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Abstract

Translation-based methods for grammar cor-

rection that directly map noisy, ungrammat-

ical text to their clean counterparts are able

to correct a broad range of errors; how-

ever, such techniques are bottlenecked by the

need for a large parallel corpus of noisy and

clean sentence pairs. In this paper, we con-

sider synthesizing parallel data by noising a

clean monolingual corpus. While most pre-

vious approaches introduce perturbations us-

ing features computed from local context win-

dows, we instead develop error generation

processes using a neural sequence transduc-

tion model trained to translate clean exam-

ples to their noisy counterparts. Given a

corpus of clean examples, we propose beam

search noising procedures to synthesize ad-

ditional noisy examples that human evalua-

tors were nearly unable to discriminate from

nonsynthesized examples. Surprisingly, when

trained on additional data synthesized us-

ing our best-performing noising scheme, our

model approaches the same performance as

when trained on additional nonsynthesized

data.

1 Introduction

Correcting noisy, ungrammatical text remains a

challenging task in natural language processing.

Ideally, given some piece of writing, an error cor-

rection system would be able to fix minor typo-

graphical errors, as well as grammatical errors that

involve longer dependencies such as nonidiomatic

phrasing or errors in subject-verb agreement. Ex-

isting methods, however, are often only able to

correct highly local errors, such as spelling errors

or errors involving articles or prepositions.

Classifier-based approaches to error correction

are limited in their ability to capture a broad

range of error types (Ng et al., 2014). Machine

translation-based approaches—that instead trans-
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Figure 1: Overview of method. We first train a noise

model on a seed corpus, then apply noise during de-

coding to synthesize data that is in turn used to train

the denoising model.

late noisy, ungrammatical sentences to clean, cor-

rected sentences—can flexibly handle a large vari-

ety of errors; however, such approaches are bottle-

necked by the need for a large dataset of source-

target sentence pairs.

To address this data sparsity problem, we pro-

pose methods for synthesizing noisy sentences

from clean sentences, thus generating an addi-

tional artificial dataset of noisy and clean sentence

pairs. A simple approach to noise clean text is to

noise individual tokens or bigrams, for example by

replacing each token with a random draw from the

unigram distribution. This type of approach, how-

ever, tends to generate highly unrealistic noise and

fails to capture phrase-level phenomena. Other

rule-based approaches fail to capture a diverse set

of error types.

We consider a method inspired by the back-

translation procedure for machine transla-

tion (Sennrich et al., 2015). Our method combines

a neural sequence transduction trained on a seed

corpus of clean→noisy pairs with beam search
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noising procedures to produce more diversity in

the decoded outputs. This technique addresses

two issues with existing synthesis techniques for

grammar correction:

1. By using a neural model trained end-to-end

on a large corpus of noisy and clean sen-

tences, the model is able to generate rich, di-

verse errors that better capture the noise dis-

tribution of real data.

2. By encouraging diversity through applying

noise to hypotheses during decoding, we

avoid what we refer to as the one-to-many

problem, where decoding from a model

trained on clean→noisy examples results in

overly clean output, since clean subphrases

still form the majority of noisy examples.

We perform experiments using several noising

methods to validate these two claims, yielding

gains on two benchmarks. Our main empirical re-

sult is that, starting with only clean news data and

models trained on a parallel corpus of roughly 1.3

million sentences, we can train models with addi-

tional synthesized data that nearly match the per-

formance of models trained on 3 million nonsyn-

thesized examples.

2 Related work

Noising While for images, there are natural nois-

ing primitives such as rotations, small translational

shifts, and additive Gaussian noise, similar primi-

tives are not as well developed for text data. Sim-

ilarly, while denoising autoencoders for images

have been shown to help with representation learn-

ing (Vincent et al., 2010), similar methods for

learning representations are not well developed for

text. Some recent work has proposed noising—

in the form of dropping or replacing individual

tokens—as a regularizer when training sequence

models, where it has been demonstrated to have a

smoothing effect on the softmax output distribu-

tion (Bowman et al., 2015; Xie et al., 2017; Dai

and Le, 2015; Kumar et al., 2015).

Grammar correction Recent work by Chollam-

patt and Ng (2018) has achieved impressive per-

formance on the benchmarks we consider using

convolutional encoder-decoder models. Previous

work using data synthesis for grammatical error

correction (GEC) has introduced errors by exam-

ining the distribution of error types, then apply-

ing errors according to those distributions together

with lexical or part-of-speech features based on a

small context window (Brockett et al., 2006; Fe-

lice, 2016). While these methods can introduce

many possible edits, they are not as flexible as

our approach inspired by the backtranslation pro-

cedure for machine translation (Sennrich et al.,

2015). This is important as neural language mod-

els not explicitly trained to track long-range lin-

guistic dependencies can fail to capture even sim-

ple noun-verb errors (Linzen et al., 2016). Re-

cently, in the work perhaps most similar to ours,

Rei et al. (2017) propose using statistical machine

translation and backtranslation along with syntac-

tic patterns for generating errors, albeit for the er-

ror detection task.

Neural machine translation Recent end-to-

end neural network-based approaches to machine

translation have demonstrated strong empirical re-

sults (Sutskever et al., 2014; Cho et al., 2014).

Building off of these strong results on machine

translation, we use neural encoder-decoder models

with attention (Bahdanau et al., 2014) for both our

data synthesis (noising) and grammar correction

(denoising) models. Although many recent works

on NMT have focused on improving the neural

network architecture, the model architecture is or-

thogonal to the contributions in this work, where

we instead focus on data synthesis. In parallel

to our work, work on machine translation without

parallel corpora has also explored applying noise

to avoid copying when pretraining autoencoders

by swapping adjacent words (Lample et al., 2017;

Artetxe et al., 2017).

Diverse decoding Key to the data generation pro-

cedure we describe is adding noise to the scores

of hypotheses during beam search–otherwise, de-

coded outputs tend to contain too few errors. This

is inspired by work in dialogue, in which neural

network models tend to produce common, overly

generic responses such as “I don’t know” (Sordoni

et al., 2015; Serban et al., 2015). To mitigate this

issue, Li et al. (2015) and others have proposed

methods to increase the diversity of neural net-

work outputs. We adopt a similar approach to Li

et al. (2015) to generate noisier hypotheses during

decoding.

3 Method

We first briefly describe the neural model we use,

then detail the noising schemes we apply when

synthesizing examples.
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Figure 2: Model architecture used for both noising and

denoising networks.

3.1 Model

In order to generate noisy examples as well as

to translate ungrammatical examples to their cor-

rected counterparts, we need to choose a sequence

transduction model. Based off their strong empir-

ical performance, we use a neural network-based

model for this work.

Our method uses two neural encoder-decoder

models:

1. The first is the noising model, which, given

a clean sentence, is used to generate a

noised version of that sentence. This model

is trained on a seed corpus of parallel

clean→noisy sentences.

2. The second is the denoising model, which,

given a noisy, ungrammatical sentence, gen-

erates the clean, corrected sentence.

For both models, we use the same convolutional

encoder-decoder to model

p(Y |X) =
TY∏

t=1

p(yt|X, y1:t−1; θ)

where X = (x1, x2, . . . , xTX
) is the source se-

quence and Y = (y1, y2, . . . , yTY
) the corre-

sponding target sequence, and we minimize the

training loss

ℓ(θ) = − log
TY∑

t=1

p(yt|X, y1:t−1; θ)

thus maximizing log-likelihood. The model ar-

chitecture we use is similar to that described by

Kalchbrenner et al. (2016) and Gehring et al.

(2017). Gated convolutions are applied with

masking—to avoid peeking at future inputs when

training using teacher forcing—such that they

form an autoregressive network similar to a recur-

rent neural network with gated hidden units. This

architecture was selected so that training steps

could be parallelized across the time dimension

through the use of convolutions. However, we em-

phasize that the architecture is not a focus of this

paper, and we would expect that RNN architec-

tures with LSTM cells would achieve similar re-

sults. For simplicity and to avoid handling out-

of-vocabulary words, we use character-level tok-

enization. Figure 2 illustrates the model architec-

ture.

3.2 Noising

The amount of parallel data is often the limiting

factor in the performance of neural network sys-

tems. In order to obtain more parallel examples

for the grammar correction task, we take clean text

Y and apply noise, yielding noisy text Ỹ , then

train a denoising model to map from Ỹ back to Y .

The noising process used to generate Ỹ greatly af-

fects final performance. First, we consider noising

methods which we use as our baselines, as well as

the drawbacks for each method.

• appending clean examples: We first con-

sider simply appending clean examples with

no noise applied to both the source and the

target. The aim is for the decoder to learn a

better language model when trained on addi-

tional clean text, similar to the motivation de-

scribed in Dai and Le (2015). However, for

the models we consider, the attention mecha-

nism allows copying of source to target. Thus

the addition of examples where source and

target are identical data may also cause the

model to become too conservative with edits

and thus reduce the recall of the system.

• token noising: Here we simply consider a

context window of at most two characters

or words and allow word/character deletions

and transpositions.

First, for every character in each word we

sample deletions, followed by transpositions.

Then we sample deletions and transpositions

for every word in the sentence. Deletion and

transposition probabilities were selected such
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Figure 3: Illustration of random noising with beam width 2. Darker shading indicates less probable expansions.

In this example, greedy decoding would yield “How are you”. Applying noise penalties, however, results in the

hypotheses “How is you/he”. Note that applying a penalty does not always result in an expansion falling off the

beam.

that overall character and word-level edit dis-

tances roughly matched the edit distances be-

tween clean and noisy examples in our par-

allel seed corpus. While this method is fast

to apply, it tends to produce highly unrealis-

tic errors leading to a mismatch between the

synthesized and real parallel data.

• reverse noising: For reverse noising, we sim-

ply train a reverse model from Y → X us-

ing our parallel noisy-clean corpus and run

standard beam search to generate noisy tar-

gets Ỹ from clean inputs Y . However, we

find vanilla reverse noising tends to be too

conservative. This is due to the one-to-many

problem where a clean sentence has many

possible noisy outputs which mostly consist

of clean phrases. The output then contains

far fewer errors on average than the original

noisy text.

To address the drawback of the reverse noising

scheme, we draw inspiration from ideas for in-

creasing diversity of outputs in dialogue (Li et al.,

2016). During the beam search procedure, we add

noise to the scores of hypotheses on the beam to

encourage decoding to stray from the greedy out-

put. Recall that during beam search, we iteratively

grow a set of hypotheses H = {h1, h2, . . .}, only

keeping the top hypotheses after each step of de-

coding according to some scoring function s(h).
Extending the reverse noising scheme, the beam

search noising schemes we consider are:

• rank penalty noising We directly apply the

method of Li et al. (2016). At every step

of the search procedure, siblings from the

same parent are penalized by adding kβrank
to their scores, where k is their rank (in de-

scending log-likelihood) amongst their sib-

lings and βrank is a penalty hyperparameter

corresponding to some log-probability.

• top penalty noising Only the top (most-

probable) hypothesis htop of the beam is pe-

nalized by adding βtop to its score s(htop).

• random noising Every hypothesis is penal-

ized by adding rβrandom to its score, where

r is drawn uniformly from the interval [0, 1].
For sufficiently large βrandom, this leads to a

random shuffling of the ranks of the hypothe-

ses according to their scores.

An illustration of the random noising algo-

rithm is shown in Figure 3. Note that although

rank penalty noising should encourage hypotheses

whose parents have similar scores to remain on the

beam, it can also tend to leave the hypothesis from

greedy decoding on the beam in the case where

softmax output distributions are highly peaked.

This is much more of an issue for tasks that in-

volve significant copying of source to target, such

as grammar correction. Note also that the random

noising can yield more diverse outputs than top

penalty noising, depending on the probability with

which each is applied. All of the beam search nois-

ing methods described are intended to increase the

diversity and the amount of noise in the synthe-
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Corpus Sent. Pairs

CoNLL 2014 60K

Lang-8 1.3M

Lang-8 expanded 3.3M

synthesized (NYT 2007) 1.0M

base (CoNLL + L8) 1.3M

expanded (CoNLL + L8 expanded) 3.3M

Table 1: Summary of training corpora.

sized outputs Ỹ . By performing beam search nois-

ing, we can produce errors such as those shown in

Table 4.

3.3 Denoising

Once noised data has been generated, denoising

simply involves using a neural sequence transduc-

tion model to backtranslate the noised text to the

original clean text. For denoising, during decod-

ing we apply length normalization as well as a

coverage penalty to the scoring function s(h) (Wu

et al., 2016). The final scoring function also incor-

porates a 5-gram language model trained on a sub-

set of Common Crawl, estimated with Kneser-Ney

smoothing using KenLM (Heafield, 2011). We in-

corporate the language model during final rerank-

ing by modifying the score for a completed hy-

pothesis s(h) to be

sLM(h) = s(h) + λ log pLM(h)

where λ is a hyperparameter and pLM(h) is given

by the language model.

4 Experiments

To determine the effectiveness of the described

noising schemes, we synthesize additional data us-

ing each and evaluate the performance of models

trainined using the additional data on two bench-

marks.

Datasets For training our sequence transduction

models, we combine the publicly available En-

glish Lang-8 dataset, a parallel corpus collected

from a language learner forum, with training data

from the CoNLL 2014 challenge (Mizumoto et al.,

2011; Ng et al., 2014). We refer to this as the

“base” dataset. Junczys-Dowmunt and Grund-

kiewicz (2016) additionally scraped 3.3M pairs of

sentences from Lang-8. Although this expanded

dataset, which we call the “expanded” dataset, is

not typically used when comparing performance

on grammar correction benchmarks, we use it in-

stead to compare performance when training on

additional synthesized data versus nonsynthesized

data. For clean text to be noised, we use the LDC

New York Times corpus for 2007, which yields

roughly 1 million sentences. A summary of the

data used for training is given in Table 1.

We use the CoNLL 2013 evaluation set as our

development set in all cases (Ng et al., 2013). Our

test sets are the CoNLL 2014 evaluation set and

the JFLEG test set (Ng et al., 2014; Napoles et al.,

2017). Because CoNLL 2013 only has a single

set of gold annotations while CoNLL 2014 has

two, performance metrics tend to be significantly

higher on CoNLL 2014. We report precision, re-

call, and F0.5 score, which is standard for the task,

as precision is valued over recall. On JFLEG, we

report results with the GLEU metric (similar to

BLEU) developed for the dataset.

Training and decoding details All models are

trained using stochastic gradient descent with an-

nealing based on validation perplexity on a small

held-out subset of the Lang-8 corpus. We apply

both dropout and weight decay regularization. We

observed that performance tended to saturate after

30 epochs. Decoding is done with a beam size of

8; in early experiments, we did not observe sig-

nificant gains with larger beam sizes (Koehn and

Knowles, 2017).

4.1 CoNLL

Results for the CoNLL 2013 (dev) and 2014 (test)

datasets but with and without language model

reranking are given in Table 2. In general, adding

noised data helps, while simply adding clean data

leads the model to be too conservative. Overall,

we find that the random noising scheme yields the

most significant gain of 4.5 F -score. Surprisingly,

we find that augmenting the base dataset with

synthesized data generated with random noising

yields nearly the same performance when com-

pared to using only nonsynthesized examples. To

determine whether this might be due to overfitting,

we reduced the dropout rate when training on the

“expanded” dataset, but did not observe better re-

sults.

The random noising scheme achieves the

best performance, while the top noising scheme

matches the best performance on the development

set but not the test set. We believe this is due to a

mismatch between the CoNLL 2013 dev and 2014
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Method Dev (no LM) Dev Test

P R F0.5 P R F0.5 P R F0.5

none 50.7 10.5 28.7 48.4 17.2 35.5 52.7 27.5 44.5

clean 56.1 9.4 28.1 47.5 16.9 34.8 52.3 27.5 44.3

token 49.7 11.9 30.4 47.7 18.7 36.4 51.4 30.3 45.1

reverse 53.1 13.0 32.8 50.5 19.1 38.0 54.7 29.6 46.8

rank 51.3 12.3 31.4 51.0 18.3 37.6 54.3 29.3 46.4

top 49.1 17.4 36.0 47.7 23.9 39.8 50.9 34.7 46.6

random 50.0 17.9 36.8 48.9 23.0 39.9 54.2 35.4 49.0

expanded 64.4 11.2 33.0 54.9 20.0 40.7 57.2 32.0 49.4

Yuan and Briscoe (2016) — — — — — — — — 39.9

Ji et al. (2017) — — 28.6 — — 33.5 — — 45.2

Junczys-Dowmunt et al. (2016) — — — — — — 61.3 28.0 49.5

Chollampatt and Ng (2018) — — — — — — 65.5 33.1 54.8

Table 2: Results on CoNLL 2013 (Dev) and CoNLL 2014 (Test) sets. All results use the “base” parallel corpus of

1.3M sentence pairs along with additional synthesized data (totaling 2.3M sentence pairs) except for “expanded”,

which uses 3.3M nonsynthesized sentence pairs (and no synthesized data).

tets sets. Since the 2013 dev set has only a single

annotator, methods are encouraged to target higher

recall, such that the top noising scheme was opti-

mized for precision over recall. To check this, we

ran decoding on CoNLL 2014 using the best dev

settings with no language model, and found that

the top noising scheme yielded an F0.5-score of

45.2, behind only random (47.1) and ahead of to-

ken (42.0) and reverse (43.9) noising. Overall, we

find the data synthesis method we describe to yield

large gains in recall.

For completeness, we also compare to other

state-of-the-art systems, such as the phrase-based

machine translation system by Junczys-Dowmunt

and Grundkiewicz (2016), who performed param-

eter tuning with sparse and dense features by

cross-validation on the CoNLL 2014 training set.

Chollampatt and Ng (2018) achieve even higher

state-of-the-art results using the neural machine

translation model of Gehring et al. (2017) along

with improvements to the reranking procedure.

4.2 JFLEG

Recently, Napoles et al. (2017) introduced the JF-

LEG dataset, intended to evaluate the fluency of

grammar correction systems rather than simply the

precision and recall of edits. The evaluation metric

proposed is GLEU, a variant of BLEU score. Most

results for this task were reported with hyperpa-

rameter settings from the CoNLL task; hence we

report results with the best settings on our CoNLL

2013 dev set. Results are shown in Table 31. To-

ken noising performs surprisingly well; we sus-

pect this is because a significant portion of er-

rors in the JFLEG dataset are spelling errors, as

demonstrated from strong gains in performance by

using a spelling checker reported by Chollampatt

and Ng (2018).

5 Discussion

Our experiments illustrate that synthesized paral-

lel data can yield large gains on the grammar cor-

rection task. However, what factors make for an

effective data synthesis technique? We consider

the properties of the noising scheme and the cor-

responding data that lead to better performance.

5.1 Realism and Human Evaluation

First, we manually compare each of the different

noising methods to evaluate how “realistic” the

errors introduced are. This is reminiscent of the

generative adversarial network setting (Goodfel-

low et al., 2014), where the generator seeks to pro-

duce samples that fool the discriminator. Here the

discriminator is a human evaluator who, given the

clean sentence Y , tries to determine which of two

sentences X and Ỹ is the true noisy sentence, and

which is the synthesized sentence. To be clear,

1Comparisons taken from https://github.com/

keisks/jfleg
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Scheme P R F0.5 GLEU

none 68.9 44.2 62.0 53.9

clean 69.2 42.8 61.6 54.1

token 69.2 47.6 63.5 55.9

reverse 69.1 42.1 61.3 53.8

rank 68.3 43.3 61.2 54.4

top 67.3 48.2 62.4 55.5

random 69.1 48.5 63.7 56.6

expanded 72.7 45.9 65.1 56.2

Sakaguchi et al. (2017)† 54.0

Ji et al. (2017) 53.4

Yuan and Briscoe (2016) 52.1

Junczys-Dowmunt et al. (2016) 51.5

Chollampatt and Ng (2018) 57.5

Table 3: Results on the JFLEG test set (we use best

hyperparameter settings from CoNLL dev set). GLEU

is a variant of BLEU developed for this task; higher is

better (Napoles et al., 2017). †Tuned to JFLEG dev set.

we do not train with a discriminator—the beam

search noising procedures we proposed alone are

intended to yield convincing errors.

For each noising scheme, we took 100 (X,Y )
pairs from the development set (500 randomly

chosen pairs combined), then generated Ỹ from

Y . We then shuffled the examples and the order of

X and Ỹ such that the identity of X and Ỹ as well

as the noising scheme used to generate Ỹ were

unknown2. Given Y , the task for human evalu-

ators is to predict whether X or Ỹ was the syn-

thesized example. For every example, we had two

separate evaluators label the sentence they thought

was synthesized. We chose to do this labeling task

ourselves (blind to system) since we were famil-

iar with the noising schemes used to generate ex-

amples, which should reduce the number of mis-

classifications. Results are shown in Figure 4, and

examples of the evaluation task are provided in Ta-

ble 4.

5.2 Noise Frequency and Diversity

Comparing the performance using different nois-

ing methods on the CoNLL 2014 dataset to the hu-

man evaluation in the previous section, we see that

generating errors which match the real distribu-

tion tends to result in higher performance, as seen

by the poor performance of token noising relative

2Hence the human labelers cannot favor a particular

scheme unless it can be distinguished from Ỹ .
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Figure 4: Percentage of time human evaluators mis-

classified synthesized noisy sentence Ỹ (vs. X) when

using each noising scheme, along with 95% confidence

intervals. The best we can expect any scheme to do is

50%.
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Figure 5: Mean edit distance between sentence pairs

in X and Y after augmentation with noised sentences.

none contains no synthesized examples while clean

refers to the baseline of simply appending clean exam-

ples (source = target).

to the other methods. Injecting the appropriate

amount of noise is important as well, as seen by

improved performance when using beam search

noising to increase diversity of outputs, and no

performance gain when simply adding clean text.

We observe that token noising, despite match-

ing the frequency of errors, fails to generate re-

alistic errors (Figure 4). On the other hand, re-

verse noising yields significantly more convincing

errors, but the edit distance between synthesized

examples is significantly lower than in real data

(Figure 5). A combination of sufficient amounts

of noise and rich, diverse errors appears to lead to

better model performance.

5.3 Error Type Distribution Mismatch

Mismatches in the distribution of error types can

often severely impact the performance of data syn-

thesis techniques for grammar correction (Felice,

2016). For example, only synthesizing noun num-

ber articles or preposition errors based on rules
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Sentence 1 or 2

clean Day after day , I get up at 8 o‘clock .
1 I got up at 8 o‘clock day after day .
2 Day after day , I get up 8 o‘clock in the week .

clean Thanks Giving Day in Korea is coming soon .
1 In Korea , it ’s coming soon , thanks Giving day .
2 Thanks Giving Day in korea is coming soon .

clean After I practiced , I could play the song perfectly .
1 After the results , I could accomplish without a fault .
2 When I tried that , I could play the song perfectly .

clean Currently , I ’m studying to take the TOEIC exam for my future career .
1 I am studying to take TOEIC exam for career of my future .
2 Currently , I will have take TOEIC exam for future career .

clean There is one child who is 15 years old and a mother who is around 50 .
1 There are one child who is 15 years old and mother is around 50 .
2 It has one child , 15 years old and the mother who is around 50 years old .

clean But at the beginning , I suffered from a horrible pain in my jaw .
1 But at the first time , I suffer from a horrible pain on my jaw .
2 But at the beginning , I suffered from a horrible pain in my jaw joint .

Table 4: Examples of nonsynthesized and synthesized sentences from validation set. Which example (1 or 2) was

synthesized? Answers:1,1,2,1,2,1

Art/DetWci Nn Prep Wform Mec Vt Trans Vform Rloc-

Error Type

0.0

0.1

0.2

0.3

0.4

R
ec
al
l

random

none

Figure 6: Recall vs. error type for the ten most frequent

error types in our dev set. Noising improves recall uni-

formly across error types (See Ng et al. (2014) for a

description of error types).

may improve the performance for those two er-

ror types, but may hurt overall performance. In

contrast, the approaches we consider, with the ex-

ception of token noising, are fully data-driven, and

hence we would expect gains across all different

error types. We observe this is the case for ran-

dom noising, as shown in Figure 6.

5.4 Data Sparsity and Domain Adaptation

Domain adaptation can yield significant differ-

ences in performance for dissimilar domains (such

as those of the datasets used in our experi-

ments) (Daumé III, 2009). The Lang-8, CoNLL,

and JFLEG datasets contain online forum data and

essay data from English learners. The n-gram lan-

guage model is estimated using Common Crawl

data from the web. The clean data which we noise

is collected from a news corpus. Yet each dataset

yields significant gains. This suggests that at cur-

rent levels of system performance, data sparsity

remains the key data issue, more so than domain

adaptation.

It is also possible that LDC New York Times

data is better matched to the CoNLL essay data

than the Lang-8 forum data, and this in part ac-

counts for the large gains we observe from training

on synthesized data.

6 Conclusion

In this work, we address one of the key issues

for developing translation-based grammar correc-

tion systems: the need for a large corpus of par-

allel data. We propose synthesizing parallel data

by noising clean text, where instead of applying

noise based on finite context windows, we instead

train a reverse model and apply noise during the

beam search procedure to synthesize noisy exam-

ples that human evaluators were nearly unable to

distinguish from real examples. Our experiments

suggest that the proposed data synthesis technique

can yields almost as strong results as when train-

ing with additional nonsynthesized data. Hence,

we hope that parallel data becomes less of a bot-

tleneck, and more emphasis can be placed on de-

veloping better models that can capture the longer

dependencies and structure in the text.
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