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Abstract

We develop a new component analysis framework,Nbésy-Or Component AnalyzéNOCA),
that targets high-dimensional binary data. NOCA is a prdistib latent variable model that as-
sumes the expression of observed high-dimensional binatg id driven by a small number of
hidden binary sources combined via noisy-or units. The aormept analysis procedure is equiva-
lent to learning of NOCA parameters. Since the classical Bivhtilation of the NOCA learning
problem is intractable, we develop its variational appmedion. We test the NOCA framework
on two problems: (1) a synthetic image-decomposition goband (2) a co-citation data analy-
sis problem for thousands of CiteSeer documents. We denadmgfood performance of the new
model on both problems. In addition, we contrast the modéivtm mixture-based latent-factor
models: the probabilistic latent semantic analysis (PL8AJ latent Dirichlet allocation (LDA).
Differing assumptions underlying these models cause tloetiistover different types of structure
in co-citation data, thus illustrating the benefit of NOCAHuilding our understanding of high-
dimensional datasets.

Keywords: Component analysis, Vector quantization, Variationali@ay, Link analysis

1. Introduction

Latent variable (otatent facto) models (MacKay, 1995; Bishop, 1999a) provide an elegant frame-
work for modeling dependencies in high-dimensional data. Suppose thabtserved random vari-
ablesx;, xj are marginally dependent. A latent variable model explains their depentgmositing

the presence of a hidden varialeepresenting their common cause. Examples of latent factor mod-
els include probabilistic principal component analysis (Tipping and Bish@®7; Bishop, 1999b),
mixtures of factor analyzers (Attias, 1999), multinomial PCA é&spec} models (Buntine, 2002;
Hofmann, 1999a; Blei et al., 2003), the multiple cause model (Ghahramddicadan, 1995; Ross
and Zemel, 2002) and independent component analysis frameworkss(At#89; Miskin, 2000).
The models are most often used for component analysis, where we wdantify a small number

of underlying components (factors, sources, or signals) whosegffembine to form the observed
data. Once a model is learned, it can be used to make inferences on fadtas, such as to
identify the document topics in the aspect model (Hofmann, 1999a; Bléi €083) or regulatory
signals in the microarray DNA data (Lu et al., 2004). In addition to their rolengeustanding the
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structure of high-dimensional data, latent factor models can be applied imsionality reduction,
where the hidden factor values are a low-dimensional representatioa data sample.

Factor and principal component analysis methods (Bartholomew and Kie@&®,; Dolliffe,
1986) and other component analysis frameworks (Attias, 1999) aréidredly applied to high-
dimensional continuous-valued data. More recently, multinomial mixture madefaiann, 1999a;
Blei et al., 2003) were shown to handle many-valued discrete variabteessfully. However,
component analysis methods specifically tailored to binary data remain sdartd@s work, we
investigate a latent factor model designed for analysis of high-dimendioraly data. The depen-
dencies between observables are represented using a small numiaeleof lhinary factors whose
effects are combined through noisy-or units. We therefore refer to thelrasdo “noisy-or com-
ponent analyzer” (NOCA). Binary variables can, for instance,asgnt failures or congestions in
transportation networks, spread of disease in epidemiology, or thenpeeséa link in a citation
graph.

The principal limitation of latent factor models is the complexity of their learningpémameter
estimatior), as the standard EM formulation becomes exponential in the number ohhiacters.
To address the problem, we adopt a variational inference algorithnmigartibe noisy-or (B2NO)
networks (Jaakkola and Jordan, 1999) and derive the correspdedrning algorithm for the model
with hidden sources.

Two aspects of the new method are evaluated: (1) the quality of the apptexXeaaning al-
gorithm and (2) the adequacy of the model for real-world data. We usdifierent datasets to
evaluate NOCA and its learning algorithm: a synthetic image-decomposition prabid a co-
citation data analysis problem. The knowledge of the underlying model adémi@ctors in the
first problem (image data) enables us to assess the performance ofrtiirdesgorithm and its
ability to recover the model. We judge the quality of the recovery both qualibatared quantita-
tively in terms of the likelihood of test data and data reconstruction errorniRg#time analysis
verifies the expected polynomial scale-up.

The second evaluation problem is an application of NOCA to link and citatidgsieaCitation
data from over 6000 CiteSeer documents were extracted and analyzeN@@A. To measure
how well NOCA's hidden sources capture the cocitation relationships, s@eaucosine-distance
based metric and an inspection by a human judge. Perplexity of the testing setlimolgauge the
predictive power of the learned model. NOCA results are compared to mikased latent variable
models, represented by probabilistic latent semantic analysis (Hofmarn®g;188hn and Chang,
2000) and its Bayesian extension — latent Dirichlet allocation (Blei et al3)20Me mixture models
view a document differently from NOCA. In consequence, each mddstcsees different facets
of the data structure. NOCA's benefit is in the discovery of publicatiomauimunities in the data
that the mixture models tend to overlook.

2. Noisy-OR Component Analysis

Technically, the noisy-or component analysis (NOCA) is a latent variabldeimeith binary vari-
ables defined by a bipartite belief network structure in Figure 1.

The nodes in the top layer represent a vector of latent faster§s:,s,,...,s«} (“sources”)
with binary values{0,1} and the nodes in the bottom layer an observable vector of binary features
X = {X1,X2,...,Xp}. The connections between the two layers represent dependencieg #rmon
observables: the nodes coupled by a latent factor can exhibit a Iqguathdency pattern. Parameter-
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NoIsY-OR COMPONENTANALYSIS

Notation:

D — observable dimensionality

K — latent dimensionalityD > K

N — number of datapoints

X — observables, indexed By x;

s— latent sources, indexed lnys
Parameters(square nodes):

p — loading matrix (with leak terms)
{13} — source priors

Figure 1: The NOCA model in plate notation. Shaded nodes correspondsénvables. (In the
entire text, boldface letters will denote vectors or matrices.)

izing the bottom-layer nodes with noisy-or units reduces the model’s paraspetss t&D+ K +D
free parameters:

e a set ofK prior probabilitiest; parameterizing the (Bernoulli) prior distributiofgs) for
every hidden factos;

for each pair of hidden factarand observed componejt

e a set ofD parametergy; representing “other causes.” These can be incorporategibto
positing a latent factag with p(sp = 1) = 1, where notationally convenient.

The NOCA model resembles the QMR-DT model (Shwe et al., 1991) in thetwsteuand type
of nodes used. However, it is from the outset assumed to be fully cthekhe model is simplified
during learning by setting the weight of most connections to 2&d@CA makes no assumption as
to the interpretation of random variables. For example, although featurés coigespond to words
when analyzing text documents; citation indicator variables will be used aha&lyzing references
among scholarly articles.

2.1 The Joint Distribution over Observables

The joint probability of an observation vect&(x) exemplifies and subsumes the probabilistic
queries we need to evaluate. Given the bipartite md¥el) is obtained as

d K
P(x) = {g} <]|1P(Xj !S)) (D P(S)> : (1)

1. This is in contrast with the structure-learning algorithm proposed byrseand Mansour (Kearns and Mansour,
1998). Their algorithm is exponential in the maximum number of hiddetofacontributing to any observable
variable. Therefore, they limit the in-degree of the bottom layer nodedtairoa polynomial algorithm. Our
algorithm does not make any such structural assumption.
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where{s} denotes the sum over all configurationsspndP(s) is the prior probability of a hid-
den factors. Given a vector of hidden binary factossthe conditional probability(x;|s) for an
observable random componeqte {0,1} is obtained through the noisy-or model:

K

X K (1-x))
P(xjls) = Ff%l—mm)[vl—mﬂsl kl—pm)[vl—puﬁl : 2

wherepyj is the leak probability that models “all other” causes.
Equation 2 can be reparameterized With= —log(1 — pi;) to obtain:

k
P(xjls) = exp [Xj log (1— exp{—eoj —_Zeijs}> +(1—Xj) <—eoj —_ieijsﬂ .

This reparameterization will prove useful in the following description of theational lower
bound.

2.2 The Factorized Variational Bound

The bottleneck in computing the joint probability over observali¥g) in Equation 1, is the sum
that ranges over all possible latent factor configurations. Howeviergisy to see that P(x;|s)
for bothx; = 0 andx; = 1 could be expressed in a factored form as:

K
P(xj|s) = ﬂh(x”s), such thati, j : h(xj|s) > 0, 4)
=

then the full jointP(x,s) and the joint over the observableéx) would decompose:

P(xS) I'LF’XMSI'[ ﬁ( ﬁ x,S)>,
wﬁ( ) ﬁlmxjs)) N ({z} P(s) L]jMXjIS)D-

Such decomposition would imply that the summation in Equation 1 can be perfofficeshély.
Note that the condition of Equation 4 is sufficient to ensure tractability of aotfierence queries,
such as the posterior of a hidden facsor

P(x)

d
P(six) OP(s) I'Lh(les) 5)
=
However, while Equation 3 defininB(x;|s) decomposes fox; = 0, it does not factorize for

Xj = 1. Thus, in general, it is impossible to compix) efficiently. We approximat®(x;|s) for
Xj = 1 with a factored variational lower bound (Jaakkola and Jordan, 1999)

P(xj =1Js) = (6)

+q;(i) Iog(l—ee‘)i)} ,

~

91

P(xj|s) = exr){q,() [Iog( e 7al) —log(1—e %)
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whereq;js represent sets of variational parameters defining a multinomial distribuaeh com-
ponentd; (i) of the distribution can be viewed as a responsibility of a latent fegtimr observing
Xj = 1. If we denote the complex expression inside the product on the rigltdide of Equation 6
by h(xj|s), we have the sought-after decomposition.

Incorporating the variational bound into the first, nondecomposing terngiratton 3, we can
obtain approximation®(x|s,©,q) < P(x|s,®), P(x,s|0,q) < P(x,5/©) andP(x|©,q) < P(x|0)
that factorize along latent factoss

3. The Variational Learning Algorithm

The key step of component analysis corresponds to the learning of tin¢ fiatéor model from
data. The problem of learning of bipartite noisy-or networks has bedressied only in the fully
observable setting; that is, when both the sources and observatidkmoane. The learning methods
take advantage of the decomposition of the model created by the introduttsmedal hidden
variables (Heckerman, 1993; Vomlel, 2003; Diez and Gallan, 2003) EMhalgorithm is then used
to estimate the parameters of the modified network, which translate directly intat@eg@ters of
the original model. However, to our knowledge, no learning algorithm g\® networks has been
derived for the case of unobservable source layer.

In this section, we motivate and detail the derivation of the variational leguadgorithm, fol-
lowing the EM-framework. We identify the crucial hurdles in deriving aficednt algorithm and
show how the variational approximation overcomes them.

3.1 Classical EM Formulation

LetD = {x%,x%,---xN} be a set oN i.i.d. vectors of observable variables. Our objective is to find
parameter® that maximize the likelihood of the daté(D|®). The standard approach to learn the
parameters of the model in the presence of hidden variables is the Expedtidomization (EM)
algorithm (Dempster et al., 1977). EM computes the parameters iterativelkinyg the following
parameter update step:

N
O =arg rrc])axz (logP(x",$"|©))pgixn @) +
n=1

where®@' denotes previous-step parameters.

The main problem in applying the EM to the noisy-or model is that the joint distribwi@r
every “completed” samplB(x",s"|®) does not decompose along hidden factend thus its ex-
pectation{logP(x", s"|®))psxn o) requires iteration over all possible latent factor configurations.
This is infeasible since the configuration space grows exponentially in théerof factors. Note
that even if we could solve the inference quéts’|x", @) efficiently, we still cannot push the
expectations inward over the nonlinearities — we also need to decomposmihiegigle the expec-
tation.

3.2 Variational EM

The idea of variational methods is to approximate the likelihood terms with their imspreaut
structurally more convenient surrogates. In summary, an additionaf &eeovariational parame-
tersq (Section 2.2) is introduced that offers the flexibility to perform more effictatculations of
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the joint and posterior distributions within the EM algorithm. In particular, wéaethe true con-
ditional probabilitiesP(x"|s",®) that do not factorize with their factored lower-bound variational
approximatiorP(x"|s?,©,q") as described in Section 2.2. As a consequence, the approximate pos-
terior I5(§“|x”,®,q”) also factorizes, which simplifies the expectation step of the algorithm. The
new EM algorithm iteration becomes:

N
©" = arg n(waaxz (logP(x",s"|@, q”)>|5(sn|xn_’@/qqn,) ,
n=1 )

where® andqg” denote previous-step model and variational parameters.

In ML learning, we maximize lo§(D|©®) with respect td. In NOCA, we maximize a lower
bound on lod?(D|©®) instead, to ease the computational complexity brought by hidden variables.
First, let us simplify the expectation distribution — the hidden source posterior:

logP(D|®) = Iog|‘| P(x"|©)

= i [ng ,9'|©)
Q(s")

[(Z\Px ,9'1©,9") o)

> n; L; (logP(x","©))qen) — (log Q(Sn)>Q(s”)]

I
HP/1Z

This lower bound follows from Jensen’s inequality for any arbitrary itigtion over the hidden
sourceQ(H) = MN_; Q(s") (Jordan et al., 1999; Saul et al., 1996; Ghahramani and Jordan).199
However, even with a decomposalfe we cannot take expectations of B@",s"|©) easily, be-
cause the noisy-or distribution is not in the exponential family angitbeeside inside nonlineari-
ties. We apply Equation 6 to obtain a further lower bound:

logP(D|©) > {Z} (logP(x",s"|@®)) (e — <|OgQ(Sn)>Q(§1)]
(s

pd

=]
Il
!

{;} (logP(x",s"|@, ") e — <|OgQ(Sn)>Q(s”)]

Vv
Mz

S
Il
=

= (Z\<|09|5(Xn|§1=@,qn)|3(5n@)>Q(sn) - <|°9Q(Sn)>Q(§‘)]

"

pd

S
Il
=

[
M=

Fa(X",Q(s")

whereq" are parameters of the lower bound approximation described in Section 2.2.
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The variational EM that optimizes the bound also proceeds, like standaythEWb steps. The
E-step computes the expectation distribut@(s"). We could in principle choose any distribution
Q, but it is desirable to choose one that makes the variational bound as sigiasaible. The
variational bound of 10§(D|©) is the tightest aQ(s") = P(s"|x",©). Since that ideal posterior
is intractable, we defin€(s") to be the tractable posterior probabili(s’|x",&',q"), where®’
are fixed previous step parameters ajficare tuned to obtain the best approximation to the true
posterior. (Alternatively, we could separately and explicitly optin@ze maximizeF (D,Q(H)).)

The newq" s are obtained that maximiZ&(x"|s",@,q") by an iterative procedure described
in Figure 2. These iterative updates essentially form an embedded EM tabpra derived in
(Jaakkola et al., 1996). The subsequent computatid¥(#x", @', q") decomposes along the hid-
den factors and can be performed in linear time according to Equation 5inDigtéhe posteriors
on hidden sources concludes the E-step.

The M-step optimizeg (D, Q(H)) with respect t®. Given the decomposabs”), 7,(x",Q(s"))
can be rewritten as:

A
%
“Q

")) = (logP(x"s",0",0)) e o — (QS))qen
K
— [Z Iog n;)+|09<1 TG)
K
[ Zl o Bij (1— X)>—901(1_X?>
Q(

(7)

i)} log (1 o - q,'<'>> + (1—<5'1‘> (s,n)> qj(i)x{log(1— eeo,)]

K

" aale
J=11

— (Q(s")q

The last term is the entropy of the variational distribution, it does not depa® and can be
ignored in further M-step derivations.

For the rest of the paper all expectations are @€") — the variational posterior on hidden
factors based on previous-step parameters. The simplified notationlbavkgpendence orandq
implicit, but also expresses the intuition that by replacing the posterior byiatieaal distribution,
we effectively “disconnected” the model.

Since logP(x",s"|@), the term inside expectation, is approximated using the same transforma-
tion of P(x|s) as the posterior distribution over the hidden sourcesgthemputed in the E-step
can be reused in the M-step. The parameter updates for M-step carivasl ddraightforwardly by
setting

H

ET(D ,Q(H)) = Ef(D ,Q(H)) =

Unfortunately, no closed form solutions for these tasks exist. We updatpatameter®©
simultaneously by setting them to the numerical solutions of the above equatidnteete the
updates until convergence. The numerical solutions are obtained hgtibissearch (Figure 3).
The parameters are set to random non-zero values in the first EM iterdétenote that the depen-
dencies among parameters are relatively sparse and optimizations typicalgrge in very few
optimization steps. The complete parameter update formulas we derivedeaimdais procedure
are summarized in Figure 2.
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Updates of variational parametersq?(i). Iterate until fixpoint:

A0~ e oo g o [Iog(l—A”(i, )~ gl oty oo )

.

s} .7#
subject to conditiory { ; (i) = 1 ensured through normalizatiod(i, j) = e o
Updates of;js. Find the root oD 7 /08;; = 0 numerically:

N
2, e _”X?l—A“(i,j)] =0

Updates 0f6p;s. Find the root 00 7 /08g; = 0 numerically:

N K 0 An(HJ) 9*901'
& LZfﬂQ@MjO)XJ (1—An<i, H 1—e‘9°1>

n < n.n e i
i=

1— e O

N
Updates ofrgs: = N Z <Sn>Q(sn)

Figure 2: A summary of iterative optimization steps for the variational learnirthode

M-step optimization

" o) e
FO,0, 8, 1=1,..N

Figure 3: M-step optimization is simply a bisection-search procedure. The ¢sl the partial
derivative of the objective functioR w.r.t. 811 plotted as a function 0f;1. The little
stars on the curve represent iterations of the bisection algorithm. Thatades of the
bisection algorithm come from its simplicity: no derivatives that would be costtpto-
pute (we have to iterate through the data to compujeand good numerical stability.
The search typically converges in few (0) iterations.
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Figure 4: Model reconstruction experiment&@) Image patterns associated with hidden sources
used in the image decomposition problem. The ninth (bottom-right) pattern pones
to the leak.(b) Example images generated by the NOCA model with parameters corre-
sponding to patterns in panel (a).

3.3 Simplicity Bias

The empirical evaluation of the NOCA model revealed that the model is ablaédmatically shut

off “unused” noisy-or links between sources and observations. Juhgests the presence of a
term encouraging sparse models in the functiofal Indeed, the term:—(s")q(¢n)8ij (1 — X}) in
Equation 7 can be viewed as a regularization-like peRalbgigned to large values ef if these are
not supported by data. A penalty proportionaBfpand the posterior of a hidden source is added
for each observablxg‘ that is equal to 0. This has an appealing intuitive interpretation: it is unlikely
that the observatiox; is O, if the source is on(s) is high ) and the link betwees andx; is strong

(6;j >> 0). Consequently, the link in between the souj@nd observationis driven to zero if not
supported by the presence of positive observations. If all links beta@esmurce and observations
are driven to zero, the source is effectively disconnected and cprubed from the network. We
demonstrate this effect in the experiments in Section 4.2.

4. Evaluation of NOCA

In this section, we will evaluate NOCA and its variational learning algorithm syndhetic image
dataset built using NOCA model. The advantage of using a synthetic degtaiset the true model
as well as the instantiations of the hidden sources are known.

The image datasets used in the experiments are created by sampling fromfamigael with
8 hidden sources. Each source is associated with-a® iBnage pattern. The patterns and examples
of the convoluted input images are shown in Figure 4, panels (a) and (b).

2. Standard regularization framework involves a data-independenttbet penalizes for non-zero parameters. How-
ever, here the penalty term depends on data and is a property of thé mode
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a) (b) ()

Figure 5: Examples of models learned from 50, 200 and 1000 samplesig@athrough c). The
differences among models illustrate the improvement in the model recovery widagic
ing sample size. Although some source images are identified quite well with assfew
50 samples, the noise in other images is apparent. Models learned frorm@Q@@0
samples are visibly improved.

4.1 Model Reconstruction

Our first objective is to assess the ability of the variational algorithm to leam™NM@CA model
from observational data. In this experiment, we used datasets of sizé@iD-datapoints that were
generated randomly from the model. The datasets were given to the leafgorghm and the
learned models were compared to the original model.

Figure 5 visualizes the parameters of three models recovered by the tgafgorithm for
varied sample sizes. It is apparent that the increase in the number of sdegals to improved
models that are closer to the original model. The model learned from 50 sasyfters from high
variance caused by the low number of training examples. Neverthelesstiit &ble to capture
some of the original source patterns. Sample sizes of 200 and 1000 impeopattarn recovery.
By learning from 1000 samples, we were able to recover almost all sbusssl to generate data
with a relatively small distortion.

Figure 5 illustrates the dependency of the model quality on the sample sizditaiieaterms.
To measure this dependency more rigorously we use the training/testingiealitamework and
a metric based on the joint distribution of observable data. The NOCA modbklays learned
from a training set. We use training sets of sizel®l 200,500, 1000 2000 5000. The testing set
(sample size 2000) is viewed as a sample from the true multivariate distributeooallate its log-
likelihood with respect to the learned model. A better fit of the model will be ¢ttein improved
log-likelihood of the test sample with respect to this model. Figure 6 shows thiké&dignoods
for NOCA models averaged over 50 testing sets. The results demonstitzaa hareased size of
training sets leads to a better log-likelihood of test data and hence a bettexiamgtion of the true
distribution.

4.2 Model Selection

In practice, the correct latent dimensionality is rarely known in advanceddliselection is typi-
cally addressed within the Bayesian framework. Marginal data likelihoodg€r and Herskovits,
1992) or its approximations (such as the Laplace approximation) are typisaiti/for this purpose.
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No samples vs testing logperplexity
T T

e —

Per-test-datapoint LL

50 100 200 500 1000 2000 5000
Training samples

Figure 6: Average log-likelihoods of NOCA models on testing sets. The madelkearned from
training sets of size 50, 100, 200, 500, 1000, 2000 and 5000. Thagmsare over 50
trials. One-standard-deviation error bars are shown. The incredbke Ing-likelihood
illustrates the improvement in the model recovery with an increasing sample size.

However, in presence of hidden variables it is intractable to compute thémaHikelihood. To ad-
dress the model selection problem in NOCA we rely on the Bayesian Inform@ticerion (BIC).
The BIC is a large-sample approximation to the integrated likelihood (Schiv@ar3):

BIC(k) = —In p(D|k, ©) + %wkInN

where®y is the ML estimate of NOCA parameters for the model withidden sources angly is
the number of free parameters in this model.

Figure 7a shows the results of model selection experiments based on tise@&C The results
are averages of BIC scores obtained by learning the model using 2088smanerated by sampling
from NOCA model with 8 hidden sources. In training on this dataset, the nuofibesumed hidden
sources varied from 2 to 15. To assure fair comparison, the same traiaiagvas used for all
models in one train/test run. We see that the optimum BIC score is achievesbat@s which
corresponds to number of sources in the original model.

The BIC score penalizes models with larger number of parameters. Tlad¢typepposes the
increase in the log-likelihood of training data we expect to see in more comple&lswith a larger
number of hidden sources. However, in Section 3.3 we have pointedeoexifitence of an inherent
“regularization” ability of NOCA, that is, its ability to shut down the influenceusfnecessary
sources once the true dimensionality of the model is reached. In suclk aveasould expect the
log-likelihood of training data to level out for larger than the true number afces. Figure 7b
illustrates this point by plotting the log-likelihood of data for models with differeatnber of
sources. The setup of the experiment is the same as used in the BIC experifiee log-likelihood
score increases for models with fewer than 8 sources. The log-likelifowodore than 8 sources
remains approximately the same. Visual inspection of the learned loading rea@veals how this
happens: many sources are disconnected from the model when theleasdsltheir corresponding
loading matrix rows to be identically 0. The models that were initialized with more tlsuges
most often stabilized at 7-8 active (connected) sources. The fadhtbaine instances the number
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x 10° Model selection: BIC

BIC score
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0 2 4 6 8 10 12 14 16
number of sources
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Model selection: loglikelihood of data

loglikelihood

2 4 6 8 10 12 14 16
number of sources

(b)

Figure 7: (a) The average BIC scores for the models with varied number of sou(bg3he av-
erage log-likelihood of data for model with varied number of sources. olh loases,
the true number of sourcé§is fixed at 8. Averages are calculated from 20 trials (one-
standard-deviation bars are shown). In each trial, the model was ¢easirey 2000 data
points. The BIC reaches its optimal value at, and log-likelihood levels ati@ssuvhich
corresponds to true number of sources.

. Scaling of runtime with sample size
10° T T T
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10°F

Runtime (ms)

10°F

10°2

500 1000 2000 5000
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@)

x10° Scaling of runtime with latent dimensionality

asfk

35
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Runtime (ms)

15k

osf
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Dimensional lity

(b)

Figure 8: (a) Runtimes of NOCA as they scale with increasing size of the trainingkséd. fixed
at 8. (b) Scale-up with the number of assumed latent sources, the dataset sizd &tfixe

2000.

of sources converged to 7 can be explained the ability of the leak factdfetdieely model an

additional source.

4.3 Running-time Analysis

Precise time-complexity analysis of the NOCA learning algorithm is impossible sotbetlire ex-
pectation and maximization steps involve iterative procedures whose geneerproperties are not
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well understood. Moreover, these are embedded in the EM loop itself hitel @entual conver-
gence is assured, its rate is not. Therefore we evaluate the time complexitycaitypiwvith respect
to N, the size of the training set ar¢, the number of latent sourcésWe have observed no de-
pendence between training set size, the assumed number of latentssandcdne number of EM
iterations performed in experiments.

The running time of the learning algorithm for different training set sizelsasvs in Figure 8(a).
A nearly straight line indicates that the complexity grows polynomially with the numfsamples.
In fact, we have observed that the time complexity scales approximately lineénlthe number of
samples in the trainset. The analysis of running times for different numisauotes in Figure 8(b)
shows that these scale roughly linearly with the number of assumed latexkesourhis gives
empirical support for the efficiency of the variational EM approximatioc@spared to the exact
EM algorithm.

4.4 Dimensionality Reduction and Data Compression with NOCA

Latent variable models are inherently well suited for dimensionality redudtiossy compression
of the data by the NOCA model can be achieved as follows. Given the E&GE€A model and
an observed test-set image, we compute the posterior of each hiddee sour pick the value
with the higher posterior probability. The values of the hidden sourceasaatlow-dimensional
representation of the test data. The high-dimensional data can thendvenext by sampling the
observables given the stored values of sources and compared tigihaldest-set.

Figure 9(a) illustrates the data reconstruction error of the NOCA modeidddior different
sample sizes. The data reconstruction error is defined as the propdrieatwe values in which
the original dataset differs from the reconstructed data. We meastaeet@nstruction error on
both the training and the testing data. The training set is the data used to |#aen@ddel, the
testing set is an additional sample from the model. The data reconstructisrfarthe training
set is smaller for very small sample sizes and stabilizes for sample sizesQfveiTRis can be
explained by “overfitting” — the use of free model parameters for memorizatidraining data —
for small sample sizes, and saturation of the model to its stochastic limit for Isageple sizes.
The data reconstruction error for test sets behaves inversely — it s2virmm smaller training sets
and stabilizes for larger training sets as the learned model improves.

Figure 9(b) shows the influence of the number of hidden sources oatheatonstruction error.
The data reconstruction error goes down with increakirand flattens out as the learned models
use no more than the true number of sources (8), thanks to the effedbaesin Section 3.3.

A related dimensionality-reduction model tailored to binary data is offered gigtio PCA
(Schein et al., 2003). In this model, each comporx@mtf a datapoink” is assumed to be sampled
from a Bernoulli distribution whose parame@l‘ris determined by a logistic unit from the factors
v, latent coordinates and the bias term;: 87 = o(vj.uj +4;). The crucial difference between
NOCA and logistic PCA is that the latent space in NOCA is discrete while in logistit PG
continuous. As a result, logistic PCA uses a many-bit floating point repiztsen to capture many
one-bit feature values. Figure 10 illustrates data reconstruction domitse same experiments as
performed for NOCA in Figure 9. The results demonstrate better datag&aotion performance
of the logistic PCA model. This is expected since the complexity of NOCA's latgatesis much

3. It follows from the form of the update equations that the algorithm is liire&, the number of observable dimen-
sions.
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Figure 9: (a) Average data reconstruction errors obtained for varied training sample @) Av-
erage data reconstruction error plotted against the number of assunmgdtateces. All
values are averaged over 50 runs.
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Figure 10: Reconstruction errors achieved by the logistic PCA, a) asvirgywith trainset size
(fixed size testset), and b) as they vary with the latent dimension of the model.

smaller (inite as opposed to continuous). The differences in performance dentertbiearadeoff
in between the complexity of the representation of the latent space and ita@cchn particular,
NOCA uses 8 bhits to represent each data point in the latent space while tbiicI®CA uses a
vector of 8 floating point values per data point.

5. An Application of NOCA to Citation Analysis

The analysis of NOCA on image datasets confirms it can discover, fullypengised, the structure
of the hidden components reasonably well. But does the method apply toathead? Do its
assumptions really fit the data it was designed for? To assess this aEpECA we test it on
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a citation analysis problem. We first discuss the dataset and proceedtotrepresults of three
evaluation strategies: (1) evaluation by a human judge, (2) a cosineafidtased metric and (3)
perplexity of a testing set.

5.1 Citation Data

We acquired a dataset of approximately 17.000 documents from the Ci@8eerservice. These
are the HTML documents that place a scientific article within the lattice of citati@igprbe mis-
taken for the actual text of the article. We chose forty authors active setpablication areas:
Introductions and tutorialsMarkov chain Monte CarlpVariational methodsLoopy belief prop-
agationandKernels and support vector machineBlaturally, there are overlaps; for example, a
publication discussing approximate inference in Bayesian networks is likehetdion both loopy
belief propagation and MCMC techniques. This overlapping structuidersrthe task quite non-
trivial. In addition, it makes it difficult to come up with an unambiguous “gold d&ad” clustering.

We selected all papers in the dataset citing any of the selected authordatélset was prepro-
cessed into a binary matri;;, where the elemert, j) is 1 if document cites a paper authored by
authorj and 0 otherwise. Zero rows, that is documents that cite none of the guahediscarded.
There were 6592 non-zero rows in the matrix.

5.2 NOCA Formulation of Citation Analysis

The citation dataset consists Mfdocuments, each of which cites a number of authors. The indi-
vidual authors publish on one or more topics. Our conjecture is that ceitation patterns are
indicative of paper topics. We wish to discover these topics and theiriatsd@uthors, in a fully
unsupervised manner.

To analyze the data with NOCA, we assume that the topics are representettheviiidden
binary variablesss,...sc € {0,1}. Intuitively, 5 = 1 in the unobserved event that the document
discusses topit. The citation features correspond to the observed varia@les. xp. The n-th
document in the corpus is thus represented I+@mensional binary vectax". The event that
documentn cites authorj is captured by observimgjj1 = 1. The “affinity” of authorj and topici
is expressed by the weighps which parameterize the noisy-or CPD’s of the bottom layer nodes.
This defines a generative probabilistic model at the document featute leve

e Foralli=1,...,K, samples from Bernoulli(Tg)

e Forallj=1,...,D, samplex; from the noisy-or distributiom(x;|s).

5.3 Mixture Models

Latent variable models have demonstrated good results in text and docamagysgis. Most of these
are mixture models that view a document as a mixture of hidden topic factoestopic factors
are identified with distributions over words. The key assumption of a mixtureshisdhat the
occurrence of a specific word is determined bsiragle mixture component. These models share
the bag-of-words view of a document and provide a probabilistic modeleoh word occurrence.
NOCA offers a different view of a document: A document is a combinationarf-competing
topics and each word is determined bgamnbinationof topics. NOCA does not define a model for
generation of each single word, which makes it less suitable for applicatichsas text modeling,
but it fits more naturally the type of data encountered in link analysis.
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Figure 11: PLSA (a) and LDA (b) graphical models

In the following, we briefly review two mixture models applied frequently in text eliod):
PLSA and LDA. These state-of-the-art text models have also beestifecdink analysis purposes
(Cohn and Hofmann, 2001; Cohn and Chang, 2000).

Probabilistic Latent Semantic Analysis (PLSA) (Hofmann, 1999a), whose graphical model is
shown in Figure 11(a), assumes that each document is representedobyex combination (a
mixture) of topics and that the features of the document are generated fmtlthwing process:

1. pick a document according to MultinomialP(d) (defined by a dummy indexing of the
documents in the dataset),

2. sample a topie according to MultinomiaP(z/d),
3. generate a feature froR{x|z).

The joint probabilityP(d,x) factorizes as?(d) 3 ,P(z/d)P(x|z). Since the topic variable is un-
known, the algorithm for learning PLSA derives from the EM framework.

Latent Dirichlet Allocation (LDA) (Blei et al., 2003) adds Bayesian hyperparameters to the
PLSA model so that the mixture proportions themselves are a Dirichlet-distlilbatelom vari-
ate (Figure 11). The following process is assumed to generate the dasumen

1. sample a paramet@rfrom the exchangeable Dirichlet distributi@ir (a),
2. sample a topic from Multinomid?(z|0),
3. generate a feature froR(x|z,f3).

Both the paramete® and the topic variable are unobserved. The addition of the new hidden
parameters makes the exact inference for LDA intractable. To alleviate riblidemn Blei et al.
derive a variational inference algorithm which in turn allows them to devafogfficient variational
EM learning procedure.

The conceptual difference between NOCA on the one hand and PLERAN the other is
that NOCA views a document assat of featureswhile the mixture methods regard it adag
of words More importantly, NOCA makes a different assumption about the natureeatotbic
factors. PLSA (Figure 11, left) and LDA (Figure 11, right) view the tomctbrs as points in
the vector space spanned by the orthogonal basis which is the vogabMareover, all these
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points belong to a subspace of tfig2 — 1)-dimensional word simplex since they correspond to
normalized distributions. NOCA treats the topic as a separate type of entitidiw¢hattheir own
K-dimensional space which projects non-linearly into the vocabulary specepposed to PLSA,
where onaaspectis assumed to be responsible for the generation of a word, in NOCA, pditentia
all of the topic factors contribute to the generation of a single word feafudditionally, the added
freedom of the leak parameter allows NOCA to “put aside” the documentsevmosstructure seems
to stand out. These do not have to be accounted for in the output compoGkaeer clustering is
the outcome that we would expect from this organization.

5.4 Experiments

The evaluation of topic discovery in any of the frameworks relies on thetifaztion of largest
elements of output vectors or matrices. Since the semantics of the numeris défees in the
respective approaches, the only consistent way of comparing the ouigpoyslisting the most
prominent elements of each of the identified clusters. We achieve this gadiffedent models as
follows:

e Logistic PCA is parameterized by the loading mawixand the constant bias vectar We
interpret rows oW as the component vectors and list the authors corresponding to the larges
elements in each component vector.

e PLSA parameterization is not as in Figure 11(a), but instead the model isa&qnily param-
eterized withP(z), P(d|z) andP(x|z) (Hofmann, 1999a). We list the authorsiith the highest
P(x|z) for each aspea Also reported i$>(z), to help assess the relative representation of the
aspects.

e LDA provides the matrix3 and the Dirichlet hyperparametar The reported components
are the rows of3; the authors corresponding to the highest values in each r@acé listed.
The components that LDA recovers are very stable, which is chardicterigshe Bayesian
approach taken in developing the model. Therefore we report resoftsZ0 runs with dif-
ferenta (the initial exchangeable Dirichlet prior) instead, starting frems 0.01 and ending
ata = 10.

e For NOCA, the output consists of the cluster prioysthe loading matrixp and the “bias
vector” pg. The authors listed under each component are those who receive@tiesth
weight inp;, thei-th row of the loading matrix. Again we report the priors; to compare
the relative size of the clusters. Note that the priors need not sum toinoe,each of them
corresponds to a separate random variable.

5.4.1 QUALITATIVE EVALUATION

We ran all of the algorithms 20 times with different random initializations and llisjtadged the
results from displays such as that in Figure 13. If a particular topic fagpeared and was deter-
mined to be of good “cluster purity”, we assigned a score of 1 to the comhinafticommunity and
analysis technique. If the cluster was identifiable with a community, but judgled t§ mediocre
purity, the score assigned was 1/2. Otherwise, the score assigned Wédmeever the community
was captured in more than one factor, only one was counted. The maxinuenis@0 as there
were 20 experimental runs. The entries in Table 1 are the respectenpeges.
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Figure 12: A result of noisy-or component analysis on the citation dat@iketcolumns visualize
the parameters of the noisy-or loading matrix after they are rescaled byithefpthe
source. Black fields correspond to Os in the loading matrix, while white aresspond
to 1s.

(a) With 5 components. The following components are discernible:

- The authors dominating the first component are: J. Pearl, M. Jordaau8tzen and
D. Spiegelhalter. Weaker ties are to W. Buntine, N. Friedman and D. Kolkes. cbm-
ponent contains many respected authors of basic references andlsutorBayesian
belief networks.

- The second source was shut down in this run.

- C. Burges, B. Sablkopf, A. Smola and V. Vapnik form the core of the third component.
Without any doubt, this component represents the kernel and SVMrobssammunity.
- The authors prominent in the fourth factor are Z. Ghahramani, M. dp@aHinton,
R. Neal, L. Saul, C. Bishop and M. Tipping. This source captures thati@aral ap-
proximation community.

- The last component consists of the following authors: B. Frey, W.rraee K. Mur-
phy, S. Lauritzen, J. Pearl, Y. Weiss and J. Yedidia. All authors pudisixtensively
on loopy belief propagation, using J. Pearl’s BP algorithm. The presdraseoutlier in
this set, S. Lauritzen, can be attributed to the fact that he is among the nustriitk/
cited authors in the general context of Bayesian networks. We carnucenthat our
algorithm found the LBP community.

(b) A run with 10 components illustrates the regularization behavior. Fouofoten
sources were completely or almost completely shut off.
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Figure 13: Typical outputs from the link analysis algorithms:
a) Logistic PCA
b) Probabilistic latent semantic analysis. Also reported is the prior of et z=

i).

Comp. 1 [Comp. 2 Comp. 3 [Comp. 4 Comp. 5 Aspect 1 |Aspect 2 |Aspect 3 Aspect 4 |Aspect 5
0.1284 0.1640 |0.3513 0.2321 0.1241
Vapnik [Doucet Bishop [Jain Pearl Bishop Friedman|Jordan Vapnik  |Geman
Doucet |de Freitas [Vapnik [SpiegelhalterfSmola Jain Neal Hinton Smola Doucet
Freeman [GhahramaniHastie [Friedman  [Lauritzen| |Kearns Hastie |Spiegelhalter|Pearl Gordon
Kearns [Friedman |Jain Gordon [Friedman | |Tipping Murphy |Lauritzen [Schollkopflde Freitas
Smola Murphy Burges [Bishop [Freeman Hinton Koller Pearl Burges |Koller
Murphy [Hastie SchollkopfiGeman Horvitz Schuurmansg/Jaakkola |Freeman Horvitz |Frey
de FreitasJordan Smola INeal Schollkopf [Saul Buntine |Weiss Koller Murphy
? ? kernel ? ? ? ? ? kernel MCMC
(a) logPCA (b) PLSA
Comp. 1 Comp. 2 [Comp. 3 Comp. 4  [Comp. 5 [Comp. 1 |Comp. 2 ‘Comp. 3 ‘Comp. 4 |Comp. 5
0.0022 0.0912  |0.0858 0.0277 0.0102 a=1
Minka \Vapnik  |[Lauritzen |Jordan [Freeman| [Vapnik |Jordan Geman  [Friedman [Pearl
Jordan Smola Pearl GhahramaniYedidia | [Smola Hinton Doucet  [Koller ILauritzen
Jaakkola  [SchollkopfSpiegelhalterHinton [Weiss Schollkopf[Neal de Freitas [Hastie Jain
[Yedidia Burges |Jordan Bishop [Frey Bishop |GhahramaniMurphy [Kearns Spiegelhalter
GhahramaniHastie Buntine Saul Murphy | [Burges [Weiss Gordon  [Buntine [Dechter
[Freeman Jaakkola [Koller Jaakkola  [Welling | [Tipping (Jaakkola  |[Koller Chickering [Freeman
[Frey Bishop  |[Dechter Attias [Pearl Jaakkola [Horvitz Welling  [SchuurmansfFrey
? kernel intro variatl [LBP | kernel \variatl [MCMC jintro intro
(c) NOCA (d) LDA

c¢) Noisy-or component analysis. The prior on a sol(®) is also shown.
d) Latent Dirichlet allocation witlu = 1.

Below each component, our evaluation of whether the component refgessrof the

the publication communities.
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Community

Method || intro | MCMC | var’l | LBP | Kernel
LogPCA | 40.0 425| 15.0| 10.0 67.5
PLSA 67.5 57.5| 50.0| 32.5 75.0
LDA 80.0 95.0| 62.5| 5.0 87.5
NOCA 85.0 15.0| 92.5| 82.5 75.0

Table 1: Success rates in recovering subcommunities in the citation datauibers are percent-
ages averaged over 20 different random initializations.

The logistic PCA does not appear to be well suited for this task and is ootpextl by the
other methods. PLSA finds on average 2 communities in each run. LDA aisctihe MCMC topic
consistently, but fails to discover the LBP community. NOCA exhibits the oppobsit@vior: it
reliably discovers LBP but fails to find the MCMC community most of the time. Th&&érnel
group and the variational methods community is consistently discovered byN@iA and LDA,
as well as the authors of widely cited overview and tutorial articles.

The difference observed for the LBP and MCMC communities is striking &odld be ex-
plained by pointing out the characteristics of the respective communitiesLDAanodel is able
to recover communities that have established their “market share” andhiggvenough prior prob-
ability that they are able to compete with the other groups for the direction thabpiesimplex
takes in the “vocabulary” space. LDA thus has a difficult time finding small,rging areas. On
the other hand, these nascent communities tend to be highly coherent, wittpeofesers that are
very likely to be cited for their seminal papers. Such structure favors @EMAmodel, which has
a tendency to pick out tightly woven patterns and leave the more diffuse dsnealie picked up
by the leak factor. Thus the broader MCMC community eluded the noisy-dyzemawhile it was
reliably captured by LDA; and the NOCA brought to light the LBP community.

In summary, NOCA discovers on average as many clusters as LDA, budubkters are of
different nature. If one wishes to gain insight into this type of data, weedate that both methods
be used, as they discover distinct kinds of patterns.

5.4.2 THE COSINEMETRIC

While we took great care to assure objective evaluation, the aboveambpionevertheless open to
criticism on the grounds of “subjectivity.” We would like our recoverednpmnents to align with
a “gold standard,” a set of vectors defined by a hureforehe or she sees the result of the clus-
tering algorithm. Therefore we defined 0-1 vectors corresponding tedtablished communities
as we perceive them. For example, the vector corresponding to LBP cdtgrhas 1s at positions
corresponding to names such as Freeman, Frey, Yedidia, etc. anéWheais.

A standard distance metric for vectors is thasine distanceThe similarity of two vectors,y
is the cosine of their angle: ca$x,y) = % With the cosine metric, one can evaluate the simi-
larity of two vectors. Howevehow do we quantitatively evaluate a component set X as a whole?
Recovered components need to be matched to the original components asrihey permuted
without affecting the likelihood. To obtain a one-to-one match, each origoalponent is paired
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Citation Dataset - Weighted cosine Citation Dataset -- Weighted cosine, K=10

Dplsa 0.25 7 Bplsa
B noca Hnoca

Olda 0.2 7 Olda
I mixuni O mixuni

i I
T | 2 — mlogpca 0.15 Riogpéa
1 -8 H [
i 01 1 ¥
0,05 || i |
| 0+
3 4 5

Figure 14: Weighted cosine similarities. On the horizontal axis, ithe number of components
matched. The vertical axis shows the weighted cosine similarity. The left paoes
NOCA doing a superior job identifying the first few components, but it is sower-
taken by the mixture-based methods. The methods in the left panel opeititdatant
dimensionality 5, equal to the number of human-judged clusters. On the righgich
ture changes when the latent dimensionality is increased to 10. While therpanfoe
of mixture-based methods deteriorates, NOCA's performance improwésilllistrates
the difference in the assumptions about the data-generating procesgictire sug-
gests that the more sophisticated methods do a better job in comparison witheliesas
(a simple mixture of unigrams model) when the asumed latent dimensionality slightly
exceeds the true number of clusters in the data.

with exactly one found by NOCA, so that the weighted sum of cosine distaaarinimized. The
weightsuy; are defined so that they are proportional to the prior probabilities of the letenponents
and form a convex combination (sum to 1). The computation can be dedtyitbe formula

K
Weos(X,Y) = rgipn Zlu (i) COST (Xiy, Yo(i))
9 |:

wheremandp are permutations of the setsandY, respectively, and the minimization ranges over
all possible permutations. Note that although this formula suggests evalugtiogentially many
permutations, it effectively calls for finding a maximal-weight matching in a liggagraph and can
be computed efficiently. The resulting weighted cosine similarities are shodi@nmented in
Figure 14.

5.4.3 FEERPLEXITY

While the cosine scoring metric provides useful insights, using a standabélglistic measure

of model quality is in order to gauge how well the model estimates the joint derfsitye mb-
servable data. To assess this aspect of model recovery we rely oroiseentropy of the “true”
distribution and the distribution that the model entails. The testing set is viewada®sple from

the true multivariate distribution and thecross entropywith the model distributionm is defined

by H(t,m) = — 5 iy t(x)logm(x). Since the datapoints in the test set are by assumption inde-
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Cross-entropy

K NOCA LDA PLSA | MixUnigrams
5 | <65+52 | <9.0+78 | 6.1+6.9 229+313
10 | <65+52 | <84+75 | 49+64 325+46.0

Table 2: Cross-entropies between the model distribution and the empirit#bisn induced by
the test set. These numbers were obtained as mean and standard demi&@dmnain/test
splits.

pendent and identically distributed, the cross entropy is approximately #ragesunconditional
log-probability of datapoints in the test set (Cover and Thomas, 19%rplexityof the modelm

is defined as the quantity™®™ and can be intuitively interpreted as the amount of information
needed to predict the next datapoint. In short, the lower the crosgnsrahe more precisely the
model has learned the distribution of observables from the training set.

In the perplexity evaluation of NOCA and LDA, we use the tractable lowembdswon the
document probabilitie®(x) (Equation 6 in this paper and Equation 13 in Blei et al. (2003)). The
PLSA and logistic PCA models cannot be evaluated under the perplexity irakeince they
do not define a probability distribution on the test set. PLSA does definetrgbdisn on the
training set and the fold-in heuristic can be used (Hofmann, 1999b) sd thefines one on the
test set. However, this heuristic gives PLSA an optical advantage tiver models, as it allows
it to refit the mixing proportions. As a baseline model, we will use a simple mixtutaigirams
model. As NOCA provides no word-level model, but only a document-lesaability model, we
must compare all models in terms of document perplexity, instead of the staapjproach that
works at the level of words. Inspecting Table 2, we observe that thedon perplexity of NOCA
is significantly lower than that of LDA. PLSA shows a cross-entropy vilyuan the level with
NOCA, or slightly better. The cross-entropy of the baseline mixture-ajrams model is high,
which is attributable to the data sparsity issue. Importantly, note that the valows $or LDA and
NOCA arelower boundswhile the PLSA and MixUnigrams are exact.

6. Summary and conclusions

We have presented NOCA: a new latent-variable component analysisioakier high-dimensional
binary data. To learn the NOCA model we have devised and presenteMdrag&ed variational
algorithm that overcomes the complexity limitation of exact learning methods. fbip@ged algo-
rithm makes no assumption about the structure of the underlying noisytweorhe the structure is
fully recovered during the learning process.

In addition to the component analysis task and related structure discaodtgms, NOCA can
be also used as a dimensionality reduction (data compression) tool, as w@lt@sabilistic model
of high-dimensional binary data. We have tested these aspects of the maaeslyathetic image
decomposition problem and on a citation analysis problem of CiteSeer dotaum&he model
and the algorithm showed favorable scale-up behavior and a veryrgoddl recovery and error
reconstruction performance.
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The task of community discovery has a natural formulation as a NOCA leapnotgem. A
dataset of scientific paper citations in the field of machine learning was a&dhlging the setup.
The results, under several metrics, indicate that our algorithm perfompaowith the current
state-of-the-art mixture methods, but due to different data-generasgrgptions it tends to ex-
pose different data structure. Such behavior is valuable as it eneingssight into the intrinsic
compoaosition of the dataset.
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