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We analyze a class of estimators based on convex relaxation for solv-
ing high-dimensional matrix decomposition problems. The observations are
noisy realizations of a linear transformation X of the sum of an (approxi-
mately) low rank matrix �� with a second matrix �� endowed with a com-
plementary form of low-dimensional structure; this set-up includes many sta-
tistical models of interest, including factor analysis, multi-task regression and
robust covariance estimation. We derive a general theorem that bounds the
Frobenius norm error for an estimate of the pair (��,��) obtained by solving
a convex optimization problem that combines the nuclear norm with a gen-
eral decomposable regularizer. Our results use a “spikiness” condition that
is related to, but milder than, singular vector incoherence. We specialize our
general result to two cases that have been studied in past work: low rank plus
an entrywise sparse matrix, and low rank plus a columnwise sparse matrix.
For both models, our theory yields nonasymptotic Frobenius error bounds for
both deterministic and stochastic noise matrices, and applies to matrices ��

that can be exactly or approximately low rank, and matrices �� that can be
exactly or approximately sparse. Moreover, for the case of stochastic noise
matrices and the identity observation operator, we establish matching lower
bounds on the minimax error. The sharpness of our nonasymptotic predic-
tions is confirmed by numerical simulations.

1. Introduction. The focus of this paper is a class of high-dimensional matrix
decomposition problems of the following variety. Suppose that we observe a ma-
trix Y ∈ R

d1×d2 that is (approximately) equal to the sum of two unknown matrices:
how to recover good estimates of the pair? Of course, this problem is ill-posed in
general, so that it is necessary to impose some kind of low-dimensional structure
on the matrix components, one example being rank constraints. The framework of
this paper supposes that one matrix component (denoted ��) is low rank, either
exactly or approximately, and allows for a class of low-dimensional structures for
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the second component ��. Two particular cases of structure for �� that have been
considered in past work are elementwise sparsity [7–9] and column-wise sparsity
[13, 21].

Problems of matrix decomposition are motivated by a variety of applications.
Many classical methods for dimensionality reduction, among them factor analysis
and principal components analysis (PCA), are based on estimating a low-rank ma-
trix from data. Different forms of robust PCA can be formulated in terms of matrix
decomposition using the matrix �� to model the gross errors [7, 9, 21]. Similarly,
certain problems of robust covariance estimation can be described using matrix
decompositions with a column/row-sparse structure, as we describe in this paper.
The problem of low rank plus sparse matrix decomposition also arises in Gaussian
covariance selection with hidden variables [8]. Matrix decompositions also arise in
multi-task regression [15, 20, 22], which involve solving a collection of regression
problems, referred to as tasks, over a common set of features. For some features,
one expects their weighting to be preserved across tasks, which can be modeled
by a low-rank constraint, whereas other features are expected to vary across tasks,
which can be modeled by a sparse component [3, 5]. See Section 2.1 for further
discussion of these motivating applications.

In this paper, we study a noisy linear observation model that captures a num-
ber of applications in a unified way. Let X be a linear operator that maps matrices
in R

d1×d2 to matrices in R
n1×n2 . In the simplest case, this observation operator

is simply the identity mapping, so that we necessarily have n1 = d1 and n2 = d2.
However, as we discuss in the sequel, it is useful for certain applications, such
as multi-task regression, to consider more general linear operators of this form.
Hence, we study the problem of matrix decomposition for the general linear ob-
servation model

Y = X(�� + ��) + W,(1)

where �� and �� are unknown d1 × d2 matrices, and W ∈ R
n1×n2 is some type of

observation noise; it is potentially dense, and can either be deterministic or stochas-
tic. The matrix �� is assumed to be either exactly low-rank, or well-approximated
by a low-rank matrix, whereas the matrix �� is assumed to have a complementary
type of low-dimensional structure, such as sparsity. As we discuss in Section 2.1,
a variety of interesting statistical models can be formulated as instances of the
observation model (1). Such models include versions of factor analysis involving
nonidentity noise matrices, robust covariance estimation, and multi-task regression
with some features shared across tasks, and a sparse subset differing across tasks.
Given this set-up, our goal is to recover accurate estimates of the decomposition
(��,��) based on the noisy observations Y . In this paper, we analyze simple es-
timators based on convex relaxations involving the nuclear norm, and a second
general norm R.

Most past work on model (1) has focused on the noiseless setting (W = 0),
and for the identity observation operator [i.e., for which we have X(�� + ��) =
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�� +��]. Chandrasekaran et al. [9] studied the case when �� is assumed to sparse,
with a relatively small number s � d1d2 of nonzero entries. In the noiseless set-
ting, they gave sufficient conditions for exact recovery for an adversarial sparsity
model, meaning the nonzero positions of �� can be arbitrary. Subsequent work
by Candes et al. [7] analyzed the same model but under an assumption of random
sparsity, meaning that the nonzero positions are chosen uniformly at random. In
recent work, Xu et al. [21] have analyzed a different model, in which the matrix
�� is assumed to be columnwise sparse, with a relatively small number s � d2
of nonzero columns. Their analysis guaranteed approximate recovery for the low-
rank matrix. After initial posting of this work, we became aware of recent work
by Hsu et al. [11], who derived Frobenius norm error bounds for the case of ex-
act elementwise sparsity. As we discuss in Section 3.4, in this special case, our
bounds are based on milder conditions, and yield sharper rates for problems where
the rank and sparsity scale with the dimension.

Our main contribution is to provide a general oracle-type result (Theorem 1)
on approximate recovery of the unknown decomposition from noisy observations,
valid for structural constraints on �� imposed via a decomposable regularizer. The
class of decomposable regularizers, introduced in past work by Negahban et al.
[14], includes the elementwise �1-norm and columnwise (2,1)-norm as special
cases, as well as various other regularizers used in practice. Our main result is
stated in Theorem 1: it provides finite-sample guarantees for estimates obtained by
solving a class of convex programs formed using a composite regularizer. We then
specialize Theorem 1 to the case of elementwise or columnwise sparsity models
for ��, thereby obtaining recovery guarantees for matrices �� that may be either
exactly or approximately low-rank, as well as matrices �� that may be either ex-
actly or approximately sparse. We provide nonasymptotic error bounds for general
noise matrices W both for elementwise and columnwise sparse models; see Corol-
laries 1–6. To the best of our knowledge, these are the first results that apply to this
broad class of models, allowing for stochastic as well as deterministic noise, ma-
trix components that are only approximately low-rank and/or sparse, and a general
observation operator X.

In addition, the error bounds obtained by our analysis are sharp, and cannot be
improved in general. More precisely, for the case of stochastic noise matrices and
the identity observation operator, we prove that the squared Frobenius errors of
our estimators are minimax-optimal; see Theorem 2. An interesting feature of our
analysis is that, in contrast to previous work [7, 9, 21], we do not impose incoher-
ence conditions on the singular vectors of ��; rather, we control the interaction
with a milder condition involving the dual norm of the regularizer. In the special
case of elementwise sparsity, this dual norm enforces an upper bound on the “spik-
iness” of the low-rank component, and has proven useful in the related setting of
noisy matrix completion [16]. This constraint does not guarantee identifiability of
the models (and hence exact recovery in the noiseless setting), but it does provide
a bound on the degree of nonidentifiability. We show that this same term arises in
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both the upper and lower bounds on the problem of approximate recovery that is
of interest in the noisy setting.

The remainder of the paper is organized as follows. In Section 2, we set up the
problem in a precise way, and describe the estimators. Section 3 is devoted to the
statement of our main result on achievability, as well as its various corollaries for
special cases of the matrix decomposition problem. We complement these achiev-
able results with matching minimax lower bounds in Section 4, and we conclude
with a discussion in Section 5. The supplementary material [1] contains numerical
simulations that illustrate the sharpness of our theoretical predictions (Section 6),
as well as the technical proofs in Section 7.

Notation. For the reader’s convenience, we summarize here some of the stan-
dard notation used throughout this paper. For any matrix M ∈ R

d1×d2 , we de-

fine the Frobenius norm ‖|M‖|F :=
√∑d1

j=1
∑d2

k=1 M2
jk , corresponding to the or-

dinary Euclidean norm of its entries. We denote its singular values by σ1(M) ≥
σ2(M) ≥ · · · ≥ σd(M) ≥ 0, where d = min{d1, d2}. Its nuclear norm is given by
‖|M‖|N = ∑d

j=1 σj (M).

2. Convex relaxations and matrix decomposition. In this paper, we con-
sider a family of regularizers formed by a combination of the nuclear norm ‖| · ‖|N,
which acts as a convex surrogate to a rank constraint for �� (e.g., see Recht et al.
[18] and references therein), with a norm-based regularizer R : Rd1×d2 → R+ used
to constrain the structure of ��. We provide a general theorem applicable to a class
of decomposable regularizers [14], and then consider in detail a few particular
choices of R that have been studied in past work, including the elementwise �1-
norm, and the columnwise (2,1)-norm; see Examples 4 and 5, below.

2.1. Some motivating applications. We begin with some motivating applica-
tions for the general linear observation model with noise (1).

EXAMPLE 1 (Factor analysis with sparse noise). In factor analysis, we have
i.i.d. random vectors Zi ∈ R

d assumed to be generated from the model

Zi = LUi + εi for i = 1,2, . . . , n,(2)

where L ∈ R
d1×r is a loading matrix, and the vectors Ui ∼ N(0, Ir×r ) and εi ∼

N(0,��) are independent. Given n i.i.d. samples from model (2), the goal is to
estimate the loading matrix L, or the matrix LLT , that projects onto column span
of L. A simple calculation shows that the covariance matrix of Zi has the form
� = LLT + ��. Consequently, in the special case when �� = σ 2Id×d , then the
range of L is spanned by the top r eigenvectors of �, and so we can recover it via
standard principal components analysis.

In other applications, we might no longer be guaranteed that �� is the iden-
tity, in which case the top r eigenvectors of � need not be close to column
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span of L. Nonetheless, when �� is a sparse matrix, the problem of estimating
LLT can be understood as an instance of our general observation model (1) with
d1 = d2 = d , and the identity observation operator X (so that n1 = n2 = d). In
particular, if the let the observation matrix Y ∈ R

d×d be the sample covariance
matrix 1

n

∑n
i=1 ZiZ

T
i , then some algebra shows that Y = �� + �� + W , where

�� = LLT is of rank r , and the random matrix W is re-centered Wishart noise
[2]—in particular, the zero-mean matrix

W := 1

n

n∑
i=1

ZiZ
T
i − {LLT + ��}.(3)

When �� is assumed to be sparse, then this constraint can be enforced via the
elementwise �1-norm; see Example 4 to follow.

EXAMPLE 2 (Multi-task regression). Suppose that we are given a collec-
tion of d2 regression problems in R

d1 , each of the form yj = Xβ∗
j + wj for

j = 1,2, . . . , d2. Here each β∗
j ∈ R

d1 is an unknown regression vector, wj ∈ R
n is

observation noise, and X ∈ R
n×d1 is the design matrix. This family of models can

be written in a convenient matrix form as Y = XB∗ +W , where Y = [y1 · · · yd2]
and W = [w1 · · · wd2] are both matrices in R

n×d2 and B∗ := [β∗
1 · · · β∗

d2
] ∈

R
d1×d2 is a matrix of regression vectors. Following standard terminology in multi-

task learning, we refer to each column of B∗ as a task, and each row of B∗ as a
feature.

In many applications, it is natural to assume that the feature weightings—that
is, the vectors β∗

j ∈ R
d2—exhibit some degree of shared structure across tasks [3,

15, 20, 22]. This type of shared structure can be modeled by imposing a low-rank
structure; for instance, in the extreme case of rank one, it would enforce that each
β∗

j is a multiple of some common underlying vector. However, many multi-task
learning problems exhibit more complicated structures, in which some subset of
features are shared across tasks, and some other subset of features vary substan-
tially across tasks [3, 4]. For instance, in the Amazon recommendation system,
tasks correspond to different classes of products, such as books, electronics and so
on, and features include ratings by users. Some ratings (such as numerical scores)
should have a meaning that is preserved across tasks, whereas other features (e.g.,
the label “boring”) are very meaningful in applications to some categories (e.g.,
books) but less so in others (e.g., electronics).

This kind of structure can be captured by assuming that the unknown regression
matrix B∗ has a low-rank plus sparse decomposition—namely, B∗ = �� + ��

where �� is low-rank and �� is sparse, with a relatively small number of nonzero
entries, corresponding to feature/task pairs that differ significantly from the base-
line. A variant of this model is based on instead assuming that �� is row-sparse,
with a small number of nonzero rows. (In Example 5, to follow, we discuss
an appropriate regularizer for enforcing such row or column sparsity.) With this
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model structure, we then define the observation operator X : Rd1×d2 → R
n×d2 via

A 	→ XA, so that n1 = n and n2 = d2 in our general notation. In this way, we
obtain another instance of the linear observation model (1).

EXAMPLE 3 (Robust covariance estimation). For i = 1,2, . . . , n, let Ui ∈ R
d

be samples from a zero-mean distribution with unknown covariance matrix ��.
When the vectors Ui are observed without any form of corruption, then it is
straightforward to estimate �� by performing PCA on the sample covariance ma-
trix. Imagining that j ∈ {1,2, . . . , d} indexes different individuals in the popula-
tion, now suppose that the data associated with some subset S of individuals is
arbitrarily corrupted. This adversarial corruption can be modeled by assuming that
we observe the vectors Zi = Ui + vi for i = 1, . . . , n, where each vi ∈ R

d is a vec-
tor supported on the subset S. Letting Y = 1

n

∑n
i=1 ZiZ

T
i be the sample covariance

matrix of the corrupted samples, some algebra shows that it can be decomposed as
Y = �� + 
 + W , where W := 1

n

∑n
i=1 UiU

T
i − �� is again a type of re-centered

Wishart noise, and the remaining term can be written as


 := 1

n

n∑
i=1

viv
T
i + 1

n

n∑
i=1

(Uiv
T
i + viU

T
i ).(4)

Note that 
 itself is not a column-sparse or row-sparse matrix; however, since
each vector vi ∈ R

d is supported only on some subset S ⊂ {1,2, . . . , d}, we can
write 
 = �� + (��)T , where �� is a column-sparse matrix with entries only in
columns indexed by S. This structure can be enforced by the use of the column-
sparse regularizer (12), as described in Example 5 to follow.

2.2. Convex relaxation for noisy matrix decomposition. Given the observation
model Y = X(�� +��)+W , it is natural to consider an estimator based on solving
the regularized least-squares program

min
(�,�)

{
1

2
‖|Y − X(� + �)‖|2F + λd‖|�‖|N + μd R(�)

}
.

Here (λd,μd) are nonnegative regularizer parameters, to be chosen by the user.
Our theory also provides choices of these parameters that guarantee good proper-
ties of the associated estimator. Although this estimator is reasonable, it turns out
that an additional constraint yields an equally simple estimator that has attractive
properties, both in theory and in practice.

In order to understand the need for an additional constraint, it should be noted
that without further constraints, model (1) is unidentifiable, even in the noiseless
setting (W = 0). Indeed, as discussed in past work [7, 9, 21], no method can re-
cover the components (��,��) unless the low-rank component is “incoherent”
with the matrix ��. For instance, taking �� to be a sparse matrix, consider a rank
one matrix with ��

11 �= 0, and zeros in all other positions. In this case, it is clearly
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impossible to disentangle �� from a sparse matrix. Past work on both matrix com-
pletion and decomposition [7, 9, 21] has ruled out these troublesome cases via
conditions on the singular vectors of the low-rank component ��, and used them
to derive sufficient conditions for exact recovery in the noiseless setting; see the
discussion following Example 4 for more details.

In this paper, we impose a related but milder condition, previously introduced
in our past work on matrix completion [16], with the goal of performing approx-
imate recovery. To be clear, this condition does not guarantee identifiability, but
rather provides a bound on the radius of nonidentifiability. It should be noted that
nonidentifiability is a feature common to many high-dimensional statistical mod-
els.4 Moreover, in the more realistic setting of noisy observations and/or matrices
that are not exactly low-rank, such approximate recovery is the best that can be ex-
pected. Indeed, one of our main contributions is to establish minimax-optimality
of our rates, meaning that no algorithm can be substantially better over the matrix
classes that we consider.

For a given regularizer R, we define the quantity κd(R):= supV �=0‖|V ‖|F/R(V ),
which measures the relation between the regularizer and the Frobenius norm.
Moreover, we define the associated dual norm

R∗(U) := sup
R(V )≤1

〈〈V,U〉〉,(5)

where 〈〈V,U〉〉 := trace(V T U) is the trace inner product on the space R
d1×d2 . Our

estimators are based on constraining the interaction between the low-rank compo-
nent and �� via the quantity

ϕR(�) := κd(R∗)R∗(�).(6)

More specifically, we analyze the family of estimators

min
(�,�)

{
1

2
‖|Y − X(� + �)‖|2F + λd‖|�‖|N + μd R(�)

}
,(7)

subject to ϕR(�) ≤ α for some fixed parameter α.

2.3. Some examples. Let us consider some examples to discuss specific forms
of the estimator (7), and the role of the additional constraint.

EXAMPLE 4 (Sparsity and elementwise �1-norm). Suppose that �� is assumed
to be sparse, with s � d1d2 nonzero entries. In this case, the sum �� + �� cor-
responds to the sum of a low rank matrix with a sparse matrix. Motivating ap-
plications include the problem of factor analysis (Example 1), as well as certain
formulations of robust PCA [7] and model selection in Gauss–Markov random

4For instance, see the paper [17] for discussion of nonidentifiability in high-dimensional sparse
regression.
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fields with hidden variables [8]. Given the sparsity of ��, an appropriate choice of
regularizer is the elementwise �1-norm

R(�) = ‖�‖1 :=
d1∑

j=1

d2∑
k=1

|�jk|.(8)

With this choice, it is straightforward to verify that

R∗(Z) = ‖Z‖∞ := max
j=1,...,d1

max
k=1,...,d2

|Zjk|,(9)

and moreover, that κd(R∗) = √
d1d2. Consequently, in this specific case, the gen-

eral convex program (7) takes the form

min
(�,�)

{
1

2
‖|Y − X(� + �)‖|2F + λd‖|�‖|N + μd‖�‖1

}
,(10)

subject to ‖�‖∞ ≤ α√
d1d2

. The constraint involving ‖�‖∞ serves to control the
“spikiness” of the low rank component, with larger settings of α allowing for more
spiky matrices. Indeed, this type of spikiness control has proven useful in analysis
of nuclear norm relaxations for noisy matrix completion [16]. To gain intuition
for the parameter α, if we consider matrices with ‖|�‖|F ≈ 1, as is appropriate to
keep a constant signal-to-noise ratio in the noisy model (1), then setting α ≈ 1
allows only for matrices for which |�jk| ≈ 1/

√
d1d2 in all entries. In contrast, the

maximally spiky matrix with all its mass in a single position, requires α ≈ √
d1d2.

In practice, we are interested in settings of α lying between these two extremes.

Past work on �1-forms of matrix decomposition has imposed singular vector in-
coherence conditions that are related to, but different from, our spikiness condition.
More concretely, if we write the SVD of the low-rank component as �� = UDV T

where D is diagonal, and U ∈ R
d1×r and V ∈ R

d2×r are matrices of the left and
right singular vectors. Singular vector incoherence bounds quantities such as∥∥∥∥UUT − r

d1
Id1×d1

∥∥∥∥∞
,

∥∥∥∥V V T − r

d2
Id2×d2

∥∥∥∥∞
and ‖UV T ‖∞(11)

all of which measure the degree of “coherence” between the singular vectors and
the canonical basis. A remarkable feature of such conditions is that they have no
dependence on the singular values of ��. This lack of dependence makes sense
in the noiseless setting, where exact recovery is the goal. For noisy models, in
contrast, one should only be concerned with recovering components with “large”
singular values. In this context, our bound on the maximum element ‖��‖∞, or
equivalently on the quantity ‖UDV T ‖∞, is natural. Note that it imposes no con-
straint on the matrices UUT or V V T , and moreover it uses the diagonal matrix
of singular values as a weight in the �∞ bound. Moreover, we note that there are
many matrices for which ‖��‖∞ satisfies a reasonable bound, whereas the inco-
herence measures are poorly behaved; for example, see Section 3.4.2 in the paper
[16].
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EXAMPLE 5 (Column-sparsity and block columnwise regularization). Other
applications involve models in which �� has a relatively small number s � d2 of
nonzero columns (or a relatively small number s � d1 of nonzero rows). Such
applications include the multi-task regression problem from Example 2, the robust
covariance problem from Example 3 as well as a form of robust PCA considered
by Xu et al. [21]. In this case, it is natural to constrain � via the (2,1)-norm
regularizer

R(�) = ‖�‖2,1 :=
d2∑

k=1

‖�k‖2,(12)

where �k is the kth column of �. For this choice, it can be verified that

R∗(U) = ‖U‖2,∞ := max
k=1,2,...,d2

‖Uk‖2,(13)

where Uk denotes the kth column of U , and that κd(R∗) = √
d2. Consequently, in

this specific case, the general convex program (7) takes the form

min
(�,�)

{
1

2
‖|Y − X(� + �)‖|2F + λd‖|�‖|N + μd‖�‖2,1

}
,(14)

subject to ‖�‖2,∞ ≤ α√
d2

. As before, the constraint ‖�‖2,∞ serves to limit the
“spikiness” of the low rank component, where in this case, spikiness is mea-
sured in a columnwise manner. Again, it is natural to consider matrices such that
‖|��‖|F ≈ 1, so that the signal-to-noise ratio in the observation model (1) stays
fixed. Thus, if α ≈ 1, then we are restricted to matrices for which ‖��

k‖2 ≈ 1√
d2

for
all columns k = 1,2, . . . , d2. At the other extreme, in order to permit a maximally
“column-spiky” matrix (i.e., with a single nonzero column of �2-norm roughly 1),
we need to set α ≈ √

d2. As before, of practical interest are settings of α lying
between these two extremes.

3. Main results and their consequences. In this section, we state our main
results and discuss some of their consequences. Our first result applies to the family
of convex programs (7) whenever R belongs to the class of decomposable regular-
izers, and the least-squares loss associated with the observation model satisfies a
specific form of restricted strong convexity [14]. We begin in Section 3.1 by defin-
ing the notion of decomposability, and then illustrating how both the elementwise-
�1 and columnwise-(2,1)-norms are instances of decomposable regularizers. In
Section 3.2, we define the form of restricted strong convexity appropriate to our
setting. Section 3.3 contains the statement of our main result about the M-estimator
(7), while Sections 3.4 and 3.6 are devoted to its consequences for the cases of ele-
mentwise sparsity and columnwise sparsity, respectively. In Section 3.5, we com-
plement our analysis of the convex program (7) by showing that, in the special
case of the identity operator, a simple two-step method can achieve similar rates
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(up to constant factors). We also provide an example showing that the two-step
method can fail for more general observation operators. Matching lower bounds
on the minimax errors in the case of the identity operator and Gaussian noise are
presented in Section 4 to follow.

3.1. Decomposable regularizers. The notion of decomposability is defined in
terms of a pair of subspaces, which (in general) need not be orthogonal comple-
ments. Here we consider a special case of decomposability that is sufficient to
cover the examples of interest in this paper:

DEFINITION 1. Given a subspace M ⊆ R
d1×d2 and its orthogonal complement

M
⊥, a norm R is decomposable with respect to (M,M

⊥) if

R(U + V ) = R(U) + R(V ) for all U ∈ M and V ∈ M
⊥.(15)

To provide some intuition, the subspace M should be thought of as the nomi-
nal model subspace; in our results, it will be chosen such that the matrix �� lies
within or close to M. The orthogonal complement M

⊥ represents deviations away
from the model subspace, and equality (15) guarantees that such deviations are
penalized as much as possible.

As discussed at more length in Negahban et al. [14], a large class of norms is
decomposable with respect to interesting5 subspace pairs. Of particular relevance
to us is the decomposability of the elementwise �1-norm ‖�‖1 and the columnwise
(2,1)-norm ‖�‖2,1, as discussed in Examples 4 and 5, respectively.

Decomposability of R(·) = ‖ · ‖1. Beginning with the elementwise �1-norm,
given an arbitrary subset S ⊆ {1,2, . . . , d1}× {1,2, . . . , d2} of matrix indices, con-
sider the subspace pair

M(S) := {U ∈ R
d1×d2 | Ujk = 0 for all (j, k) /∈ S}(16)

and M
⊥(S) := (M(S))⊥. It is easy to see that for any pair of matrices U ∈ M(S)

and U ′ ∈ M
⊥(S), we have the splitting ‖U +U ′‖1 = ‖U‖1 +‖U ′‖1, showing that

the �1-norm is decomposable with respect to the subspace pair (M(S),M
⊥(S)).

Decomposability of R(·) = ‖ · ‖2,1. Similarly, the columnwise (2,1)-norm is
also decomposable with respect to appropriately defined subspaces, indexed by
subsets C ⊆ {1,2, . . . , d2} of column indices. Indeed, using Vk to denote the kth
column of the matrix V , define

M(C) := {V ∈ R
d1×d2 | Vk = 0 for all k /∈ C}(17)

5Note that any norm is decomposable wrt the pair (M,M
⊥) = (Rd1×d2 , {0}).
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and M
⊥(C) := (M(C))⊥. Again, it is easy to check that for any pair V ∈

M(C),V ′ ∈ M
⊥(C), we have ‖V + V ′‖2,1 = ‖V ‖2,1 + ‖V ′‖2,1, thus verifying

the decomposability property.
For any decomposable regularizer and subspace M �= {0}, we define the com-

patibility constant

�(M, R) := sup
U∈M,U �=0

R(U)

‖|U‖|F .(18)

This quantity measures the compatibility between the Frobenius norm and the reg-
ularizer over the subspace M. For example, for the �1-norm and the set M(S)

previously defined (16), it is straightforward to show that �(M(S); ‖ · ‖1) = √
s.

3.2. Restricted strong convexity. Given a loss function, the general notion of
strong convexity involves establishing a quadratic lower bound on the error in
the first-order Taylor approximation [6]. In our setting, the loss is the quadratic
function L(�) = 1

2‖|Y − X(�)‖|2F (where we use � = � + �), so that the first-
order Taylor series error at � in the direction of the matrix 
 is given by

L(� + 
) − L(�) − ∇L(�)T 
 = 1
2‖|X(
)‖|2F.(19)

Consequently, strong convexity is equivalent to a lower bound of the form
1
2‖X(
)‖2

2 ≥ γ
2 ‖|
‖|2F, where γ > 0 is the strong convexity constant.

Restricted strong convexity is a weaker condition that also involves a norm de-
fined by the regularizers. In our case, for any pair (μd,λd) of positive numbers,
we first define the weighted combination of the two regularizers

Q(�,�) := ‖|�‖|N + μd

λd

R(�).(20)

For a given matrix 
, we can use this weighted combination to define an associated
norm

�(
) := inf
�+�=


Q(�,�),(21)

corresponding to the minimum of Q(�,�) over all decompositions6 of 
.

DEFINITION 2 (RSC). The quadratic loss with linear observation operator
X : Rd1×d2 → R

n1×n2 satisfies restricted strong convexity with respect to the norm
� and with parameters (γ, τn) if

1

2
‖|X(
)‖|2F ≥ γ

2
‖|
‖|2F − τn�

2(
) for all 
 ∈ R
d1×d2 .(22)

6Defined this way, �(
) is the infimal-convolution of the two norms ‖| · ‖|N and R, which is a
very well studied object in convex analysis (see, e.g., [19]).
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Note that if condition (22) holds with τn = 0 and any γ > 0, then we recover the
usual definition of strong convexity (with respect to the Frobenius norm). In the
special case of the identity operator [i.e., X(�) = �], such strong convexity does
hold with γ = 1. More general observation operators require different choices of
the parameter γ , as well as τn > 0.

While RSC establishes a form of (approximate) identifiability in general, here
the error 
 is a combination of the error in estimating �� and ��, which we denote
by 
� and 
� , respectively. Consequently, we require a further lower bound on
‖|
‖|F in terms of ‖|
�‖|F and ‖|
�‖|F in the proof of our main results so as to
guarantee (approximate) identifiability.

3.3. Results for general regularizers and noise. We begin by stating a result
for a general observation operator X, a general decomposable regularizer R and a
general noise matrix W . In later subsections, we specialize this result to particular
choices of observation operator, regularizers, and stochastic noise matrices. In all
our results, we measure error using the squared Frobenius norm summed across
both matrices

e2(�̂, �̂) := ‖|�̂ − ��‖|2F + ‖|�̂ − ��‖|2F.(23)

With this notation, the following result applies to the observation model
Y = X(�� + ��) + W , where the low-rank matrix satisfies ϕR(��) ≤ α. Our
upper bound on the squared Frobenius error consists of three terms,

K�
� := λ2

d

γ 2

{
r + γ

λd

d∑
j=r+1

σj (�
�)

}
,(24a)

K�
� := μ2

d

γ 2

{
�2(M; R) + γ

μd

R(�M⊥(��))

}
,(24b)

Kτn := τn

γ

{
d∑

j=r+1

σj (�
�) + μd

λd

R(�M⊥(��))

}2

.(24c)

As will be clarified shortly, these terms correspond to the errors associated with
the low-rank term (K�

�), the sparse term (K�
�) and additional error (Kτn), due to

τn > 0 in the RSC condition (22).

THEOREM 1. Suppose that the observation operator X satisfies the RSC con-
dition (22) with curvature γ > 0, and a tolerance τn such that there exists an
integer r ∈ 1,2, . . . ,min{d1, d2}, for which

128τnr <
γ

4
and 64τn

(
�(M; R)

μd

λd

)2

<
γ

4
.(25)
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Then if we solve the convex program (7) with regularization parameters (λd,μd)

satisfying

λd ≥ 4‖|X∗(W)‖|op and μd ≥ 4R∗(X∗(W)) + 4γα

κd

,(26)

there are universal constant cj , j = 1,2,3 such that for any matrix pair (��,��)

satisfying ϕR(��) ≤ α and any R-decomposable pair (M,M
⊥), any optimal so-

lution (�̂, �̂) satisfies

e2(�̂, �̂) ≤ c1K�
� + c2K�

� + c3Kτn .(27)

Let us make a few remarks in order to interpret the meaning of this claim.

Deterministic guarantee. To be clear, Theorem 1 is a deterministic statement
that applies to any optimum of the convex program (7). Moreover, it actually pro-
vides a whole family of upper bounds, one for each choice of the rank parameter
r and each choice of the subspace pair (M,M

⊥). In practice, these choices are
optimized so as to obtain the tightest possible upper bound. As for condition (25),
it will be satisfied for a sufficiently large sample size n as long as γ > 0, and the
tolerance τn decreases to zero with the sample size. In many cases of interest—
including the identity observation operator and multi-task cases—the RSC condi-
tion holds with τn = 0, so that condition (25) holds as long as γ > 0.

Interpretation of different terms. Let us focus first on the term K�
�, which cor-

responds to the complexity of estimating the low-rank component. It is further
sub-divided into two terms, with the term λ2

dr corresponding to the estimation
error associated with a rank r matrix, whereas the term λd

∑d
j=r+1 σj (�

�) corre-
sponds to the approximation error associated with representing �� (which might
be full rank) by a matrix of rank r . A similar interpretation applies to the two com-
ponents associated with ��, the first of which corresponds to a form of estimation
error, whereas the second corresponds to a form of approximation error.

A family of upper bounds. Since inequality (27) corresponds to a family of
upper bounds indexed by r and the subspace M, these quantities can be chosen
adaptively, depending on the structure of the matrices (��,��), so as to obtain the
tightest possible upper bound. In the simplest case, the RSC conditions hold with
tolerance τn = 0, the matrix �� is exactly low rank (say rank r), and �� lies within
a R-decomposable subspace M. In this case, the approximation errors vanish, and
Theorem 1 guarantees that the squared Frobenius error is at most

e2(�̂; �̂) � λ2
dr + μ2

d�2(M; R),(28)

where the � notation indicates that we ignore constant factors.



1184 A. AGARWAL, S. NEGAHBAN AND M. J. WAINWRIGHT

3.4. Results for �1-norm regularization. Theorem 1 holds for any regularizer
that is decomposable with respect to some subspace pair. As previously noted,
an important example is the elementwise �1-norm, which is decomposable with
respect to subspaces of the form (16).

COROLLARY 1. Consider an observation operator X that satisfies the RSC
condition (22) with γ > 0 and τn = 0. Suppose that we solve the convex program
(10) with regularization parameters (λd,μd) such that

λd ≥ 4‖|X∗(W)‖|op and μd ≥ 4‖X∗(W)‖∞ + 4γα√
d1d2

.(29)

Then there are universal constants cj such that for any matrix pair (��,��)

with ‖��‖∞ ≤ α√
d1d2

and for all integers r = 1,2, . . . ,min{d1, d2} and s =
1,2, . . . , (d1d2), we have the following bound on e2(�̂, �̂):

c1
λ2

d

γ 2

{
r + γ

λd

d∑
j=r+1

σj (�
�)

}
+ c2

μ2
d

γ 2

{
s + γ

μd

∑
(j,k)/∈S

|��
jk|

}
,(30)

where S is an arbitrary subset of matrix indices of cardinality at most s.

REMARKS. This result follows directly by specializing Theorem 1 to the ele-
mentwise �1-norm. As noted in Example 4, for this norm, we have κd = √

d1d2, so
that the choice (29) satisfies the conditions of Theorem 1. The dual norm is given
by the elementwise �∞-norm R∗(·) = ‖ · ‖∞. As observed in Section 3.1, the �1-
norm is decomposable with respect to subspace pairs of the form (M(S),M

⊥(S)),
for an arbitrary subset S of matrix indices. Moreover, for any subset S of cardinal-
ity s, we have �2(M(S)) = s. It is easy to verify that with this choice, we have

�M⊥(��) = ∑
(j,k)/∈S

|��
jk|,

from which the claim follows.

It is worth noting inequality (27) corresponds to a family of upper bounds in-
dexed by r and the subset S. Given an integer s ∈ {1,2, . . . , (d1d2)}, it is natural to
let S index the largest s entries of �� (in absolute value). Moreover, the choice of
the pair (r, s) can be adapted to the structure of the matrix. For instance, when ��

is exactly low rank, and �� is exactly sparse, one natural choice is r = rank(��),
and s = | supp(��)|. With this choice, both the approximation terms vanish, and
Corollary 1 guarantees that any solution (�̂, �̂) of the convex program (10) satis-
fies

‖|�̂ − ��‖|2F + ‖|�̂ − ��‖|2F � λ2
dr + μ2

ds.(31)
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Further specializing to the case of noiseless observations (W = 0), yields a form
of approximate recovery—namely

‖|�̂ − ��‖|2F + ‖|�̂ − ��‖|2F � α2 s

d1d2
.(32)

This guarantee is weaker than the exact recovery results obtained in past work
on the noiseless observation model with identity operator [7, 9]; however, these
papers imposed incoherence requirements on the low-rank component �� that are
more restrictive than the conditions of Corollary 1.

Our elementwise �∞ bound is a weaker condition than incoherence, since it
allows for singular vectors to be coherent as long as the associated singular value
is not too large. Moreover, the bound (32) is optimal up to constant factors, due
to the nonidentifiability of the observation model (1), as shown by the following
example for the identity observation operator X = I .

EXAMPLE 6 (Unimprovability for elementwise sparse model). Consider a
given sparsity index s ∈ {1,2, . . . , (d1d2)}, where we may assume without loss
of generality that s ≤ d2. We then form the matrix

�� := α√
d1d2

⎡⎢⎢⎢⎣
1
0
...

0

⎤⎥⎥⎥⎦ [1 1 1 · · · 0 · · · 0]︸ ︷︷ ︸
f T

,(33)

where the vector f ∈ R
d2 has exactly s ones. Note that ‖��‖∞ = α√

d1d2
by con-

struction, and moreover �� is rank one, and has s nonzero entries. Since up to
s entries of the noise matrix �� can be chosen arbitrarily, “nature” can always
set �� = −��, meaning that we would observe Y = �� + �� = 0. Consequently,
based on observing only Y , the pair (��,��) is indistinguishable from the all-zero
matrices (0d1×d2,0d1×d2). This fact can be used to show that no method can have

squared Frobenius error lower than ≈ α2s
d1d2

; see Section 4 for a precise statement.
Therefore, bound (32) cannot be improved without imposing further restrictions
on the pair (��,��). We note that the singular vector incoherence conditions, as
imposed in past work [7, 9, 11] to guarantee exact recovery, would exclude the
matrix (33), since its left singular vector is the unit vector e1 ∈ R

d1 .

3.4.1. Results for stochastic noise matrices. Our discussion thus far has ap-
plied to general observation operators X, and general noise matrices W . More
concrete results can be obtained by assuming particular forms of X, and that the
noise matrix W is stochastic. Our first stochastic result applies to the identity op-
erator X = I and a noise matrix W generated with i.i.d. N(0, ν2/(d1d2)) entries.7

7To be clear, we state our results in terms of the noise scaling ν2/(d1d2) since it corresponds to a
model with constant signal-to-noise ratio when the Frobenius norms of �� and �� remain bounded,
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COROLLARY 2. Suppose X = I , the matrix �� has rank at most r and sat-
isfies ‖��‖∞ ≤ α√

d1d2
, and �� has at most s nonzero entries. If the noise matrix

W has i.i.d. N(0, ν2/(d1d2)) entries, and we solve the convex program (10) with
regularization parameters

λd = 8ν√
d1

+ 8ν√
d2

and μd = 16ν

√
log(d1d2)

d1d2
+ 4α√

d1d2
,(34)

then with probability greater than 1 − exp(−2 log(d1d2)), any optimal solution
(�̂, �̂) satisfies

e2(�̂, �̂) ≤ c1ν
2
(

r(d1 + d2)

d1d2

)
︸ ︷︷ ︸

K�
�

+ c1ν
2
(

s log(d1d2)

d1d2

)
+ c1

α2s

d1d2︸ ︷︷ ︸
K�

�

.(35)

REMARKS. In the statement of this corollary, the settings of λd and μd

are based on upper bounding ‖W‖∞ and ‖|W‖|op, using large deviation bounds
and some nonasymptotic random matrix theory. With a slightly modified argu-
ment, bound (35) can be sharpened slightly by reducing the logarithmic term to
log(d1d2

s
). As shown in Theorem 2 to follow, this sharpened bound is minimax-

optimal, meaning that no estimator (regardless of its computational complexity)
can achieve much better estimates for the matrix classes and noise model given
here.

It is also worth observing that both terms in the bound (35) have intuitive in-
terpretations. Considering first the term K�

�, we note that the numerator term
r(d1 + d2) is of the order of the number of free parameters in a rank r matrix
of dimensions d1 × d2. The multiplicative factor ν2

d1d2
corresponds to the noise

variance in the problem. On the other hand, the term K�
� measures the complex-

ity of estimating s nonzero entries in a d1 × d2 matrix. Note that there are
(d1d2

s

)
possible subsets of size s, and consequently, the numerator includes a term that
scales as log

(d1d2
s

) ≈ s log(d1d2). As before, the multiplicative pre-factor ν2

d1d2
cor-

responds to the noise variance. Finally, the second term within K�
�—namely the

quantity α2s
d1d2

—arises from the nonidentifiability of the model, and as discussed in
Example 6, it cannot be avoided without imposing further restrictions on the pair
(��,��).

We now turn to analysis of the sparse factor analysis problem: as previously in-
troduced in Example 1, this involves estimation of a covariance matrix that has
a low-rank plus elementwise sparse decomposition. In this case, given n i.i.d.
samples from the unknown covariance matrix � = �� + ��, the noise matrix

independently of the dimension. The same results would hold if the noise were not rescaled, modulo
the appropriate rescalings of the various terms.
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W ∈ R
d×d is a recentered Wishart noise; see equation (3). We can use tail bounds

for its entries and its operator norm in order to specify appropriate choices of the
regularization parameters λd and μd . We summarize our conclusions in the fol-
lowing corollary:

COROLLARY 3. Consider the factor analysis model with n ≥ d samples, and
regularization parameters

λd = 16‖|√�‖|2
√

d

n
and μd = 32ρ(�)

√
logd

n
+ 4α

d
,(36)

where ρ(�) = maxj �jj . Then with probability greater than 1 − c2 exp(−c3 ×
log(d)), any optimal solution (�̂, �̂) satisfies

e2(�̂, �̂) ≤ c1

{
‖|�‖|2 rd

n
+ ρ(�)

s logd

n

}
+ c1

α2s

d2 .

We note that the condition n ≥ d is necessary to obtain consistent estimates in
factor analysis models, even in the special case with �� = Id×d , where standard
PCA is possible; for example, see Johnstone [12]. Again, the terms in the bound
have a natural interpretation: since a matrix of rank r in d dimensions has roughly
rd degrees of freedom, we expect to see a term of the order rd

n
. Similarly, since

there are log
(d2

s

) ≈ s logd subsets of size s in a d × d matrix, we also expect to

see a term of the order s logd
n

. Moreover, although we have stated our choices of
regularization parameter in terms of ‖|�‖|2 and ρ(�), these can be replaced by the
analogous versions using the sample covariance matrix �̂. (By the concentration
results that we establish, the population and empirical versions do not differ signif-
icantly when n ≥ d .) Last, we note that in recent work, Fan et al. [10] have studied
an alternative method for estimating sparse factor models, involving a combination
of thresholding and principal components. They provide various error bounds, but
under different conditions on the interaction between the sparse and low-rank com-
ponents.

3.4.2. Comparison to Hsu et al. [11]. This recent work focuses on the prob-
lem of matrix decomposition with the ‖ · ‖1-norm, and provides results both for
the noiseless and noisy setting. All of their work focuses on the case of exactly
low rank and exactly sparse matrices, and deals only with the identity observation
operator; in contrast, Theorem 1 in this paper provides an upper bound for gen-
eral matrix pairs and observation operators. Most relevant is comparison of our
�1-results with exact rank-sparsity constraints to their Theorem 3, which provides
various error bounds (in nuclear and Frobenius norm) for such models with addi-
tive noise. These bounds are obtained using an estimator similar to our program
(10), and in parts of their analysis, they enforce bounds on the �∞-norm of the
solution.
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There are two major differences between our results, and those of Hsu et al.
First of all, their analysis involves three quantities (α, β , γ ) that measure sin-
gular vector incoherence, and must satisfy a number of inequalities. In contrast,
our analysis is based only on a single condition: the “spikiness” condition on the
low-rank component ��. As we have seen, this constraint is weaker than singular
vector incoherence, and consequently, unlike the result of Hsu et al., we do not
provide exact recovery guarantees for the noiseless setting. However, as our analy-
sis shows, a very simple spikiness condition suffices for the approximate recovery
guarantees that are of interest for noisy observation models. Given these differing
assumptions, the underlying proof techniques are quite distinct, with our methods
leveraging the notion of restricted strong convexity introduced by Negahban et al.
[14].

The second (and perhaps most significant) difference is in the sharpness of the
results for the noisy setting, and the permissible scalings of the rank-sparsity pair
(r, s). As demonstrated in Section 4, the rates that we establish for the noisy Gaus-
sian model (Corollary 2) are minimax-optimal up to constant factors, and involve
terms additive in r and s. In contrast, the upper bounds in Theorem 3 of Hsu et al.
involve the product rs, and require

rs � d1d2

log(d1) log(d2)
.(37)

This bound precludes many scalings that are of interest. For instance, if the sparse
component �� has a nearly constant fraction of nonzeros [say s � d1d2

log(d1) log(d2)
for

concreteness], then bound (37) restricts to �� to have constant rank. In contrast,
our analysis allows for high-dimensional scaling of both the rank r and sparsity s

simultaneously; as can be seen by inspection of Corollary 2, our Frobenius norm
error goes to zero under the scalings s � d1d2

log(d1) log(d2)
and r � d2

log(d2)
.

3.4.3. Results for multi-task regression. Let us now extend our results to the
setting of multi-task regression, as introduced in Example 2. The observation
model is of the form Y = XB∗ + W , where X ∈ R

n×d1 is a known design ma-
trix, and we observe the matrix Y = R

n×d2 . Our goal is to estimate the the regres-
sion matrix B∗ ∈ R

d1×d2 , which is assumed to have a decomposition of the form
B∗ = �� + ��, where �� models the shared characteristics between each of the
tasks, and the matrix �� models perturbations away from the shared structure. If
we take �� to be a sparse matrix, an appropriate choice of regularizer R is the ele-
mentwise �1-norm, as in Corollary 2. We use σmin and σmax to denote the minimum
and maximum singular values (respectively) of the rescaled design matrix X/

√
n;

in addition, we assume that X is invertible so that σmin > 0, and that its columns
are uniformly bounded in �2-norm (i.e., maxj=1,...,d1 ‖Xj‖2 ≤ κmax

√
n). We note

that these assumptions are satisfied for many common examples of random design.
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COROLLARY 4. Suppose that the matrix �� has rank at most r and satisfies
‖��‖∞ ≤ α√

d1d2
, and the matrix �� has at most s nonzero entries. If the entries of

W are i.i.d. N(0, ν2), and we solve the convex program (10) with regularization
parameters

λd = 8νσmax
√

n(
√

d1 + √
d2) and

(38)

μd = 16νκmax

√
n log(d1d2) + 4ασmin

√
n√

d1d2
,

then with probability greater than 1 − exp(−2 log(d1d2)), the Frobenius error
e2(�̂, �̂) of any optimal solution (�̂, �̂) is upper bounded by

c1
ν2σ 2

max

σ 4
min

(
r(d1 + d2)

n

)
︸ ︷︷ ︸

K�
�

+ c2

[
ν2κ2

max

σ 4
min

(
s log(d1d2)

n

)
+ α2s

d1d2

]
︸ ︷︷ ︸

K�
�

.(39)

REMARKS. We see that the results presented above are analogous to those
presented in Corollary 2. However, in this setting, we leverage large deviations
results in order to find bounds on ‖X∗(W)‖∞ and ‖|X∗(W)‖|op that hold with high
probability, given our observation model.

3.5. An alternative two-step method. As suggested by one reviewer, it is possi-
ble that a simpler two-step method—namely, based on first thresholding the entries
of the observation matrix Y , and then performing a low-rank approximation—
might achieve similar rates to the more complex convex relaxation (10). In this
section, we provide a detailed analysis of one version of such a procedure in the
case of nuclear norm combined with �1-regularization. We prove that in the spe-
cial case of X = I , this procedure can attain the same form of error bounds, with
possibly different constants. However, we also give an example to show that the
two-step method will not necessarily perform well for general observation opera-
tors X.

In detail, let us consider the following two-step estimator:

(a) Estimate the sparse component �� by solving

�̂ ∈ argmin
�∈R

d1×d2

{
1

2
‖|Y − �‖|2F + μd‖�‖1

}
.(40)

As is well-known, this convex program has an explicit solution based on soft-
thresholding the entries of Y .

(b) Given �̂, estimate the low-rank component �� by computing

�̂ ∈ argmin
�∈R

d1×d2

{
1

2
‖|Y − � − �̂‖|2F + λd‖|�‖|N

}
.(41)
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Interestingly, note that this method can be understood as the first two steps of a
blockwise co-ordinate descent method for solving the convex program (10). In
step (a), we fix the low-rank component, and minimize as a function of the sparse
component. In step (b), we fix the sparse component, and then minimize as a func-
tion of the low-rank component. The following result that these two steps of co-
ordinate descent achieve the same rates (up to constant factors) as solving the full
convex program (10):

PROPOSITION 1. Given observations Y from the model Y = �� + �� + W

with ‖��‖∞ ≤ α√
d1d2

, consider the two-step procedure (40) and (41) with regular-
ization parameters (λd,μd) such that

λd ≥ 4‖|W‖|op and μd ≥ 4‖W‖∞ + 4α√
d1d2

.(42)

Then the error bound (30) from Corollary 1 holds with γ = 1.

Consequently, in the special case that X = I , just two steps of co-ordinate de-
scent are sufficient to obtain an optimal estimator.

On the other hand, the simple two-stage method will not work for general obser-
vation operators X. As shown in the proof of Proposition 1, the two-step method
relies critically on having the quantity ‖X(�� + W)‖∞ be upper bounded (up to
constant factors) by max{‖��‖∞,‖W‖∞}. By triangle inequality, this condition
holds trivially when X = I , but can be violated by other choices of the observation
operator, as illustrated below.

EXAMPLE 7 (Failure of two-step method). Recall the multi-task observation
model first introduced in Example 2. In Corollary 4, we showed that the general
estimator (10) will recover good estimates under certain assumptions on the obser-
vation matrix. In this example, we provide an instance for which the assumptions
of Corollary 4 are satisfied, but on the other hand, the two-step method will not
return a good estimate.

More specifically, let us consider the multivariate regression observation model
Y = X(�� + ��) + W , in which Y ∈ R

d×d . Suppose that the observation matrix
X ∈ R

d×d takes the form

X := Id×d + 1√
d

e1�1T ,

where e1 ∈ R
d is the standard basis vector with a 1 in the first component, and �1

denotes the vector of all ones. Suppose that �� = 1
d
�1�1T , which is rank one, and

satisfies ‖��‖∞ = 1
d

.
We now verify that the conditions of Corollary 4 are satisfied. By construction

we have σmin(X) = 1 and σmax(X) ≤ 2. Moreover, letting Xj denote the j th col-
umn of X, we have maxj=1,...,d ‖Xj‖2 ≤ 2. Consequently, if we consider rescaled
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observations with noise variance ν2/d , the conditions of Corollary 4 are all satis-
fied with constants (independent of dimension), so that the M-estimator (10) will
have good performance.

In comparison, for any zero-mean noise matrix W , we have in expectation

E[‖X(�� + W)‖∞] (i)≥ ‖X(�� + E[W ])‖∞ = ‖X(��)‖∞
(ii)≥ √

d‖��‖∞,

where step (i) exploits Jensen’s inequality, and step (ii) uses the fact that

‖X(��)‖∞ = 1/d + 1/
√

d = (1 + √
d)‖��‖∞.

For any noise matrix W with reasonable tail behavior, the random variable
‖X(�� + W)‖∞ will concentrate around its expectation, showing that
‖X(�� + W)‖∞ will be larger than ‖��‖∞ by an order of magnitude (factor
of

√
d). Consequently, the two-step method will have much larger error in this

case.

3.6. Results for ‖ · ‖2,1 regularization. Let us return again to the general The-
orem 1, and illustrate some more of its consequences in application to the column-
wise (2,1)-norm previously defined in Example 5, and methods based on solving
the convex program (14). As before, specializing Theorem 1 to this decomposable
regularizer yields a number of guarantees. In order to keep our presentation rela-
tively brief, we focus here on the case of the identity observation operator X = I .

COROLLARY 5. Suppose that we solve the convex program (14) with regular-
ization parameters (λd,μd) such that

λd ≥ 4‖|W‖|op and μd ≥ 4‖W‖2,∞ + 4α√
d2

.(43)

Then there is a universal constant c1 such that for any matrix pair (��,��) with
‖��‖2,∞ ≤ α√

d2
and for all integers r = 1,2, . . . , d and s = 1,2, . . . , d2, we have

the following bound on e2(�̂, �̂):

c1λ
2
d

{
r + 1

λd

d∑
j=r+1

σj (�
�)

}
+ c1μ

2
d

{
s + 1

μd

∑
k /∈C

‖��
k‖2

}
,(44)

where C ⊆ {1,2, . . . , d2} is an arbitrary subset of column indices of cardinality at
most s.

REMARKS. This result follows directly by specializing Theorem 1 to the
columnwise (2,1)-norm and identity observation model, discussed in Example 5.
Its dual norm is the (2,∞)-norm, and we have κd = √

d2. As discussed in Sec-
tion 3.1, the (2,1)-norm is decomposable with respect to subspaces of the type
M(C), as defined in equation (17), where C is an arbitrary subset of columns.
For any such subset C of cardinality s, it can be calculated that �2(M(C)) = s,
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and ‖�M⊥(��)‖2,1 = ∑
k /∈C ‖��

k‖2. Consequently, bound (44) follows from The-
orem 1.

As before, if we assume that �� has exactly rank r and �� has at most s nonzero
columns, then both approximation error terms in bound (44) vanish, and we re-
cover an upper bound of the form ‖|�̂ − ��‖|2F + ‖|�̂ − ��‖|2F � λ2

dr + μ2
ds. If

we further specialize to the case of exact observations (W = 0), then Corollary 5
guarantees that

‖|�̂ − ��‖|2F + ‖|�̂ − ��‖|2F � α2 s

d2
.

The following example shows, that given our conditions, even in the noiseless
setting, no method can do better.

EXAMPLE 8 (Unimprovability for columnwise sparse model). In order to
demonstrate that the term α2s/d2 is unavoidable, it suffices to consider a slight
modification of Example 6. In particular, let us define the matrix

�� := α√
d1d2

⎡⎢⎢⎢⎣
1
1
...

1

⎤⎥⎥⎥⎦ [1 1 1 · · · 0 · · · 0]︸ ︷︷ ︸
f T

,(45)

where again the vector f ∈ R
d2 has s nonzeros. Note that the matrix �� is rank

one, has s nonzero columns, and moreover ‖��‖2,∞ = α√
d2

. Consequently, the

matrix �� is covered by Corollary 5. Since s columns of the matrix �� can be
chosen in an arbitrary manner, it is possible that �� = −��, in which case the
observation matrix Y = 0. This fact can be exploited to show that no method can
achieve squared Frobenius error much smaller than ≈ α2s

d2
; see Section 4 for the

precise statement. Finally, we note that it is difficult to compare directly to the
results of Xu et al. [21], since their results do not guarantee exact recovery of the
pair (��,��).

As with the case of elementwise �1-norm, more concrete results can be obtained
when the noise matrix W is stochastic.

COROLLARY 6. Suppose �� has rank at most r and satisfies ‖��‖2,∞ ≤
α√
d2

, and �� has at most s nonzero columns. If the noise matrix W has i.i.d.

N(0, ν2/(d1d2)) entries, and we solve the convex program (14) with regulariza-
tion parameters λd = 8ν√

d1
+ 8ν√

d2
and

μd = 8ν

√
1

d2
+

√
logd2

d1d2
+ 4α√

d2
,
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then with probability greater than 1 − exp(−2 log(d2)), any optimal solution
(�̂, �̂) satisfies

e2(�̂, �̂) ≤ c1 ν2 r(d1 + d2)

d1d2︸ ︷︷ ︸
K�

�

+ ν2
{

sd1

d1d2
+ s logd2

d1d2

}
+ c2

α2s

d2︸ ︷︷ ︸
K�

�

.(46)

REMARKS. Note that the setting of λd is the same as in Corollary 2, whereas
the parameter μd is chosen based on upper bounding ‖W‖2,∞, corresponding to
the dual norm of the columnwise (2,1)-norm. With a slightly modified argument,
bound (46) can be sharpened slightly by reducing the logarithmic term to log(d2

s
).

As shown in Theorem 2, this sharpened bound is minimax-optimal.

As with Corollary 2, both terms in the bound (46) are readily interpreted. The
term K�

� has the same interpretation, as a combination of the number of degrees
of freedom in a rank r matrix [i.e., of the order r(d1 + d2)], scaled by the noise

variance ν2

d1d2
. The second term K�

� has a somewhat more subtle interpretation.
The problem of estimating s nonzero columns embedded within a d1 × d2 ma-
trix can be split into two sub-problems: first, the problem of estimating the sd1
nonzero parameters (in Frobenius norm), and second, the problem of column sub-
set selection—that is, determining the location of the s nonzero parameters. The

estimation sub-problem yields the term ν2sd1
d1d2

, whereas the column subset selec-

tion sub-problem incurs a penalty involving log
(d2

s

) ≈ s logd2, multiplied by the
usual noise variance. The final term α2s/d2 arises from the nonidentifiability of the
model. As discussed in Example 8, it is unavoidable without further restrictions.

We now turn to some consequences for the problem of robust covariance estima-
tion formulated in Example 3. As seen from equation (4), the disturbance matrix in
this setting can be written as a sum (��)T + ��, where �� is a columnwise sparse
matrix. Consequently, we can use a variant of the estimator (14), in which the loss
function is given by ‖|Y − {�� + (��)T + ��}‖|2F . The following result gives the
consequences of Theorem 1 in this setting:

COROLLARY 7. Consider the problem of robust covariance estimation with
n ≥ d samples, based on a matrix �� with rank at most r that satisfies ‖��‖2,∞ ≤
α√
d

, and a corrupting matrix �� with at most s rows and columns corrupted. If we

solve SDP (14) with regularization parameters

λ2
d = 8‖|��‖|2op

r

n
and μ2

d = 8‖|��‖|2op
r

n
+ 16α2

d
,(47)

then with probability greater than 1 − c2 exp(−c3 log(d)), any optimal solution
(�̂, �̂) satisfies

e2(�̂, �̂) ≤ c1‖|��‖|2op

{
r2

n
+ sr

n

}
+ c2

α2s

d
.
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Some comments about this result: with the motivation of being concrete, we
have given an explicit choice (47) of the regularization parameters, involving the
operator norm ‖|��‖|op, but any upper bound would suffice. As with the noise
variance in Corollary 6, a typical strategy would choose this pre-factor by cross-
validation.

4. Lower bounds. For the case of i.i.d. Gaussian noise matrices, Corollar-
ies 2 and 6 provide results of an achievable nature, namely in guaranteeing that
our estimators achieve certain Frobenius norm errors. In this section, we turn to
the complementary question: what are the fundamental (algorithmic-independent)
limits of accuracy in noisy matrix decomposition? One way in which to address
such a question is by analyzing statistical minimax rates.

More formally, given some family F of matrices, the associated minimax error
is given by

M(F ) := inf
(�̃,�̃)

sup
(��,��)

E[‖|�̃ − ��‖|2F + ‖|�̃ − ��‖|2F],(48)

where the infimum ranges over all estimators (�̃, �̃) that are (measurable) func-
tions of the data Y , and the supremum ranges over all pairs (��,��) ∈ F . Here the
expectation is taken over the Gaussian noise matrix W , under the linear observa-
tion model (1).

Given a matrix ��, we define its support set supp(��) := {(j, k) | ��
jk �= 0},

as well as its column support colsupp(��) := {k | ��
k �= 0}, where ��

k denotes the
kth column. Using this notation, our interest centers on the following two matrix
families:

Fsp(r, s, α) :=
{
(��,��) |

(49a)

rank(��) ≤ r, | supp(��)| ≤ s,‖��‖∞ ≤ α√
d1d2

}
,

and

Fcol(r, s, α) :=
{
(��,��) |

(49b)

rank(��) ≤ r, | colsupp(��)| ≤ s,‖��‖2,∞ ≤ α√
d2

}
.

By construction, Corollaries 2 and 6 apply to the families Fsp and Fcol, respec-
tively.

The following theorem establishes lower bounds on the minimax risks (in
squared Frobenius norm) over these two families for the identity observation op-
erator:
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THEOREM 2. Consider the linear observation model (1) with identity obser-
vation operator: X(� + �) = � + �. There is a universal constant c0 > 0 such
that for all α ≥ 32

√
log(d1d2), we have

M(Fsp(r, s, α))
(50)

≥ c0ν
2
{
r(d1 + d2)

d1d2
+ s log

(
d1d2 − s

s/2

)/
(d1d2)

}
+ c0

α2s

d1d2
,

and

M(Fcol(r, s, α))
(51)

≥ c0ν
2
(

r(d1 + d2)

d1d2
+ s

d2
+ s log

(
d2 − s

s/2

)/
(d1d2)

)
+ c0

α2s

d2
.

Note the agreement with the achievable rates guaranteed in Corollaries 2 and 6,
respectively. (As discussed in the remarks following these corollaries, the sharp-
ened forms of the logarithmic factors follow by a more careful analysis.) Theo-
rem 2 shows that in terms of squared Frobenius error, the convex relaxations (10)
and (14) are minimax optimal up to constant factors.

In addition, it is worth observing that although Theorem 2 is stated in the context
of additive Gaussian noise, it also shows that the radius of nonidentifiability (in-
volving the parameter α) is a fundamental limit. In particular, by setting the noise
variance to zero, we see that under our milder conditions, even in the noiseless set-
ting, no algorithm can estimate to greater accuracy than c0

α2s
d1d2

, or the analogous
quantity for column-sparse matrices.

5. Discussion. In this paper, we analyzed a class of convex relaxations for
solving a general class of matrix decomposition problems, in which the goal is
to recover a pair of matrices, based on observing a noisy contaminated version of
their sum. Since the problem is ill-posed in general, it is essential to impose struc-
ture, and this paper focuses on the setting in which one matrix is approximately
low-rank, and the second has a complementary form of low-dimensional structure
enforced by a decomposable regularizer. Particular cases include matrices that are
elementwise sparse, or columnwise sparse, and the associated matrix decompo-
sition problems have various applications, including robust PCA, robustness in
collaborative filtering, and model selection in Gauss–Markov random fields. We
provided a general nonasymptotic bound on the Frobenius norm error of a convex
relaxation based on regularizing norm the least-squares loss with a combination
of the nuclear norm with a decomposable regularizer. When specialized to the
case of elementwise and columnwise sparsity, these estimators yield rates that are
minimax-optimal up to constant factors.

Various extensions of this work are possible. We have not discussed here how
our estimator would behave under a partial observation model, in which only a
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fraction of the entries are observed. This problem is very closely related to ma-
trix completion, a problem for which recent work by Negahban and Wainwright
[16] shows that a form of restricted strong convexity holds with high probability.
This property could be adapted to the current setting, and would allow for prov-
ing Frobenius norm error bounds on the low rank component. Finally, although
this paper has focused on the case in which the first matrix component is approx-
imately low rank, much of our theory could be applied to a more general class of
matrix decomposition problems, in which the first component is penalized by a
decomposable regularizer that is “complementary” to the second matrix compo-
nent. It remains to explore the properties and applications of these general matrix
decompositions.
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SUPPLEMENTARY MATERIAL

Simulations and proofs (DOI: 10.1214/12-AOS1000SUPP; .pdf). This supple-
mentary material contains numerical simulations that demonstrate excellent agree-
ment between the theoretical predictions and the practical behavior of our estima-
tors. We also provide proofs for our upper and lower bounds, including slightly
sharpened versions of Corollaries 2 and 6.
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