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Abstract

Many models for sparse regression typically
assume that the covariates are known com-
pletely, and without noise. Particularly in
high-dimensional applications, this is often
not the case. Worse yet, even estimating
statistics of the noise (the noise covariance)
can be a central challenge. In this paper
we develop a simple variant of orthogonal
matching pursuit (OMP) for precisely this
setting. We show that without knowledge
of the noise covariance, our algorithm re-
covers the support, and we provide match-
ing lower bounds that show that our al-
gorithm performs at the minimax optimal
rate. While simple, this is the first algo-
rithm that (provably) recovers support in a
noise-distribution-oblivious manner. When
knowledge of the noise-covariance is avail-
able, our algorithm matches the best-known
`2-recovery bounds available. We show that
these too are min-max optimal. Along the
way, we also obtain improved performance
guarantees for OMP for the standard sparse
regression problem with Gaussian noise.

1. Introduction

Developing inference algorithms that are robust to
corrupted or missing data is particularly impor-
tant in the high-dimensional regime. There, not
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only can standard algorithms exhibit higher sensitiv-
ity to noisy/incomplete data, but often, the high-
dimensionality may even preclude proper estimation
of the statistics of the noise itself. Meanwhile,
many standard algorithms for high-dimensional in-
ference problems, including popular approaches such
as `1-penalized regression, known as LASSO, are not
equipped to deal with noisy or missing data.

This paper studies this precise problem, and focuses
on sparsity recovery for linear regression, when the
covariates are noisy or only partially known. Of par-
ticular interest is the noisy-covariates setting, where
even the covariance of the noise is unknown. To the
best of our knowledge, there are no algorithms that
can recover sparsity without knowledge of the noise
covariance. Indeed, as demonstrated in (Rosenbaum
& Tsybakov, 2010), running standard algorithms like
Lasso and the Dantzig selector without accounting for
noise leads to unstable performance in support recov-
ery. Moreover, we show via simulation that while prov-
ably optimal when the noise covariance is known, the
two leading algorithms for regression with noisy co-
variates (Rosenbaum & Tsybakov, 2011; Loh & Wain-
wright, 2011) deteriorate rapidly with either an over-
or under-estimate of the noise variance. However, in
many practical scenarios, it is costly to obtain a reli-
able estimate of the noise covariance (Carroll, 2006),
and in such situations there seems to be little that
could be done. This paper delivers a surprising mes-
sage. We show that a computationally much simpler
algorithm, Orthogonal Matching Pursuit (OMP), suc-
ceeds in what we call distribution oblivious support
recovery. Moreover, we prove that its performance is
minimax optimal. In problems such as inverse covari-
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ance estimation in graphical models, support recovery
(finding the edges) is the central problem of interest.
Meanwhile, that is precisely a setting where informa-
tion about the noise may be difficult to estimate.

When the noise covariance is available, we show that
a simple modification of OMP not only recovers the
support, but also matches the `2-error guarantees of
the more computationally demanding algorithms in
(Rosenbaum & Tsybakov, 2011; Loh & Wainwright,
2011), and in particular, is optimal.

1.1. Related Work

The problem of sparse regression with noisy or miss-
ing covariates, in the high-dimensional regime, has
recently attracted some attention, and several au-
thors have considered this problem and made impor-
tant contributions. Stadler and Buhlmann (Städler
& Bühlmann, 2010) developed an EM algorithm to
cope with missing data, but there does not seem to
be a proof guaranteeing global convergence. Recent
work has considered adapting existing approaches for
sparse regression with good theoretical properties to
handle noisy/missing data. The work in (Rosenbaum
& Tsybakov, 2010; 2011) is among the first to ob-
tain theoretical guarantees. They propose using a
modified Dantzig selector (they called it the improved
MU selector) as follows. Letting y = Xβ + e, and
Z = X + W denote the noisy version of the covari-
ates (we define the setup precisely, below), the stan-
dard Dantzig selector would minimize ‖β‖1 subject to
the condition ‖Z>(y − Zβ)‖∞ ≤ τ . Instead, they
solve ‖Z>(y − Zβ) + E[W>W ]β‖∞ ≤ µ‖β‖1 + τ ,
thereby adjusting for the (expected) effect of the noise,
W . Loh and Wainwright (Loh & Wainwright, 2011)
pursue a related approach, where they modify Lasso
rather than the Dantzig selector. Rather than min-
imize ‖Zβ − y‖22 + λ‖β‖1, they instead minimize a
similarly adjusted objective: β>(Z>Z−E[W>W ])β−
2β>Z>y + ‖y‖22 + λ‖β‖1. The modified Dantzig se-
lector remains a linear program, and therefore can be
solved by a host of existing techniques. The modified
Lasso formulation becomes non convex. Interestingly,
Loh and Wainwright show that the projected gradient
descent algorithm finds a possibly local optimum that
nevertheless has strong performance guarantees.

These methods obtain essentially equivalent `2-
performance bounds, and recent work (Loh & Wain-
wright, 2012) shows they are minimax optimal. Signif-
icantly, they both rely on knowledge of E[W>W ].1 As

1The earlier work (Rosenbaum & Tsybakov, 2010) does
not require that, but it does not guarantee support recov-
ery, and its `2 error bounds are significantly weaker than

our simulations demonstrate, this dependence seems
critical: if the variance of the noise is either over- or
under-estimated, the performance of the algorithms,
even for support recovery, deteriorate considerably.
The simple variant of the OMP algorithm we ana-
lyze requires no such knowledge for support recovery.
Moreover, if E[W>W ] is available, our algorithm has
`2-performance matching that in (Rosenbaum & Tsy-
bakov, 2011; Loh & Wainwright, 2011).

OMP has been studied extensively. Its performance in
the clean covariate case has proven comparable to the
computationally more demanding optimization-based
methods, and it has been shown to be theoretically
and empirically successful (e.g., (Tropp, 2004; Tropp
& Gilbert, 2007; Davenport & Wakin, 2010)). OMP
is an example of so-called greedy methods. Recently,
there is a line of work that shows a particular class
of forward-backward greedy algorithms is guaranteed
to converge to the optimal solution of a convex pro-
gram (Tewari et al., 2011; Jalali et al., 2011). Combin-
ing this work with guarantees on convex-optimization-
based methods (e.g., (Loh & Wainwright, 2011)) could
yield bounds on `2 recovery errors for noisy/missing
data (this has not been done, but some variant of
it seems straightforward). However, unlike our algo-
rithm, this would still require knowing Σw and thus
would not provide distribution-oblivious support re-
covery. Moreover, it is also worth pointing out that the
forward-backward greedy methods required to guaran-
tee support recovery under restricted strong convexity
are different from, and more complicated than, OMP.

1.2. Contributions

We consider the problem of distribution-oblivious sup-
port recovery in high-dimensional sparse regression
with noisy covariates. While the (unmodified) Lasso
and Dantzig selector both require essential modifica-
tion to work in the face of noise or missing data, we
show a surprising result with simple and important
consequences: standard (unmodified) OMP recovers
the support, and the sample complexity and signal-
to-noise ratio (the size of βmin) required are opti-
mal: we provide matching information theoretic lower
bounds (see Theorem 4 for the precise statement). We
then modify OMP so that if the noise covariance is
available, our algorithm obtains `2-error bounds that
match the best-known results ((Rosenbaum & Tsy-
bakov, 2011; Loh & Wainwright, 2011)) and in partic-
ular, has matching lower bounds.

Specifically, the contributions of this paper are:

the more recent work in (Rosenbaum & Tsybakov, 2011;
Loh & Wainwright, 2011).
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1. OMP and Support Recovery: We give conditions
for when standard OMP guarantees exact support
recovery in the missing and noisy covariate set-
ting. Our results do not require knowledge of
E[W>W ] (the noise covariance) or ρ (the era-
sure probability). Other approaches require this
knowledge, and our simulations indicate the de-
pendence is real.

2. `2-bounds: Even if the noise covariance is known,
standard OMP does not provide competitive `2-
bounds. We design simple estimators based on
either knowledge of the statistics of the covariate
noise, or the covariate distribution. We provide
finite sample performance guarantees that are as
far as we know, the best available. In the supple-
mental section, we show we can also obtain such
bounds using an Instrumental Variable correlated
with the covariates. We are not aware of any rig-
orous finite sample results in this setting.

3. In simulations, the advantage of our algorithm
seems more pronounced, in terms of both speed
and statistical performance. Moreover, while we
provide no analysis for the case of correlated
columns of the covariate matrix, our simulations
indicate that the impediment is in the analysis, as
the results for our algorithm seem very promising.

4. Finally, as a corollary to our results above, setting
the covariate-noise-level to zero, we obtain bounds
on the performance of OMP in the standard set-
ting, with additive Gaussian noise. Our bounds
are better than bounds obtained by specializing
deterministic results (e.g., `2-bounded noise as in
(Donoho et al., 2006)) and ignoring Gaussianity;
meanwhile, while similar to the results in (Cai &
Wang, 2011), there seem to be gaps in their proof
that we do not quite see how to fill.

As we mention above, while simulations indicate good
performance even with correlated columns, the anal-
ysis we provide only guarantees bounds for the case
of independent columns. In this respect, the convex
optimization-based approaches in (Rosenbaum & Tsy-
bakov, 2011; Loh & Wainwright, 2011) have an ad-
vantage. This advantage of optimization-based ap-
proaches over OMP is present even in the clean co-
variate case2, and so does not seem to be a product of

2Standard deterministic analysis of OMP via RIP, e.g.
(Davenport & Wakin, 2010), gives support recovery results

with correlated columns, but with an extra
√
k (where k

is the sparsity) term, which cannot be removed completely
(Rauhut, 2008)

the missing/noisy covariates. Nevertheless, we believe
it is a weakness in the analysis that must be addressed.

OMP-like methods, on the other hand, are signifi-
cantly easier to implement, and computationally less
demanding. Therefore, particularly for large-scale
applications, understanding their performance is im-
portant, and they have a role to play even where
optimization-based algorithms have proven successful.
In this case, we have both the simplicity of OMP and
the guarantee of distribution-oblivious recovery.

2. Problem Setup

We denote our unknown k-sparse regressor (or signal)
in Rp as β∗. We obtain measurements yi ∈ R according
to the linear model

yi = 〈xi, β∗〉+ ei, i = 1, . . . , n. (1)

Here, xi is a covariate vector of dimension p and ei ∈ R
is additive error. We are interested in the standard
high-dimensional scaling, where n = O(k log p).

The standard setting assumes that each covariate vec-
tor xi is known directly, and exactly. Instead, here
we assume we only observe a vector zi ∈ Rp which
is linked to xi via some distribution that may be un-
known to the algorithm. We focus on two cases:

1. Covariates with additive noise: We observe zi =
xi + wi, where the entries of wi ∈ Rp (or Rk) are
independent of each other and everything else.

2. Covariates with missing data: We consider the
case where the entries of xi are observed indepen-
dently with probability 1 − ρ, and missing with
probability ρ.

We consider the case where the covariate matrix X,
the covariate noise W and the additive noise vector e
are sub-Gaussian. We give the basic definitions here,
as these are used throughout.

Definition 1. Sub-Gaussian Matrix: A zero-mean
matrix V is called sub-Gaussian with parameter
( 1
nΣ, 1

nσ
2) if (a) Each row v>i ∈ Rp of V is sampled

independently and has E
[
viv
>
i

]
= 1

nΣ.3 (b) For any
unit vector u ∈ Rp, u>vi is a sub-Gaussian random
variable with parameter at most 1√

n
σ.

Definition 2. Sub-Gaussian Design Model: We as-
sume X, W and e are sub-Gaussian with parameters
( 1
nΣx,

1
n ), ( 1

nΣw,
1
nσ

2
w) and ( 1

nσ
2
e ,

1
nσ

2
e), respectively,

and are independent of each other. For Section 3 we

3The 1
n

factor is used to simplify subsequent notation;
no generality is lost.
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need independence across columns as well. We call
this the Independent sub-Gaussian Model.

Our goal here consists of two tasks: 1) recovering the
support of the unknown regressor β∗, and 2) finding
a good estimate of β∗ with small `2 error. These two
tasks are typically considered simultaneously in the
setting where X is observed without noise. They are
quite different here. As mentioned above, we show
that support recovery seems to be easier, and can be
accomplished when the distribution linking the true
covariate xi and the observed covariate zi, is unknown.

3. Distribution-Oblivious Support
Recovery via Orthogonal Matching
Pursuit

In the case of additive noise, both the modified Dantzig
selector and the modified Lasso can be viewed as try-
ing to find the `1 constrained solution that satisfies
the first order condition (Z>Z − Σw)β − Z>y ≈ 0.
Knowing Σw is necessary in order to construct the
matrix Z>Z − Σw, which is an unbiased estimator of
Σx; otherwise, solving the uncompensated condition
Z>Zβ − Z>y ≈ 0 will consistently underestimate β∗

even in the low-dimensional case. This seems unavoid-
able if the goal is to estimate the values of β∗.

What can we do when Σw is unknown – a setting we
believe is particularly relevant in the high dimensional
regime? For many applications (e.g., covariance esti-
mation) support recovery alone is an important task.
The main result in this paper is that this is possible,
even when Σw is unknown.

To gain some intuition, first consider the simpler algo-
rithm of One-Step Thresholding (OST) (Bajwa et al.,
2010). OST computes the inner product between each
column of Z and y, and finds the k columns with the
largest inner product in magnitude (or those with in-
ner product above some threshold.) This inner prod-
uct does not involve the matrix Z>Z, and in par-
ticular, does not require compensation via E[W>W ].
Moreover, in expectation, the inner product equals the
clean inner product. Thus under appropriate indepen-
dence assumptions, the success of OST is determined
by measure concentration rates.

This motivates us to use Orthogonal Matching Pur-
suit (OMP), which is more effective than the above
simple algorithm, less sensitive to a dynamic range in
nonzero entries of β∗, but still enjoys the distribution-
oblivious property. We note again that empirically,
our algorithm seems to succeed even with correlated
columns – something we would not expect from OST.

Algorithm 1 support-OMP

Input: Z,y,k
Initialize I = φ, Ic = {1, 2, . . . , p}, r = 0.
for j = 1 : k do

Compute inner products hi = Z>i r, for i ∈ Ic.
Let i∗ ← arg maxi∈Ic |hi|.
Update support: I ← I ∪ {i∗}.
Update residual: r ← y − ZI(Z>I ZI)−1Z>I y.

end for
Output: I.

3.1. Support Identification

Given a matrix Y and index set I, we use YI to denote
the sub matrix with columns of Y indexed by I. We
consider the following OMP algorithm, given in Algo-
rithm 1. We call this supp-OMP to emphasize that its
output is the support set, not β̂. At each iteration, it
computes the inner product between Zi and the resid-
ual rt instead of the original y, and picks the index
with the largest magnitude.

We give some intuition on why one should expect supp-
OMP would work without knowing Σw. Let It be the
set of columns selected in the first t iterations of OMP;
we assume the first t iterations succeed so It ⊂ I∗.
Observe that OMP succeeds as long as the following
two conditions are satisfied

1. 〈Zi, rt〉 = 0, for all i ∈ It.

2. 〈Zi, rt〉 > 〈Zj , rt〉, for all i ∈ I∗/It and j ∈ (I∗)c.

The first condition is satisfied automatically, due to
the way we compute the residual rt = (I − Pt) y ,(
I − ZIt

(
Z>ItZIt

)−1
Z>It

)
y; in particular, we orthogo-

nalize y against ZIt , not XIt . Now consider the second
condition. Observe that, for each i ∈ Ict , we have

〈Zi, rt〉 = 〈Zi, y〉 − 〈Zi,Pty〉
= 〈Zi, y〉 − Z>i ZIt β̃t

where β̃t =
(
Z>ItZIt

)−1
Z>Ity. We call this β̃ because it

is not the best estimate one could obtain, if the noise
covariance were known. Indeed, there is an E[W>W ]
term embedded inside β̃, which, as discussed, is an
underestimate of β∗ as it is produced without com-
pensating for the effect of W>W . The key insight and
idea of the proof, is to show that despite the presence
of this error, the dominating term is unbiased, so the
ordering of the inner products is unaffected.

The next theorem gives the performance of supp-OMP
for distribution-oblivious support recovery. In the se-
quel we use & to mean that we discard constants that
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do not depend on any scaling quantities, and by with
high probability we mean with probability at least
1− C1p

−C2 , for positive absolute constants C1, C2.

Theorem 3. Under the Independent sub-Gaussian
Design model and Additive Noise model, supp-OMP
identifies the correct support of β∗ with high probabil-
ity, provided

n & (1 + σ2
w)2k log p,

|β∗i | ≥ 16 (σw ‖β∗‖2 + σe)

√
log p

n
,

for all i ∈ supp(β∗).

One notices two features of this result. Setting σw = 0
in Theorem 3, we obtain results that seem to be better
than previous probabilistic guarantees for OMP with
Gaussian noise and clean covariates. 4

When σw > 0, the bound on βmin depends on ‖β∗‖2
– an SNR bound we typically do not see. This turns
out to be fundamental. Indeed, we show that both
the sample complexity and the SNR bounds are, in a
precise sense, the best possible. In particular, this de-
pendence on ‖β∗‖2 is unavoidable, and not an artifact
of the algorithm or the analysis. Our next theorem
characterizes the performance limit of any algorithm,
regardless of its computational complexity. To this
end, we consider the following minimax error

Mq , min
β̂

max
β∗∈T

E
∥∥∥β̂ − β∗∥∥∥

q
,

where the minimization is over all measurable func-
tions β̂ of the observed data (Z, y), and the expectation
is over the distribution of (Z, y). In other words, no
algorithm can achieve error lower than Mq in expec-

tation. T is the set of possible β∗’s;we consider T ,
{β : ‖β‖0 = k, ‖β‖2 = R, |βi| ≥ bmin,∀i ∈ supp(β)};
that is, β∗ is known to be k-sparse, have 2-norm equal
to R, with its non-zero entries having magnitude at
least bmin. We focus on q = 2 and q = 0, correspond-
ing to `2 error and support recovery error. Note that
‖β̂ − β∗‖0 > 0 implies failure in support recovery. We
have the following lower-bound on M0.

Theorem 4. Let σ2
z = σ2

x + σ2
w. Under the indepen-

dent Gaussian model where the covariance of X, W

and e are isotropic, if n .
(
σ2
w +

σ2
zσ

2
e

R2

)
k log

(
p
k

)
or

bmin .
√

(σ2
wR

2 + σ2
zσ

2
e) log(p/k)

n , then M0 ≥ 1.

4The work in (Cai & Wang, 2011) obtains a similar
condition on the non-zeros of β∗, however, the proof of
their Theorem 8 applies the results of their Lemma 3 to
bound ‖X>(I −XI(X>I XI)−1X>i )e)‖∞. As far as we can
tell, however, Lemma 3 applies only to ‖X>e‖∞ thanks to
independence, which need not hold for the case in question.

Note the dependence on R = ‖β∗‖2.

3.2. Estimating the Non-Zero Coefficients

Once the support of β∗ is identified, estimating its
non-zero values β∗I becomes a low-dimensional prob-
lem. Given the output I of supp-OMP, we consider
the following generic estimator

β̂I = Σ̂−1γ̂,

β̂Ic = 0.
(2)

The estimator requires computing two matrices, Σ̂ and
γ̂. If X is known, setting Σ̂ = X>I XI and γ̂ = X>I y
gives the standard least squares estimator. For our
problem where only Z is observed, some knowledge of
X or the nature of the corruption (W in the case of
additive noise) is required in order to proceed. For the
case of additive noise, we consider two models for a
priori knowledge of X or of the noise:

1. Knowledge of Σw: in this case, we assume we ei-
ther know or somehow can estimate the noise co-
variance on the true support, Σ

(I)
w = E

[
W>I WI

]
.

We then use Σ̂ = Z>I ZI − Σ
(I)
w and γ̂ = Z>I y.

2. Knowledge of Σx: we assume that we either
know or somehow can estimate the covariance of
the true covariates on the true support, Σ

(I)
x =

E
[
X>I XI

]
. We then use Σ̂ = Σ

(I)
x and γ̂ = Z>I y.

In both cases, only the covariance of the columns of W
(or X) in the set I (which has size k � p ) is required.
Thus in the setting where estimation of the covariance
is possible but costly, we have significantly reduced
burden. Our second model is not as common as the
previous one, although it seems equally plausible to
have an estimate of E

[
X>X

]
as of E

[
W>W

]
.

For the case of partially missing data, we assume we
know the erasure probability, which is easy to estimate
directly (cf. (Rosenbaum & Tsybakov, 2011)).

3. Knowledge of ρ: we compute Σ̂ = (Z>I ZI) �M
and γ̂ = 1

(1−ρ)Z
>
I y, where M ∈ R|I|×|I| satisfies

Mij = 1
1−ρ if i = j or 1

(1−ρ)2 otherwise, and �
denotes element-wise product.

Theorem 5. Under the Independent sub-Gaussian
Design model and Additive Noise model, the output
of estimator (2) satisfies:

1. (Knowledge of Σw):
∥∥∥β̂ − β∗∥∥∥

2
.[(

σw + σ2
w

)
‖β∗‖2 + σe

√
1 + σ2

w

]√
k log p
n .
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2. (Knowledge of Σx):
∥∥∥β̂ − β∗∥∥∥

2
.[

(1 + σw) ‖β∗‖2 + σe
√

1 + σ2
w

]√
k log p
n .

As with support recovery, we now consider fundamen-
tal performance limits, and give lower bounds that
show that our results are minimax optimal, by char-
acterizing the performance limit of any algorithm, re-
gardless of its computational complexity. Under the
same setup as in Theorem 4, we have:

Theorem 6. Let σ2
z = σ2

x + σ2
w, and suppose 8 ≤

k ≤ p/2 and n . k log(p/k). Under the independent
Gaussian model where the covariance of X, W and
e are isotropic, the `2-error is bounded below: M2 &√

(σ2
wR

2 + σ2
zσ

2
e) kn log

(
p
k

)
.

Note again that the bounds we provide in Theorem
5 have the same dependence on ‖β∗‖2 as the lower
bound in Theorem 6.

Discussion

We note that when σw is bounded above by a con-
stant (strictly positive SNR) and k = o(p) (sublinear
sparsity), the conditions for support recovery (bounds
on `2-error) in Theorem 3 and 4 (Theorem 5 and 6,
respectively) match up to constant factors. This high-
lights the tightness of our analysis.

It is instructive to compare our algorithm and guar-
antees with existing work in (Rosenbaum & Tsy-
bakov, 2011) and (Loh & Wainwright, 2011). There
they do not provide guarantees for support recovery
when Σw is not known. For `2 error under the sub-
Gaussian design model, our condition and bound in
Theorem 3 match those in (Loh & Wainwright, 2011),
and is at least as good as (Rosenbaum & Tsybakov,
2011) applied to stochastic settings (the difference is
‖β∗‖2/‖β∗‖1, which is always no more than 1). The
lower-bound for `2-error in Theorem 6 is essentially
proved in (Loh & Wainwright, 2012), but the lower
bound for support recovery in Theorem 4 is new.

Finally, we note that the number of iterations in supp-
OMP depends on the sparsity k. In practice, one can
use other stopping rules, e.g., those based on cross-
validation. We do not pursue this here. The results
in (Rosenbaum & Tsybakov, 2011) require two tun-
ing parameters, µ and τ , which ultimately depend on
knowledge of the noise W and e. Results in (Loh
& Wainwright, 2011) require knowing the parameter
B = ‖β∗‖1. Generally speaking, some forms of param-
eters like k, µ, τ and B are inevitable for any algo-
rithm, and none of them is strictly easier to determine
than the others. Moreover, if one has a good choice of

one of these parameters, one can often determine the
other parameters by, e.g., cross-validation.

3.3. Missing Data

We provide guarantees analogous to Theorem 3 above.

Theorem 7. Under the Independent sub-Gaussian
Design model and missing data model, supp-OMP
identifies the correct support of β∗ provided

n &
1

(1− ρ)4
k log p,

|β∗i | ≥
16

1− ρ
(‖β∗‖2 + σe)

√
log p

n
,

for all i ∈ supp(β∗). Moreover, the output of estimator
(2) with knowledge of ρ satisfies∥∥∥β̂ − β∗∥∥∥

2
.

(
1

(1− ρ)2
‖β∗‖2 +

1

1− ρ
σe

)√
k log p

n
.

Note that the condition on |βi| as well as the bounds
for the `2 error again depend on ‖β∗‖2, corresponding
to a natural and necessary SNR requirement analogous
to that in Theorem 3. Characterization of fundamen-
tal performance limits similar to Theorem 4 can also
be obtained, although it is harder to get sharp bounds
than in the additive noise case (cf. (Loh & Wainwright,
2012)). We omit this here due to space constraints.

Again we compare with existing work in (Loh & Wain-
wright, 2011; Rosenbaum & Tsybakov, 2011). They
do not provide distribution-oblivious support recovery.
For `2 error, our conditions and bound match those in
the most recent work in (Loh & Wainwright, 2012).

4. Proofs

The proofs of our results rely on careful use of con-
centration inequalities and information theoretic tools.
We provide the key ideas here, by giving the proof of
Theorems 3 and 4. We postpone the full details to the
supplementary materials.

Proof of Theorem 3. The proof idea is as follows.
We use induction, with the inductive assumption that
the previous steps identify a subset I of the true sup-
port I∗ = supp(β∗). Let Ir = I∗ − I be the remaining
true support that is yet to be identified. We need to
prove that at the current step, supp-OMP picks an in-
dex in Ir, i.e., ‖hIr‖∞ > |hi| for all i ∈ (I∗)c. We use
a decoupling argument similar to (Tropp & Gilbert,
2007), showing that our supp-OMP identifies I∗ if it
identifies it in the same order as an oracle that runs
supp-OMP only over I∗. Therefore we can assume I
to be independent of Xi and Wi for all i ∈ (I∗)c.
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Define PI , ZI(Z
>
I ZI)

−1Z>I . By the triangle inequal-
ity, we have ‖hIr‖∞ is lower-bounded by

1√
k−i

(∥∥X>Ir (I−PI)XIrβ
∗
Ir

∥∥
2
−
∥∥W>Ir (I−PI)XIrβ

∗
Ir

∥∥
2

−
∥∥Z>Ir (I − PI)(WIβI − e)

∥∥
2

)
.

We would like to lower-bound the expression above.
The main technical difficulty here is dealing with
the randomness in set I. To this end, we use
concentration to prove the uniform upper bound

λmin

(
X>Ic1 (I − PI1)XIc1

)
≥ 1

2 for all subsets I1 ⊆ I∗

and Ic1 , I∗− I1, which enables us to lower-bound the
first term above. Similarly we upper-bound the next

two terms by proving λmax

(
W>Ic1 (I − PI1)XIc1

)
≤ 1

8 .

Combining pieces we obtain |hIr |∞ ≥ 1
8
√
k−i‖β

∗
Ir
‖2.

Using similar ideas, we obtain the upper-bounds |hi| <
1

8
√
k−i‖β

∗
Ir
‖2 for i ∈ (I∗)c. This completes the proof

of support recovery. Bounding `2 error is a low-
dimensional problem, and the proof is given in the
supplementary materials.

The proof of Theorem 7 follows from similar ideas.

Proof of Theorem 4. We use a standard argu-
ment to convert the problem of bounding the mini-
max error to a hypothesis testing problem. Let P =
{β1, . . . , βM} be a (δ, p) packing set of the target set T ,
meaning P ⊆ T and for all βj , βl ∈ P , j 6= l, we have
‖βj − βl‖p ≥ δ. Following (Yu, 1997; Yang & Barron,

1999; Raskutti et al., 2009), we have

min
β̂

max
β∗∈T

E
∥∥∥β̂ − β∗∥∥∥

p
≥ δ

2
min
β̃

P
(
β̃ 6= B

)
, (3)

where β̃ is an estimator that takes values in P , and
B is uniformly distributed over P . The probability on
the R.H.S. can then be bounded by Fano’s inequality:

min
β̃

P
(
β̃ 6= B

)
≥ 1− I(y, Z;B) + log 2

logM
.

The proof is completed by constructing an appropri-
ate packing set P with sufficiently large cardinality
M , followed by upper-bounding I(y, Z;B) under the
independent Gaussian Design model.

5. Numerical Simulations

In this section we provide numerical simulations that
corroborate the theoretical results presented above, as
well as shed further light on the performance of supp-
OMP for noisy and missing data.

The numerical results illustrate two main points.
First, we show that the quality of support recovery
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Figure 1. Support recovery errors when Σw is not precisely
known. Our method, the projected gradient algorithm and
the improved MU selector are shown. Figure (a) shows
the results when we use Σw = Σtrue

w /2, and (b) shows the
results for Σw = Σtrue

w × 2. We note that our method
(which does not require knowledge of Σw) has near perfect
recovery throughout this range, whereas the performance
of the other two methods deteriorates. Each point is an
average over 20 trials.

using either the improved MU selector (or modified
Dantzig selector) (Rosenbaum & Tsybakov, 2011) or
the projected gradient algorithm based on modified
Lasso (Loh & Wainwright, 2011), deteriorates signifi-
cantly when Σw is not known accurately. That is, if
those algorithms use either upper or lower bounds on
Σw instead of the correct value, the results can be sig-
nificantly distorted. In contrast, throughout the range
of comparison, our supp-OMP algorithm is unaffected
by the inaccuracy of Σw and recovers the support re-
liably. Next, we consider the bounds on `2-error, and
show that the scaling promised in Theorem 5 is correct.
In addition, we compare with the projected gradient
algorithm and the improved MU selector, and demon-
strate that in addition to faster running time, we seem
to obtain better empirical results at all values of the
sparsity parameter, and noise intensity/erasure prob-
ability. Beyond this, our simulations also show that
our algorithm works well for correlated columns.
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Figure 2. Comparison of the `2 recovery error of our
method, the projected gradient algorithm and the im-
proved MU selector under knowledge of (a) Σw, and (b)
Σx. The error is plotted against the control parameter (a)
(σw +σ2

w)k, (b) (1 +σw)k. Our method performs better in
all cases. Each point is an average over 200 trials.

Additive Noise

For the additive noise case, we use the following set-
tings: p = 450, n = 400, σe = 0,Σx = I, k ∈
{2, . . . , 7}, and σw ∈ [0, 1]. The data X,W and e are
generated from (isotropic) Gaussian distribution. We
first consider support recovery, and study the robust-
ness of the three methods to over- or under-estimating
Σw. For low noise, the performance is largely unaf-
fected; however, it quickly deteriorates as the noise
level grows. The two graphs in Figure 1 show this de-
terioration; supp-OMP has excellent support recovery
throughout this range.

Next we consider `2 recovery error. We run supp-OMP
followed by the estimator 2 using the knowledge of Σw
or Σx, and compare it with the other two methods
using the same knowledge. Figure 2 plots the `2 er-
rors for all three estimators. We note that although
the estimator based on knowledge of Σx is not dis-
cussed in (Rosenbaum & Tsybakov, 2011) or (Loh &
Wainwright, 2011), it is natural to consider the corre-
sponding variants of their methods. One observes that
supp-OMP outperforms the other two methods in all
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Figure 3. Comparison of the `2 recovery error of our
method, the projected gradient algorithm and the im-
proved MU selector for missing data. The error is plotted
against the control parameter k

√
ρ

(1−ρ) . (a) X with indepen-

dent columns, and (b) X with correlated columns. Our
results show that our method performs better in all cases
in our simulations. Each point is an average over 50 trials.

cases. We also want to point out that supp-OMP en-
joys more favorable running time, as it has exactly the
same running time as standard OMP.

Missing Data

We study the case with missing data with the fol-
lowing setting: p = 750, n = 500, σe = 0,Σx = I,
k ∈ {2, . . . , 7}, and ρ ∈ [0, 0.5]. The data X and e are
generated from (isotropic) Gaussian distribution. The
results are displayed in Figure 3, in which supp-OMP
shows better performance over the other alternatives.

Finally, although we only considerX with independent
columns in our theoretical analysis, simulations show
our algorithm seems to work with correlated columns
as well. Figure 3 (b) shows the results using covariance
matrix of X: (Σx)ij = 1 for i = j, and 0.2 for i 6=
j. Again, supp-OMP dominates the other methods in
terms of empirical performance.

In the supplementary materials section, we include fur-
ther simulation results that detail the performance of
our estimators in the low-dimensional setting.
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