J , does not depend on the value of x restricted to J , xJ . This

enables self-supervision when the noise in the data is conditionally independent between sets of dimensions. Here are 3 examples of

dimension partitioning: (b) two independent image acquisitions, (c) independent pixels of a single image, (d) independently detected RNA

molecules from a single cell.

and, using a different independence structure, denoise highly

under-sampled single-cell gene expression data.

We model the signal y and its noisy measurement x as a pair

of random variables in R
m. If J ⊂ {1, . . . ,m} is a subset

of the dimensions, we write xJ for x restricted to J .

Definition. Let J be a partition of the dimensions

{1, . . . ,m} and let J ∈ J . A function f : Rm → R
m

is J-invariant if f(x)J does not depend on the value of xJ .

It is J -invariant if it is J-invariant for each J ∈ J .

We propose minimizing the self-supervised loss

L(f) = E ‖f(x)− x‖
2
, (1)

over J -invariant functions f . Since f has to use information

from outside of each subset of dimensions J to predict the

values inside of J , it cannot merely be the identity.

Proposition 1. Suppose x is an unbiased estimator of y, i.e.

E[x|y] = y, and the noise in each subset J ∈ J is indepen-

dent from the noise in its complement Jc, conditional on y.

Let f be J -invariant. Then

E ‖f(x)− x‖
2
= E ‖f(x)− y‖

2
+ E ‖x− y‖

2
. (2)

That is, the self-supervised loss is the sum of the ordinary

supervised loss and the variance of the noise. By minimizing

the self-supervised loss over a class of J -invariant functions,

one may find the optimal denoiser for a given dataset.

For example, if the signal is an image with independent,

mean-zero noise in each pixel, we may choose J =
{{1}, . . . , {m}} to be the singletons of each coordinate.

Then “donut” median filters, with a hole in the center, form

a class of J -invariant functions, and by comparing the value

of the self-supervised loss at different filter radii, we are

able to select the optimal radius for denoising the image at

hand (See §3).

The donut median filter has just one parameter and therefore

limited ability to adapt to the data. At the other extreme,

we may search over all J -invariant functions for the global

optimum:

Proposition 2. The J -invariant function f∗
J minimizing (1)

satisfies

f∗
J (x)J = E[yJ |xJc ]

for each subset J ∈ J .

That is, the optimal J -invariant predictor for the dimensions

of y in some J ∈ J is their expected value conditional on

observing the dimensions of x outside of J .

In §4, we use analytical examples to illustrate how the opti-

mal J -invariant denoising function approaches the optimal

general denoising function as the amount of correlation

between features in the data increases.

In practice, we may attempt to approximate the optimal

denoiser by searching over a very large class of functions,

such as deep neural networks with millions of parameters. In

§5, we show that a deep convolutional network, modified to

become J -invariant using a masking procedure, can achieve

state-of-the-art blind denoising performance on three diverse

datasets.

Sample code is available on GitHub1 and deferred proofs

are contained in the Supplement.

2. Related Work

Each approach to blind denoising relies on assumptions

about the structure of the signal and/or the noise. We re-

view the major categories of assumption below, and the

traditional and modern methods that utilize them. Most of

the methods below are described in terms of application to

image denoising, which has the richest literature, but some

have natural extensions to other spatiotemporal signals and

to generic measurements of vectors.

Smoothness: Natural images and other spatiotemporal sig-

nals are often assumed to vary smoothly (Buades et al.,

1https://github.com/czbiohub/noise2self

https://github.com/czbiohub/noise2self
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2005b). Local averaging, using a Gaussian, median, or

some other filter, is a simple way to smooth out a noisy

input. The degree of smoothing to use, e.g., the width of a

filter, is a hyperparameter often tuned by visual inspection.

Self-Similarity: Natural images are often self-similar, in

that each patch in an image is similar to many other patches

from the same image. The classic non-local means algo-

rithm replaces the center pixel of each patch with a weighted

average of central pixels from similar patches (Buades et al.,

2005a). The more robust BM3D algorithm makes stacks

of similar patches, and performs thresholding in frequency

space (Dabov et al., 2007). The hyperparameters of these

methods have a large effect on performance (Lebrun, 2012),

and on a new dataset with an unknown noise distribution it

is difficult to evaluate their effects in a principled way.

Convolutional neural nets can produce images with another

form of self-similarity, as linear combinations of the same

small filters are used to produce each output. The “deep

image prior” of (Ulyanov et al., 2017) exploits this by train-

ing a generative CNN to produce a single output image and

stopping training before the net fits the noise.

Generative: Given a differentiable, generative model of

the data, e.g. a neural net G trained using a generative

adversarial loss, data can be denoised through projection

onto the range of the net (Tripathi et al., 2018).

Gaussianity: Recent work (Zhussip et al., 2018; Metzler

et al., 2018) uses a loss based on Stein’s unbiased risk esti-

mator to train denoising neural nets in the special case that

noise is i.i.d. Gaussian.

Sparsity: Natural images are often close to sparse in e.g. a

wavelet or DCT basis (Chang et al., 2000). Compression

algorithms such as JPEG exploit this feature by thresholding

small transform coefficients (Pennebaker & Mitchell, 1992).

This is also a denoising strategy, but artifacts familiar from

poor compression (like the ringing around sharp edges)

may occur. Hyperparameters include the choice of basis

and the degree of thresholding. Other methods learn an

overcomplete dictionary from the data and seek sparsity in

that basis (Elad & Aharon, 2006; Papyan et al., 2017).

Compressibility: A generic approach to denoising is to

lossily compress and then decompress the data. The accu-

racy of this approach depends on the applicability of the

compression scheme used to the signal at hand and its ro-

bustness to the form of noise. It also depends on choosing

the degree of compression correctly: too much will lose

important features of the signal, too little will preserve all

of the noise. For the sparsity methods, this “knob” is the

degree of sparsity, while for low-rank matrix factorizations,

it is the rank of the matrix.

Autoencoder architectures for neural nets provide a gen-

eral framework for learnable compression. Each sample

is mapped to a low-dimensional representation—the value

of the neural net at the bottleneck layer— then back to the

original space (Gallinari et al., 1987; Vincent et al., 2010).

An autoencoder trained on noisy data may produce cleaner

data as its output. The degree of compression is determined

by the width of the bottleneck layer.

UNet architectures, in which skip connections are added to

a typical autoencoder architecture, can capture high-level

spatially coarse representations and also reproduce fine

detail; they can, in particular, learn the identity function

(Ronneberger et al., 2015). Trained directly on noisy data,

they will do no denoising. Trained with clean targets, they

can learn very accurate denoising functions (Weigert et al.,

2018).

Statistical Independence: Lehtinen et al. observed that a

UNet trained to predict one noisy measurement of a signal

from an independent noisy measurement of the same signal

will in fact learn to predict the true signal (Lehtinen et al.,

2018). We may reformulate the Noise2Noise procedure

in terms of J -invariant functions: if x1 = y + n1 and

x2 = y + n2 are the two measurements, we consider the

composite measurement x = (x1, x2) of a composite signal

(y, y) in R
2m and set J = {J1, J2} = {{1, . . . ,m}, {m+

1, . . . , 2m}}. Then f∗
J (x)J2

= E[y|x1].

An extension to video, in which one frame is used to com-

pute the pullback under optical flow of another, was ex-

plored in (Ehret et al., 2018).

In concurrent work, Krull et al. train a UNet to predict a col-

lection of held-out pixels of an image from a version of that

image with those pixels replaced (2018). A key difference

between their approach and our neural net examples in §5

is in that their replacement strategy is not quite J -invariant.

(With some probability a given pixel is replaced by itself.)

While their method lacks a theoretical guarantee against

fitting the noise, it performs well in practice, on natural and

microscopy images with synthetic and real noise.

Finally, we note that the “fully emphasized denoising au-

toencoders” in (Vincent et al., 2010) used the MSE between

an autoencoder evaluated on masked input data and the true

value of the masked pixels, but with the goal of learning

robust representations, not denoising.

3. Calibrating Traditional Models

Many denoising models have a hyperparameter controlling

the degree of the denoising—the size of a filter, the thresh-

old for sparsity, the number of principal components. If

ground truth data were available, the optimal parameter θ
for a family of denoisers fθ could be chosen by minimizing

‖fθ(x)− y‖
2
. Without ground truth, we may nevertheless
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Figure 2. Calibrating a median filter without ground truth. Different median filters may be obtained by varying the filter’s radius. Which is

optimal for a given image? The optimal parameter for J -invariant functions such as the donut median can be read off (red arrows) from

the self-supervised loss.

compute the self-supervised loss ‖fθ(x)− x‖
2
. For general

fθ, it is unrelated to the ground truth loss, but if fθ is J -

invariant, then it is equal to the ground truth loss plus the

noise variance (Eqn. 2), and will have the same minimizer.

In Figure 2, we compare both losses for the median filter

gr, which replaces each pixel with the median over a disk

of radius r surrounding it, and the “donut” median filter fr,

which replaces each pixel with the median over the same

disk excluding the center, on an image with i.i.d. Gaussian

noise. For J = {{1}, . . . , {m}} the partition into single

pixels, the donut median is J -invariant. For the donut me-

dian, the minimum of the self-supervised loss ‖fr(x)− x‖
2

(solid blue) sits directly above the minimum of the ground

truth loss ‖fr(x)− y‖
2

(dashed blue), and selects the op-

timal radius r = 3. The vertical displacement is equal to

the variance of the noise. In contrast, the self-supervised

loss ‖gr(x)− x‖
2

(solid orange) is strictly increasing and

tells us nothing about the ground truth loss ‖gr(x)− y‖
2

(dashed orange). Note that the median and donut median are

genuinely different functions with slightly different perfor-

mance, but while the former can only be tuned by inspecting

the output images, the latter can be tuned using a principled

loss.

More generally, let gθ be any classical denoiser, and let J be

any partition of the pixels such that neighboring pixels are

in different subsets. Let s(x) be the function replacing each

pixel with the average of its neighbors. Then the function

fθ defined by

fθ(x)J := gθ(1J · s(x) + 1Jc · x)J , (3)

for each J ∈ J , is a J -invariant version of gθ. Indeed,

since the pixels of x in J are replaced before applying gθ,

the output cannot depend on xJ .

In Supp. Figure 1, we show the corresponding loss curves

for J -invariant versions of a wavelet filter, where we tune

the threshold σ, and NL-means, where we tune a cut-off

distance h (Buades et al., 2005a; Chang et al., 2000; van der

Walt et al., 2014). The partition J used is a 4x4 grid. Note

that in all these examples, the function fθ is genuinely differ-

ent than gθ, and, because the simple interpolation procedure

may itself be helpful, it sometimes performs better.

In Table 1, we compare all three J -invariant denoisers on a

single image. As expected, the denoiser with the best self-

supervised loss also has the best performance as measured

by Peak Signal to Noise Ratio (PSNR).
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Table 1. Comparison of optimally tuned J -invariant versions of

classical denoising models. Performance is better than original

method at default parameter values, and can be further improved

(+) by adding an optimal amount of the noisy input to the J -

invariant output (§4.2).

METHOD LOSS PSNR
J-INVT J-INVT J-INVT+ DEFAULT

MEDIAN 0.0107 27.5 28.2 27.1
WAVELET 0.0113 26.0 26.9 24.6
NL-MEANS 0.0098 30.4 30.8 28.9

3.1. Single-Cell

In single-cell transcriptomic experiments, thousands of in-

dividual cells are isolated, lysed, and their mRNA are ex-

tracted, barcoded, and sequenced. Each mRNA molecule is

mapped to a gene, and that ∼20,000-dimensional vector of

counts is an approximation to the gene expression of that

cell. In modern, highly parallel experiments, only a few

thousand of the hundreds of thousands of mRNA molecules

present in a cell are successfully captured and sequenced

(Milo et al., 2010). Thus the expression vectors are very un-

dersampled, and genes expressed at low levels will appear

as zeros. This makes simple relationships among genes,

such as co-expression or transitions during development,

difficult to see.

If we think of the measurement as a set of molecules cap-

tured from a given cell, then we may partition the molecules

at random into two sets J1 and J2. Summing (and normaliz-

ing) the gene counts in each set produces expression vectors

xJ1
and xJ2

which are independent conditional on the true

mRNA content y. We may now attempt to denoise x by

training a model to predict xJ2
from xJ1

and vice versa.

We demonstrate this on a dataset of 2730 bone marrow

cells from Paul et al. using principal component regression

(Paul et al., 2015), where we use the self-supervised loss

to find an optimal number of principal components. The

data contain a population of stem cells which differentiate

either into erythroid or myeloid lineages. The expression

of genes preferentially expressed in each of these cell types

is shown in Figure 3 for both the (normalized) noisy data

and data denoised with too many, too few, and an optimal

number of principal components. In the raw data, it is

difficult to discern any population structure. When the data

is under-corrected, the stem cell marker Ifitm1 is still not

visible. When it is over-corrected, the stem population

appears to express substantial amounts of Klf1 and Mpo. In

the optimally corrected version, Ifitm1 expression coincides

with low expression of the other markers, identifying the

stem population, and its transition to the two more mature

states is easy to see.
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Figure 3. Self-supervised loss calibrates a linear denoiser for single

cell data. (a) Raw expression of three genes: a myeloid cell marker

(Mpo), an erythroid cell marker (Klf1), and a stem cell marker

(Ifitm1). Each point corresponds to a cell. (e) Self-supervised

loss for principal component regression. In (d) we show the the

denoised data for the optimal number of principal components (17,

red arrow). In (c) we show the result of using too few compo-

nents and in (b) that of using too many. X-axes show square-root

normalised counts.

3.2. PCA

Cross-validation for choosing the rank of a PCA requires

some care, since adding more principal components will

always produce a better fit, even on held-out samples (Bro

et al., 2008). Owen and Perry recommend splitting the

feature dimensions into two sets J1 and J2 as well as

splitting the samples into train and validation sets (Owen

& Perry, 2009). For a given k, they fit a rank k princi-

pal component regression fk : Xtrain,J1
7→ Xtrain,J2

and

evaluate its predictions on the validation set, computing

‖fk(Xvalid,J1
)−Xvalid,J2

‖
2
. They repeat this, permuting

train and validation sets and J1 and J2. Simulations show

that if X is actually a sum of a low-rank matrix plus Gaus-

sian noise, then the k minimizing the total validation loss

is often the optimal choice (Owen & Perry, 2009; Owen
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& Wang, 2016). This calculation corresponds to using the

self-supervised loss to train and cross-validate a {J1, J2}-

invariant principal component regression.

4. Theory

In an ideal situation for signal reconstruction, we have a

prior p(y) for the signal and a probabilistic model of the

noisy measurement process p(x|y). After observing some

measurement x, the posterior distribution for y is given by

Bayes’ rule:

p(y|x) =
p(x|y)p(y)

∫

p(x|y)p(y)dy
.

In practice, one seeks some function f(x) approximating a

relevant statistic of y|x, such as its mean or median. The

mean is provided by the function minimizing the loss:

Ex ‖f(x)− y‖
2

(The L1 norm would produce the median) (Murphy, 2012).

Fix a partition J of the dimensions {1, . . . , n} of x and

suppose that for each J ∈ J , we have

p(x|y) = p(xJ |y)p(xJc |y),

i.e., xJ and xJc are independent conditional on y. We

consider the loss

Ex ‖f(x)− x‖
2
= Ex,y ‖f(x)− y‖

2
+ ‖x− y‖

2

− 2〈f(x)− y, x− y〉.

If f is J -invariant, then for each j the random variables

f(x)j |y and xj |y are independent. The third term reduces to
∑

j Ey(Ex|y[f(x)j − yj ])(Ex|y[xj − yj ]), which vanishes

when E[x|y] = y. This proves Prop. 1.

Any J -invariant function can be written as a collection of

ordinary functions fJ : R|Jc| → R
|J|, where we separate

the output dimensions of f based on which input dimensions

they depend on. Then

L(f) =
∑

J∈J

E ‖fJ(xJc)− xJ‖
2
.

This is minimized at

f∗
J (xJc) = E[xJ |xJc ] = E[yJ |xJc ].

We bundle these functions into f∗
J , proving Prop. 2.

4.1. How good is the optimum?

How much information do we lose by giving up xJ when

trying to predict yJ? Roughly speaking, the more the fea-

tures in J are correlated with those outside of it, the closer

f∗
J (x) will be to E[y|x] and the better both will estimate y.
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Figure 4. The optimal J -invariant predictor converges to the opti-

mal predictor. Example images for Gaussian processes of different

length scales. The gap in image quality between the two predictors

tends to zero as the length scale increases.

Figure 4 illustrates this phenomenon for the example of

Gaussian Processes, a computationally tractable model of

signals with correlated features. We consider a process on

a 33 × 33 toroidal grid. The value of y at each node is

standard normal and the correlation between the values at

p and q depends on the distance between them: Kp,q =

exp(−‖p− q‖
2
/2ℓ2), where ℓ is the length scale. The

noisy measurement x = y + n, where n is white Gaussian

noise with standard deviation 0.5.

While

E
∥

∥y − f∗
J (x)

∥

∥

2

≥ E
∥

∥y − E[y|x]
∥

∥

2

for all ℓ, the gap decreases quickly as the length scale in-

creases.

The Gaussian process is more than a convenient example; it

actually represents a worst case for the recovery error as a

function of correlation.

Proposition 3. Let x, y be random variables and let xG and

yG be Gaussian random variables with the same covariance

matrix. Let f∗
J and f∗,G

J be the corresponding optimal J -

invariant predictors. Then

E
∥

∥y − f∗
J (x)

∥

∥

2

≤ E
∥

∥y − f∗,G
J (x)

∥

∥

2

.

Proof. See Supplement.

Gaussian processes represent a kind of local texture with no

higher structure, and the functions f∗,G
J turn out to be linear

(Murphy, 2012).



Noise2Self: Blind Denoising by Self-Supervision

0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.01

0.03

Noise standard deviation

clean

M
S

E

Gaussian Process

Alphabet

noisy optimally denoised

Gaussian

Process

of same 

covariance

Alphabet
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matrix. We show this for a dataset of noisy digits: the quality of the denoising is visibly better for the Alphabet than the Gaussian Process

(samples at σ = 0.8).

At the other extreme is data drawn from finite collec-

tion of templates, like symbols in an alphabet. If the

alphabet consists of {a1, . . . , ar} ∈ R
m and the noise

is i.i.d. mean-zero Gaussian with variance σ2, then the

optimal J-invariant prediction independent is a weighted

sum of the letters from the alphabet. The weights wi =
exp(−‖(ai − x) · 1Jc‖

2
/2σ2) are proportional to the pos-

terior probabilities of each letter. When the noise is low, the

output concentrates on a copy of the closest letter; when the

noise is high, the output averages many letters.

In Figure 5, we demonstrate this phenomenon for an alpha-

bet consisting of 30 16x16 handwritten digits drawn from

MNIST (LeCun et al., 1998). Note that almost exact re-

covery is possible at much higher levels of noise than the

Gaussian process with covariance matrix given by the em-

pirical covariance matrix of the alphabet. Any real-world

dataset will exhibit more structure than a Gaussian process,

so nonlinear functions can generate significantly better pre-

dictions.

4.2. Doing better

If f is J -invariant, then by definition f(x)j contains no

information from xj , and the right linear combination

λf(x)j + (1 − λ)xj will produce an estimate of yj with

lower variance than either. The optimal value of λ is given

by the variance of the noise divided by the value of the

self-supervised loss. The performance gain depends on the

quality of f : for example, if f improves the PSNR by 10 dB,

then mixing in the optimal amount of x will yield another

0.4 dB. (See Table 1 for an example and Supplement for

proofs.)

5. Deep Learning Denoisers

The self-supervised loss can be used to train a deep convolu-

tional neural net with just one noisy sample of each image in

a dataset. We show this on three datasets from different do-

mains (see Figure 6) with strong and varied heteroscedastic

synthetic noise applied independently to each pixel. For the

datasets Hànzı̀ and ImageNet we use a mixture of Poisson,

Gaussian, and Bernoulli noise. For the CellNet microscopy

dataset we simulate realistic sCMOS camera noise. We use

a random partition of 25 subsets for J , and we make the

neural net J -invariant as in Eq. 3, except we replace the

masked pixels with random values instead of local averages.

We train two neural net architectures, a UNet and a purely

convolutional net, DnCNN (Zhang et al., 2017). To acceler-

ate training, we only compute the net outputs and loss for

one partition J ∈ J per minibatch.

As shown in Table 2, both neural nets trained with self-

supervision (Noise2Self) achieve superior performance to

the classic unsupervised denoisers NLM and BM3D (at

default parameter values), and comparable performance to

the same neural net architectures trained with clean tar-

gets (Noise2Truth) and with independently noisy targets

(Noise2Noise).

The result of training is a neural net gθ, which, when

converted into a J -invariant function fθ, has low self-

supervised loss. We found that applying gθ directly to the

noisy input gave slightly better (0.5 dB) performance than

using fθ. The images in Figure 6 use gθ.

Remarkably, it is also possible to train a deep CNN to

denoise a single noisy image. The DnCNN architecture,

with 560,000 parameters, trained with self-supervision on

the noisy camera image from §3, with 260,000 pixels,

achieves a PSNR of 31.2.

6. Discussion

We have demonstrated a general framework for denoising

high-dimensional measurements whose noise exhibits some

conditional independence structure. We have shown how
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Figure 6. Performance of classic, supervised, and self-supervised denoising methods on natural images, Chinese characters, and fluores-

cence microscopy images. Blind denoisers are NLM, BM3D, and neural nets (UNet and DnCNN) trained with self-supervision (N2S).

We compare to neural nets supervised with a second noisy image (N2N) and with the ground truth (N2T).

to use a self-supervised loss to calibrate or train any J -

invariant class of denoising functions.

There remain many open questions about the optimal choice

of partition J for a given problem. The structure of J must

reflect the patterns of dependence in the signal and indepen-

dence in the noise. The relative sizes of each subset J ∈ J
and its complement creates a bias-variance tradeoff in the

loss, exchanging information used to make a prediction for

information about the quality of that prediction.

For example, the measurements of single-cell gene expres-

sion could be partitioned by molecule, gene, or even path-

way, reflecting different assumptions about the kind of

stochasticity occurring in transcription.

We hope this framework will find application to other do-

mains, such as sensor networks in agriculture or geology,

time series of whole brain neuronal activity, or telescope

observations of distant celestial bodies.

Table 2. Performance of different denoising methods by Peak Sig-

nal to Noise Ratio (PSNR) on held-out test data. Error bars for

CNNs from training five models.

METHOD HÀNZÌ IMAGENET CELLNET

RAW 6.5 9.4 15.1
NLM 8.4 15.7 29.0
BM3D 11.8 17.8 31.4
UNET (N2S) 13.8 ± 0.3 18.6 32.8 ± 0.2
DNCNN (N2S) 13.4 ± 0.3 18.7 33.7 ± 0.2

UNET (N2N) 13.3 ± 0.5 17.8 34.4 ± 0.1
DNCNN (N2N) 13.6 ± 0.2 18.8 34.4 ± 0.1

UNET (N2T) 13.1 ± 0.7 21.1 34.5 ± 0.1
DNCNN (N2T) 13.9 ± 0.6 22.0 34.4 ± 0.4
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