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This paper addresses the problem of speech segmentation and enhancement in the pre-
sence of noise. We first propose a new word boundary detection algorithm by using a
neural fuzzy network (called ATF-based SONFIN algorithm) for identifying islands of
word signals in fixed noise-level environment. We further propose a new RTF-based
RSONFIN algorithm where the background noise level varies during the procedure
of recording. The adaptive time-frequency (ATF) and refined time-frequency (RTF)
parameters extend the TF parameter from single band to multiband spectrum analy-
sis, and help to make the distinction of speech and noise signals clear. The ATF and
RTF parameters can extract useful frequency information by adaptively choosing proper
bands of the mel-scale frequency bank. Due to the self-learning ability of SONFIN and
RSONFIN, the proposed algorithms avoid the need of empirically determining thresholds
and ambiguous rules. The RTF-based RSONFIN algorithm can also find the variation
of the background noise level and detect correct word boundaries in the condition of
variable background noise level by processing the temporal relations. Our experimental
results show that both in the fixed and variable noise-level environment, the algorithms
that we proposed achieved higher recognition rate than several commonly used word
boundary detection algorithms and reduced the recognition error rate due to endpoint
detection.

Keywords: Mel-scale frequency; multiband; spectrum analysis; self-learning ability;
neural fuzzy network.

1. Introduction

An important problem in speech processing is to detect the presence of speech in

noisy environment, where the word boundary is hard to detect exactly. A major

source of errors in the isolated-word systems for the automatic speech recogni-

tion is the inaccurate detection of the beginning and ending boundaries. In many

applications, the problem is further complicated by nonstationary backgrounds

where there may exist concurrent noises due to movements of desks, door slams,

etc. These background noises can be broadly classified into three classes: impulse

noise, fixed-level noise and variable-level noise. Among the three classes of back-

ground noises, the impulse noise can be solved by the parameter of time duration.

The problem of fixed-level background noise was first attacked by commonly used
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robust word boundary detection algorithms.15,22–24 These algorithms usually use

energy (in time domain), zero crossing rate and time duration to find the boundary

between the word signal and background noise. It has been found that the energy

and zero-crossing rate are not sufficient to get reliable word boundaries in noisy

environments, even if more complex decision strategies are used.13 Especially, the

zero-crossing rate is very sensitive to the additive noise.

Up to date, several other parameters were proposed such as linear prediction co-

efficient (LPC), linear prediction error energy14,21 and pitch information.7 Although

the LPCs are quite successful in modeling vowels,4 they are not particularly suitable

for nasal sounds, fricatives, etc. The reliability of the LPC parameter depends on

the noisy environments. The pitch information can help to detect the word bound-

ary, but it is not easy to extract the pitch period correctly in noisy environments.

Four endpoint detection algorithms were compared in Ref. 13: an energy-based

algorithm with automatic threshold adjustment,15,23 use of pitch information,7

a noise adaptive algorithm, and a voiced activation algorithm. The reliability of

these four algorithms are strongly dependent on the noise condition. In this con-

nection, Junqua et al.13 proposed the time-frequency (TF) parameter. They used

the frequency energy in the fixed frequency band 250–3500 Hz to enhance the

time-energy information. Based on the TF parameter, a TF-based robust algo-

rithm was proposed in Ref. 13 including noise classification, a refinement procedure

and some preset thresholds. The TF-based robust algorithm needs to empirically

determine thresholds and ambiguous rules which are not easily determined by hu-

mans. Some researchers used the neural network’s learning ability to solve this

problem. In Refs. 5, 14 and 21, multilayer neural networks are used to classify the

speech signal into voiced, unvoiced and silence segments. In the neural network

approach, the decision rules are in the form of input–output layer mappings and

can be learned by the training procedure (supervised learning). However, the proper

structure of the network (including numbers of hidden layers and nodes) is not easy

to decide.

Although the aforementioned TF-based algorithm outperforms several com-

monly used algorithms for word boundary detection in the presence of noise, for

variable-level background noise, this TF-based algorithm usually results in inaccu-

rate detection of the beginning or ending boundaries in the recording interval. In

the real world, the background noise level is not always fixed and may gradually

vary over the recording interval. It is not reasonable to make these preset thresholds

fixed over the recording interval. If the variation of background noise level is large,

these fixed preset thresholds will result in incorrect location of word boundaries.

The main aim of this paper is to develop a new robust word boundary detection

algorithm to attack the problem in fixed- and variable-level background noise con-

ditions. To avoid the problems of the above approaches, this paper first proposes a

modified TF parameter and then uses a neural fuzzy network to detect word boun-

dary based on this parameter. By considering multiband analysis of noisy speech

In
t. 

J.
 P

at
t. 

R
ec

og
n.

 A
rt

if
. I

nt
el

l. 
20

02
.1

6:
92

7-
95

5.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
T

IO
N

A
L

 C
H

IA
O

 T
U

N
G

 U
N

IV
E

R
SI

T
Y

 o
n 

04
/2

7/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.



November 11, 2002 9:28 WSPC/115-IJPRAI 00207

Noisy Speech Segmentation/Enhancement 929

signals, we propose a new robust parameter, called the adaptive time-frequency

(ATF) and refined time-frequency (RTF) parameters. The ATF and RTF param-

eters represent both the time and frequency features of noisy speech signals and

extend the TF parameter from single-band to multiband spectrum analysis based

on the mel-scale frequency bank (20 bands). A procedure is proposed such that

the ATF and RTF parameters can extract more informative frequency energy than

the single-band approach to compensate the time-energy information by adaptively

choosing proper frequency bands. The ATF and RTF parameters are obtained af-

ter smoothing the sum of the time energy and frequency energy. It makes the word

signal more obvious than the TF parameter that uses a single frequency band.

Based on the ATF and RTF parameters, we further propose new word boundary

detection algorithms by using neural fuzzy networks for identifying islands of speech

signals in noisy environment. The neural fuzzy networks are called self-constructing

neural fuzzy inference network (SONFIN), and recurrent self-organizing neural

fuzzy inference network (RSONFIN) that we proposed previously in Refs. 11 and

12. The RSONFIN can find the variation of the background noise level and detect

correct word boundaries using the temporal relations embedded in the network con-

nections of the memory elements. Due to their self-learning ability, the SONFIN

and RSONFIN can always find an economic network size in high learning speed,

and avoid the need of empirically determining the number of hidden layers and

nodes, by housing the human-like IF-THEN rules and expert knowledge.16,17 Ex-

perimental results also showed that the SONFIN’s and RSONFIN’s performances

were not significantly affected by the size of training set.

This paper is organized as follows. The ATF-based SONFIN algorithm and

the structure and function of the SONFIN are briefly introduced in Sec. 2. The

RTF-based RSONFIN algorithm is derived in Sec. 3. The performance evaluation

and comparisons of the proposed scheme using the ATF and RTF parameters are

performed extensively in Sec. 4. Finally, the conclusions of our work are summarized

in Sec. 5.

2. ATF-Based SONFIN Algorithm

In this section, we generalize the single-band analysis of the TF parameter to multi-

band analysis based on mel-scale frequency bank and proposed ATF-based SONFIN

algorithm for speech segmentation in fixed noise-level environment.

2.1. Adaptive time-frequency (ATF) parameter

For the human ear perceiving speech along a nonlinear scale in the frequency

domain,1 one approach is to use a uniformly space-warped frequency scale, such

as the mel scale. The relation between mel-scale frequency and frequency (Hz) is

described by the following equation19:

mel = 2595 log(1 + f/700) (1)
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where mel is the mel-frequency scale and f is in Hz. The filter bank is then de-

signed according to the mel scale where the filters of 20 bands are approximated

by simulating 20 triangular band-pass filters, f(i, k) (1 ≤ i ≤ 20, 0 ≤ k ≤ 63), over

a frequency range of 0–4000 Hz. Hence, each filter band has a triangular bandpass

frequency response, and the spacing as well as the bandwidth are determined by

a constant mel frequency interval by Eq. (1). Consider a given time-domain noisy

speech signal, xtime(m,n), representing the magnitude of the nth point of the mth

frame. We first find the spectrum, xfreq(m, k), of this signal by Discrete Fourier

Transform (128-point DFT):

xfreq(m, k) =
N−1∑
n=0

xtime(m,n)W kn
N , 0 ≤ k ≤ N − 1, 0 ≤ m ≤M − 1 (2)

WN = exp(−j2π/N) (3)

where xfreq(m, k) is the magnitude of the kth point of the spectrum of the mth

frame, N is 128 in our system, and M is the number of frames of the speech signal

for analysis. We then multiply the spectrum xfreq(m, k) by the weighting factors

f(i, k) on the mel-scale frequency bank and sum the products for all k to get the

energy x(m, i) of each frequency band i of the mth frame:

x(m, i) =
N−1∑
k=0

|xfreq(m, k)|f(i, k) , 0 ≤ m ≤M − 1, 1 ≤ i ≤ 20 (4)

where i is the filter band index, k is the spectrum index, m is the frame number,

and M is the number of frames for analysis.

In order to remove some undesired impulse noise in Eq. (4), we further smooth

it by using a three-point median filter to get x̂(m, i):

x̂(m, i) =
x(m− 1, i) + x(m, i) + x(m+ 1, i)

3
. (5)

Finally, the smoothed energy, x̂(m, i), is normalized by removing the frequency

energy of background noise, Noise freq, to get the energy of almost pure speech

signal, X(m, i). For illustration, the smoothed and normalized frequency energies

of a clean speech signal, X(m, i) in Eq. (6), for 20 bands and 100 frames are shown

in Fig. 1. The energy of background noise is estimated by averaging the frequency

energy of the first five frames of the recording:

X(m, i) = x̂(m, i)−Noise freq

= x̂(m, i)−
∑4
m=0 x̂(m, i)

5
. (6)

With the smoothed and normalized energy of the ith band of the mth frame,

X(m, i), we can calculate the total energy of the almost pure speech signal at the
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Fig. 1. Multiband spectrum analysis of the speech signal with smoothed and normalized
frequency energies, X(m, i), on 20 frequency bands.

ith band as E(i):

E(i) =
M−1∑
m=0

|X(m, i)| . (7)

Our goal is to select some useful bands having the maximum word signal

information, it is obvious that E(i) in Eq. (7) is a good indicator since the

band with higher E(i) contains more pure speech information. We sort E(i) in

descending order with I(i) as the index of the corresponding frequency band,

i = 1, 2, . . . 20. Let P (i) = E(I(i)), that is, P (1) = E(I(1)) = max{E(i)}, and

P (20) = E(I(20)) = min{E(i)}.
Obviously, larger background noise will add more noise component into each

band, and thus reduce each E(i). Thus, the number of useful bands decreases as

the energy of background noise increases. We denote the number of bands useful

for producing reliable frequency energy as Na. Large Na should be used at high

SNR because most bands are corrupted seriously by the additive noise. There are

two factors affecting the selection of useful bands, SNR and noise characteristics.

The effects of these two factors can be detected by the total frequency energy E(i)

in Eq. (7).

We now propose a way to choose the number of useful bands adaptively for

extracting helpful frequency information. More precisely, after ordering the band

indexes according to their total frequency energy, we wished to decide the number

Na such that the first Na bands (I(1), I(2), . . . , I(Na)) can produce helpful fre-

quency energy. At first, we observed from our experiments that the first 18 bands

(after ordering) could provide the maximum improvement for word boundary de-

tection in clean environment. Little improvement was observed with the addition

of the other two bands. We also observed that one or two bands only cannot give

helpful frequency information in our test cases. Hence, we bound the Na values
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Table 1. Experimental statistics on the aver-

age number of bands whose E(i) satisfies some
thresholds under different noise conditions and
SNRs.

Noise
SNR White Babble Cockpit Factory

Clean 16.8 16.8 16.8 16.8
20 dB 13.2 16.4 14.7 15.5
15 dB 11.0 16.4 13.2 15.2
10 dB 9.1 15.4 10.7 13.4
5 dB 7.6 15.0 8.1 10.4
0 dB 6.0 10.1 5.4 7.3

between 3 and 18 for the noisiest and clean environments, respectively. Within

the range (3, 18), Na is tuned adaptively according to the strength of background

noise; higher noise level should lead to smaller Na value as observed in Table 1. To

obtain a reliable tuning rule for Na, we first observed from our experiments that

the average frequency energy of background noise, Noise freq [see Eq. (6)], is 83 in

clean environment, and is 93 at a low SNR value (5 dB). We set the corresponding

numbers of useful bands to be 18 and 3 for these two extreme cases, respectively.

For computation simplicity, we assume that the relation between Na and Noise freq

is linear. With the above experimental observations and assumption, we can derive

the tuning rule for Na as follows:

Na − 18

Noise freq− 18
=

18− 3

83− 93
, 3 ≤ Na ≤ 18 , Na is an integer . (8)

Rewriting the above result into a general form, we have

Na = bA×Noise freq +Bc , 3 ≤ Na ≤ 18 , A = −1.5 and B = 142.5 (9)

where b c is a function used to denote the rounding to nearest integer operation,

and A and B are constants determining the slope and offset, respectively.

With the number of useful bands, Na, decided by Eq. (9), we then sum the total

energies of the first Na bands (after ordering) to get the final frequency energy,

F (m), of frame m:

F (m) =
Na∑
i=1

X(m, I(i)) . (10)

The proposed adaptive time-frequency (ATF) parameter of the mth frame is the

result obtained after smoothing the sum of the frequency energy F (m) in Eq. (10)

and time energy T (m):

ATF(m) = SMOOTHING(T (m) + cF (m)) (11)

where SMOOTHING is performed by a three-point median filter as in Eq. (5),

constant c is a proper weighting factor, and the time energy T (m) is given by
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smoothing and normalizing the logarithm of the root-mean-square (rms) energy of

the time-domain speech signal:

xrms(m) = log

√∑L−1
n=0 x

2
time(m,n)

L
(12)

x̂rms(m) =
xrms(m− 1) + xrms(m) + xrms(m+ 1)

3
(13)

T (m) = x̂rms(m)−Noise time

= x̂rms(m)−
∑4
m=0 x̂rms(m)

5
(14)

where L is the length of the frame, which is 120 (15 ms) in our system. The pro-

cedure to calculate the ATF parameter is illustrated in Fig. 2(a). The details of

the block with label “Select Na useful bands to produce frequency energy” of this

figure are shown in Fig. 2(b).

2.2. Self-constructing neural fuzzy inference network (SONFIN)

The neural fuzzy network that we used for word boundary detection is called the

self-constructing neural fuzzy inference network (SONFIN) that we proposed pre-

viously in Ref. 11. The SONFIN is a general connectionist model of a fuzzy logic

system, which can find its optimal structure and parameters automatically. The

structure of the SONFIN is shown in Fig. 3(a). This six-layered network realizes a

fuzzy model of the following form

Rule i : IF x1 is Ai1 and · · · and xn is Ain

THEN y is m0i + ajixj + · · · , (15)

where Aij is a fuzzy set, m0i is the center of a symmetric membership function on

y, and aji is a consequent parameter. It is noted that unlike the traditional TSK

model17,25,27 where all the input variables are used in the output linear equation,

only the significant ones are used in the SONFIN; i.e. some ajis in the above fuzzy

rules are zero. We shall next describe the functions of the nodes in each of the six

layers of the SONFIN.

Each node in Layer 1, which corresponds to one input variable, only transmits

input values to the next layer directly. Each node in Layer 2 corresponds to one

linguistic label (small, large, etc.) of one of the input variables in Layer 1. In other

words, the membership value which specifies the degree to which an input value

belongs to a fuzzy set is calculated in Layer 2. A node in Layer 3 represents one

fuzzy logic rule and performs precondition matching of a rule. The number of nodes

in Layer 4 is equal to that in Layer 3, and the result (firing strength) calculated

in Layer 3 is normalized in this layer. Layer 5 is called the consequent layer. Two

types of nodes are used in this layer, and they are denoted as blank and shaded

circles in Fig. 3(a), respectively. The node denoted by a blank circle (blank node) is
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Fig. 2. (a) Flowchart for computing the ATF parameter. (b) Adaptive band selection procedure
in (a) for computing frequency energy.
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(a)

Feature
extraction

Speech
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Noise_time
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001

110

Decoder

3-point
Median
Filter

Impulse
noise

 Pick the word signal
 for recognition system

(b)

Fig. 3. (a) Network structure of the SONFIN. (b) Flowchart of the SONFIN-based word
boundary detection procedure.
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the essential node representing a fuzzy set of the output variable. The shaded node

is generated only when necessary. One of the inputs to a shaded node is the output

delivered from Layer 4, and the other possible inputs (terms) are the selected signi-

ficant input variables from Layer 1. Combining these two types of nodes in Layer 5,

we obtain the whole function performed by this layer as the linear equation on the

THEN part of the fuzzy logic rule in Eq. (15). Each node in Layer 6 corresponds to

one output variable. The node integrates all the actions recommended by Layer 5

and acts as a defuzzifier to produce the final inferred output.

Two types of learning, structure and parameter learning, are used concurrently

for constructing the SONFIN. The structure learning includes both the precondition

and consequent structure identification of a fuzzy IF-THEN rule. For the parameter

learning, based upon supervised learning algorithms, the parameters of the linear

equations in the consequent parts are adjusted to minimize a given cost function.

The SONFIN can be used for normal operation at any time during the learning

process without repeated training on the input–output patterns when online oper-

ation is required. There are no rules in the SONFIN initially, and they are created

dynamically as learning proceeds upon receiving online incoming training data by

performing the following learning processes simultaneously: (A) Input/output space

partitioning, (B) Construction of fuzzy rules, (C) Optimal consequent structure

identification, (D) Parameter identification. Processes A–C belong to the structure

learning phase and process D belongs to the parameter learning phase. The details

of these learning processes can be found in Ref. 11.

2.3. ATF-based SONFIN algorithm for word boundary detection

The procedure of using the SONFIN for word boundary detection is illustrated in

Fig. 3(b). The input feature vector of the SONFIN is a combination of the average

energy of background noise (Noise time), adaptive time-frequency (ATF) parameter

and zero-crossing rate. The three parameters in an input feature vector are obtained

by analyzing a frame of signal. Hence there are three (input) nodes in Layer 1 of

the SONFIN. Here the noise energy, Noise time, as in Eq. (14), is the average of

the logarithm of the rms energy on the first five frames of “relative silence” at the

beginning of the recording. Before entering the SONFIN, the three input parameters

are normalized to be in [0, 1]. For each input vector (corresponding to a frame), the

output of SONFIN indicates whether the corresponding frame is a word signal or

noise. For this purpose, we used two (output) nodes in Layer 6 of the SONFIN,

where the output vector of (1, 0) stands for word signal, and (0, 1) for noise.

The SONFIN was trained by a set of 80 training patterns, which were randomly

selected from four noise conditions with different SNRs. These training patterns are

classified as word signal or noise by using waveform, spectrum displays and audio

output. Among the 80 training patterns, 40 patterns are from word sound category

with the desired SONFIN output vector being (1, 0), and the other 40 from noise

category with the desired SONFIN output vector being (0, 1). We usually used the
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frames around the word-noise transition area as the training patterns, because these

ambiguous training patterns lead the SONFIN to a more accurate word boundary

in noisy environment. After training, there were only 14 rules generated in the

SONFIN. As shown in Fig. 3(b), the outputs of the SONFIN are processed by a

decoder. The decoder processes the SONFIN’s output vector (1, 0) as value 100

standing for word signal, and (0, 1) as value 0 standing for noise. In addition, we

let the output waveform of the decoder pass through a three-point median filter

to eliminate the undesired “impulse” noise. Finally, we recognize the word-signal

island as the part of the filtered waveform whose magnitude is greater than 30,

and duration is long enough (by setting a threshold value). We then send part of

the original signal corresponding to the allocated word-signal island to our word

recognition system.

3. RTF-Based RSONFIN Algorithm

In this section, we propose a new refined time-frequency (RTF) parameter obtained

by smoothing the sum of the time energy and frequency energy, where the frequency

energy is contributed by several adaptively chosen frequency bands.

3.1. Refined time-frequency (RTF) parameter

Based on the discussion and illustrations in Sec. 2.1, we now propose a way to

adaptively extract helpful frequency information from word signals. From Eqs. (1)–

(6), we adopt the maximum X(m, i) to get the final frequency energy, F (m), of

frame m:

F (m) = max[X(m, i)]i=1,2,...,20 . (16)

The proposed refined time-frequency (RTF) parameter of the mth frame is the

result obtained after smoothing the sum of the frequency energy F (m) in Eq. (16)

and time energy T (m):

RTF(m) = SMOOTHING(T (m) + cF (m)) (17)

where SMOOTHING is performed by a three-point median filter as in Eq. (5),

and the constant weighting factor c is optimally set as 0.8 in our experiments.

The time energy T (m) is given by smoothing and normalizing the logarithm of the

root-mean-square (rms) energy of the time-domain speech signal:

xrms(m) = log

√∑L−1
n=0 x

2
time(m,n)

L
(18)

x̂rms(m) =
xrms(m− 1) + xrms(m) + xrms(m+ 1)

3
(19)

T (m) = x̂rms(m)−Noise time

= x̂rms(m)−
∑4
m=0 x̂rms(m)

5
(20)
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where L is the length of the frame, which is 120 (15 ms) in our system. The proce-

dure to calculate the RTF parameter is illustrated in Fig. 4(a). The details of the

block with label “Produce frequency energy” of this figure are shown in Fig. 4(b).
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Fig. 4. (a) Flowchart for computing the RTF parameter. (b) Procedure for producing the
frequency energy in (a).
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3.2. Recurrent self-organizing neural fuzzy inference network

(RSONFIN)

Based on this RTF parameter, we further propose a new recurrent self-organizing

neural fuzzy inference network (RSONFIN) for word boundary detection that we

proposed previously in Ref. 12. The temporal relations embedded in the network are

built by adding some feedback connections representing the memory elements to a

feedforward neural fuzzy network. Each weight as well as node in the RSONFIN has

its own meaning and represents a special element in a fuzzy rule. There are no hid-

den nodes (i.e. no membership functions and fuzzy rules) initially in the RSONFIN.

They are created online via concurrent structure identification (the construction of

dynamic fuzzy IF-THEN rules) and parameter identification (the tuning of the

free parameters of membership functions). The RSONFIN realizes the following

dynamic fuzzy reasoning6:

Rule i : IF x1(t) is Ai1 and · · · and xn(t) is Ain and hi(t) is G

THEN y1(t+ 1) is Bi1 and y2(t+ 1) is Bi2 and h1(t+ 1) is w1i

and · · · and hm(t+ 1) is wmi

where xi is the input variable, yi is the output variable, Ai1, Ain, G, Bi1 and Bi2
are fuzzy sets, hi is the internal variable, w1i and wmi are fuzzy singletons, and n

and m are the numbers of input and internal variables, respectively.

The structure of the RSONFIN is shown in Fig. 5. It is a five-layered neural

fuzzy network embedded with dynamic feedback connections (the feedback layer in

Fig. 5) that bring the temporal processing ability into a feedforward neural fuzzy

network. The following describes the function of each layer, the symbol u
(k)
i denotes

the ith input of a node in the kth layer; correspondingly, the symbol a(k) denotes

the node output in layer k.

Layer 1: No computation is done in this layer. Each node in this layer is called an

input linguistic node and corresponds to one input variable.

Layer 2: Nodes in this layer are called input term nodes, each of which corresponds

to one linguistic label (small, large, etc.) of an input variable. Each node in this

layer calculates the membership value specifying the degree to which an input value

belongs to a fuzzy set. A Gaussian membership function is employed in this layer.

Layer 3: Nodes in this layer are called rule nodes. A rule node represents one fuzzy

logic rule and performs precondition matching of a rule. The fan-in of a fuzzy

node comes from two sources: one from Layer 2 and the other from the feedback

layer. The former represents the rule’s spatial firing degree, and the latter the rule’s

temporal firing degree. We use the following AND operation on each rule node to

integrate these fan-in values,

a(3) = a(6) ·
∏
i

u
(3)
i = a(6) · e−[Di(x−mi)]

T [Di(x−mi)] (21)
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Fig. 5. Structure of the Recurrent Self-Organizing Neural Fuzzy Inference Network (RSONFIN).

where Di = diag(1/σi1, 1/σi2, . . . , 1/σin), mi = (mi1,mi2, . . . ,min)
T , and a(6)

is the output of the feedback term node described in the feedback layer part.

Obviously, the output a(3) of a rule node represents the firing strength of its

corresponding rule.

Layer 4: This layer is called the consequent layer and the nodes in this layer are

called output term nodes. Each output term node represents a multidimensional

fuzzy set (described by a multidimensional Gaussian function) obtained during

the clustering operation in the structure learning phase. Only the center of each

Gaussian membership function is delivered to the next layer for the LMOM (local

mean of maximum) defuzzification operation.3 The function of each output term

node performs the following fuzzy OR operation to integrate the fired rules which

have the same consequent part.

a(4) =
∑
i

u
(4)
i . (22)

Layer 5: Each node in this layer is called an output linguistic node and corresponds

to one output linguistic variable. This layer performs the defuzzification operation.
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The function performed in this layer is

yj = a(5) =

∑
i u

(5)
i m̂ji∑
i u

(5)
i

(23)

where u
(5)
i = a

(4)
i and m̂ji, the link weight, is the center of the membership function

of the ith term of the jth output linguistic variable.

Feedback Layer: This layer calculates the value of the internal variable hi and the

firing strength of the internal variable to its corresponding membership function,

where the firing strength contributes to the matching degree of a rule node in

Layer 3. As shown in Fig. 5, two types of nodes are used in this layer, the square

node named as context node and the circle node named as feedback term node,

where each context node is associated with a feedback term node. The context

node functions as a defuzzifier,

hj =
∑
i

a
(4)
i wji (24)

where the internal variable hj is interpreted as the inference result of the hidden

(internal) rule, and wji is the link weight from the ith node in Layer 4 to the jth

internal variable. The link weight, wji, represents a fuzzy singleton in the consequent

part of a rule, and also a fuzzy term of the internal variable hj. In Eq. (24), the

simple weighted-sum is calculated.10,26 Instead of using the weighted-sum of each

rule’s outputs as the inference result, the conventional average weighted-sum, hj =∑
i a

(4)
i wji/

∑
i a

(4)
i , can also be used.10,28 With the chosen membership function,

the feedback term node evaluates the output by

a(6) =
1

1 + e−hi
. (25)

This output is connected to the rule nodes in Layer 3, which connect to the same

output term node in Layer 4. The outputs of feedback term nodes contain the firing

history of the fuzzy rules.

Two types of learning, structure and parameter learning, are used concurrently

for constructing the RSONFIN. The structure learning includes the precondition,

consequent and feedback structure identification of a fuzzy IF-THEN rule. Here

the precondition structure identification corresponds to the input space partition-

ing. The consequent structure identification is to decide when to generate a new

membership function for the output variable based upon clustering. As to the feed-

back structure identification, the main task is to decide the number of internal

variables with its corresponding feedback fuzzy terms and the connection of these

terms to each rule. For the parameter learning, based upon supervised learning,

an ordered derivative learning algorithm is derived to update the free parame-

ters in the RSONFIN. There are no rules (i.e. no nodes in the network except

the input/output linguistic nodes) in the RSONFIN initially. They are created

dynamically as learning proceeds upon receiving online incoming training data by
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performing the four learning processes simultaneously: (A) Input/output space par-

titioning, (B) Construction of fuzzy rules, (C) Feedback structure identification,

(D) Parameter identification. The processes A–C belong to the structure learning

phase and process D belongs to the parameter learning phase. The details of these

learning processes are described in Ref. 12.

3.3. RTF-based RSONFIN for word boundary detection

As mentioned in Sec. 2.3, a procedure of using the RSONFIN for word boundary

detection in variable background noise level condition is illustrated in Fig. 6. Al-

though the zero-crossing rate (ZCR) is not reliable for speech segmentation in noisy

environments, it is still an important parameter in clean environments. Hence, we

also adopt it as an input parameter of RSONFIN. The input nodes in Layer 1 of

RSONFIN consist of the Noise time, RTF parameter and ZCR. We use two output

nodes in Layer 5 of RSONFIN standing for word signal and noise, separately.

The RSONFIN was trained by a speech waveform with 15 seconds. This speech

waveform is added by white noise with increasing and decreasing energy, and then

each frame is transformed to be the desired input feature vector of the RSONFIN.

In the training phase, the RSONFIN will tune the proper weighting of ZCR au-

tomatically to reach the optimum performance of speech segmentation not only

in noisy environments but also in clean environments. After training, as shown

in Fig. 6, the outputs of RSONFIN are processed by a decoder and then passed

through a three-point median filter to eliminate the isolated “impulse” noise. Fi-

nally, we recognize the word-signal island as the part of the filtered waveform whose

magnitude is greater than 30, and duration is long enough (by setting a threshold

value). We then regard the parts of the original signal corresponding to the allocated

word-signal island as the word signal, and the other ones as the background noise.

word boundary detection 
window(15ms) fs:8kHz

shift 15ms

Feature
extraction

Noise_time

 RTF

Zero-crossing
rate

001

110

Decoder

3-point
Median
Filter

Impulse
noise

 Pick the word
 boundary

RSONFIN

Fig. 6. The RTF-based RSONFIN algorithm for automatic word boundary detection.

In
t. 

J.
 P

at
t. 

R
ec

og
n.

 A
rt

if
. I

nt
el

l. 
20

02
.1

6:
92

7-
95

5.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
T

IO
N

A
L

 C
H

IA
O

 T
U

N
G

 U
N

IV
E

R
SI

T
Y

 o
n 

04
/2

7/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.



November 11, 2002 9:28 WSPC/115-IJPRAI 00207

Noisy Speech Segmentation/Enhancement 943

4. Experimental Results

Since inaccurate detection of word boundary is harmful to recognition, the per-

formance of the word boundary detection process can be also examined by the

recognition rate of a speech recognizer. The speech recognizer used in this experi-

ment consists of two parts, feature extractor and classifier. In the feature extractor,

the modified two-dimensional cepstrum (Modified TDC — MTDC)2,8,18,20 is used

as the speech feature. A Gaussian clustering algorithm is used in the classifier. In

the training phase, the training was done on clean speech pronounced in a clean

environment (without background noise). Each model is trained by a mixture of

four Gaussian distribution density functions. We use a total of 1000 utterances for

training. The details of the above isolated word recognition system can be found

in Ref. 18. The frame window used for obtaining the MTDC features is 30 ms in

length, and is with 15 ms overlapping between two frames in the recognition pro-

cedure. And in the word boundary detection procedure, the frame length is set to

be 15 ms in order to get a more accurate endpoint location. The speech data used

for our experiments are the set of isolated Mandarin digits. They are ten digits

spoken by 10 speakers and each speaker pronounced 20 times of the ten digits. The

recording sampling rate is 8 KHz and stored as 16-bit integer. The noise signals

are taken from the noise database provided by the NATO Research Study Group

on Speech Processing (RSG.10) NOISE-ROM-0.29 Among the noisy database, we

take four typical types of noise: multitalker babble noise, cockpit noise, noise on

the floor of car factory and white noise.

To set up the noisy speech database for testing, we added the prepared noisy

signals to the recorded speech signals for testing with different signal-to-noise-ratios

(SNRs) including 0 dB, 5 dB, 10 dB, 15 dB, 20 dB and ∞ dB. The duration of

each utterance is about one second (including silence). A total of 600 utterances

were used in our experiments. 300 utterances are in the condition of increasing back-

ground noise level, and 300 utterances are in the condition of decreasing background

noise level.

4.1. Evaluations of ATF-based SONFIN algorithm

In this section, we show the performance of the ATF-based SONFIN algorithm,

the ATF-based robust algorithm, TF-based robust algorithm, TF without ro-

bust algorithm, and the performance of hand-labeling (i.e. manually determined

boundaries). The recognition rates of the three algorithms for four types of noise

with different SNRs are shown in Fig. 7. We also examined the recognition error

rates averaged across the four noise conditions due to word boundary detection as

a function of SNRs as shown in Fig. 8. These results show that, by using the same

three parameters (Noise time, ATF and zero-crossing rate), the SONFIN outper-

forms the robust algorithm by about 2% in recognition rate. As a total, the ATF-

based SONFIN had higher recognition rate than the TF-based robust algorithm in

Ref. 13 by about 5%. Also, the ATF-based SONFIN reduced the recognition error
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Fig. 7. Recognition rates of three word boundary detection algorithms (ATF-based SONFIN,
ATF-based robust algorithm, and hand labeling) in an MTDC-based recognition system across

six SNRs and four noise conditions.

rate due to endpoint detection to about 10%, compared to about 20% obtained with

the ATF-based robust algorithm, about 30% obtained with the TF-based robust

algorithm, about 40% obtained with the TF without robust algorithm, and about

50% obtained with the modified version of the Lamel et al. algorithm.15,23 We also

found that the SONFIN could approach the result of hand labeling, which is usually

considered as the optimum result for reference.
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Fig. 8. Recognition error rates of four word boundary detection algorithms (ATF-based SONFIN,
ATF-based robust algorithm, TF-based robust algorithm, and TF without robust algorithm) in
an MTDC-based recognition system across six SNRs and four noise conditions.

After learning, the SONFIN generated ten membership functions (ten fuzzy

categories) in the input dimension (variable) “Noise time” representing the energy

of environment noise [see Eq. (14)]. The SONFIN also automatically classified the

other two features, ATF and zero-crossing rate, into 11 and 14 fuzzy categories

by using only 14 rules. Each input node in the SONFIN is only connected to its

related rule nodes through its term nodes resulting in a small number of weights to

be tuned.
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Fig. 9. Recognition error rates of four word boundary detection algorithms (ATF-based SONFIN,
ATF-based robust algorithm, TF-based robust algorithm, and TF without robust algorithm) in
an MFCC-based HMM recognition system across six SNRs and four noise conditions.

In order to see the performance of our algorithms on other speech features and

recognizer, we replace the MTDC-based recognizer used in the previous experi-

ments by the MFCC (mel-frequency cepstral coefficient)-based HMM recognizer

with temporal filter in another set of experiments, where the temporal filter is used

to remove the noise components in the feature extraction phase. The number of

coefficients of each frame used in this HMM recognizer is 26, including MFCCs,
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energy, delta MFCCs and delta energy, and the analysis order is 24. Each Man-

darin digits is modeled by a 5-state, left-to-right, continuous density HMM. In the

HMM, each state is split into two streams, and a mix of Gaussian density with two

mixture components in each stream is assigned to each state observation proba-

bility. The recognition error rates averaged across the four noise conditions due to

word boundary detection as a function of SNRs are shown in Fig. 9. The results

show that the conclusions on the good performance of the proposed word boundary

detection algorithms still hold on the common speech features and recognizer.

Although the SONFIN has the advantages of small network size, high learning

speed, and high learning accuracy, its merits are obtained at the expense of longer

CPU time.

4.2. Evaluations of RTF-based RSONFIN algorithm

In this subsection, three word boundary detection algorithms (TF-based algorithm,

TF-based RSONFIN algorithm and RTF-based RSONFIN algorithm) are tested in

two kinds of background noise level conditions; increasing and decreasing back-

ground noise level conditions. Each experiment consists of 60,000 samples and the

SNR is 10 dB. There are totally seven words in the recording interval, which are

Mandarin digits of “1, 2, 3, 4, 5, 6, 7”.

4.2.1. Increasing background noise level

In Fig. 10, the word boundaries detected by hand labeling in clean environments

are shown by dotted lines. The noise in the last half segment of recording interval

is larger than the noise in the first half segment. Word boundaries detected by the

TF-based algorithm are shown by solid lines in Fig. 10(a), where two word seg-

ments are found. The first word segment is determined properly but the other six

word boundaries are missing. The major reason for this error is that the TF-based

algorithm cannot detect the variation of the background noise level and does not

decide proper thresholds to find word boundaries. The word boundaries detected

by the TF-based RSONFIN algorithm are shown by solid lines in Fig. 10(b), where

seven word segments are found. Based on the temporal relations embedded in the

RSONFIN, TF-based RSONFIN algorithm can find the variation of the background

noise level and detect all word signals in the increasing background noise level

condition. However, the boundaries of some word signals are not determined pro-

perly. The word boundaries detected by the RTF-based RSONFIN algorithm are

shown by solid lines in Fig. 10(c). These word boundaries are more accurate than

those detected by the TF-based RSONFIN algorithm. This is because that the

RTF parameter can extract more informative frequency energy than the TF pa-

rameter to compensate the time-energy information by adaptively choosing proper

frequency bands.
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(
�
a� )

�

(
�
b
�

)
�

(
�
c� )

�

Fig. 10. Speech waveform recorded in additive increasing-level white noise including 60,000 sam-
ples with the SNR being 10 dB. The word boundaries detected by hand labeling in clean environ-
ments are shown by dotted lines. (a) The word boundaries detected by the TF-based algorithm
are shown by solid lines, and we notice that the second word ending boundary is missing. (b) The
word boundaries detected by the TF-based RSONFIN algorithm (17 rules) are shown by solid
lines. (c) The word boundaries detected by the RTF-based RSONFIN algorithm (10 rules) are
shown by solid lines.

4.2.2. Decreasing background noise level

In Fig. 11, the noise in the first half segment of recording interval is larger than

the noise in the last half segment of recording interval. Word boundaries detected

by the TF-based algorithm are shown by solid lines in Fig. 11(a), where only five

word segments are found, and the fourth and fifth words are missing. Although
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(a)

(b)

(c)

Fig. 11. Speech waveform recorded in additive decreasing-level white noise including 60,000 sam-
ples with the SNR being 10 dB. The word boundaries detected by hand labeling in clean environ-
ments are shown by dotted lines. (a) The word boundaries detected by the TF-based algorithm
are shown by solid lines, and we notice that the fourth and fifth words are not detected at all.
(b) The word boundaries detected by the TF-based RSONFIN algorithm (17 rules) are shown by
solid lines. (c) The word boundaries detected by the RTF-based RSONFIN algorithm (10 rules)
are shown by solid lines.

In
t. 

J.
 P

at
t. 

R
ec

og
n.

 A
rt

if
. I

nt
el

l. 
20

02
.1

6:
92

7-
95

5.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
T

IO
N

A
L

 C
H

IA
O

 T
U

N
G

 U
N

IV
E

R
SI

T
Y

 o
n 

04
/2

7/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.



November 11, 2002 9:28 WSPC/115-IJPRAI 00207

950 C.-T. Lin, R.-C. Wu & G.-D. Wu

the seventh word is detected, the beginning part of this word is missing. The word

boundaries detected by the TF-based RSONFIN algorithm are shown by solid lines

in Fig. 11(b), where seven word segments are found. This algorithm can really sense

the variation of the background noise level and detect all word signals. However,

the boundaries of some word signals are not determined properly. The word bound-

aries detected by the RTF-based RSONFIN algorithm are shown by solid lines in

Fig. 11(c). These word boundaries are more accurate than those detected by the

TF-based RSONFIN algorithm.

4.2.3. Speech recognition in variable background noise level conditions

We also compare the performance of RSONFIN to that of two other neural

fuzzy networks. They are SONFIN and the adaptive-network-based fuzzy inference

system (ANFIS).9 As a result, there are five word boundary detection algorithms

used for testing in the following. The recognition rates of the five algorithms for

added white noise with different SNRs are shown in Fig. 12(a). The resulting recog-

nition error rates of the five algorithms are given in Fig. 12(b). From the above

results, we find that the performance of the RTF-based SONFIN algorithm is simi-

lar to that of the RTF-based ANFIS algorithm, and they both outperform the TF-

based algorithm by about 4%. With the temporal relations captured and embedded

in the RSONFIN, the TF-based RSONFIN algorithm outperforms the RTF-based

SONFIN and RTF-based ANFIS algorithms by about 3%. In addition, since the

RTF parameter can extract useful frequency energy through multiband spectrum

analysis, the RTF-based RSONFIN algorithm outperforms the TF-based RSON-

FIN algorithm by about 5%. As a total, the RTF-based RSONFIN algorithm has

higher recognition rate than the TF-based algorithm in Ref. 13 by about 12%. Also,

the RTF-based RSONFIN algorithm reduces the recognition error rate due to end-

point detection to about 23%, compared to about 34% obtained by the TF-based

RSONFIN algorithm, about 40% obtained by the RTF-based SONFIN or RTF-

based ANFIS algorithms, and about 47% obtained by the TF-based algorithm in

Ref. 13.

5. Conclusions

In this paper, we have proposed the reliable parameters in noisy environment inclu-

ding adaptive time-frequency (ATF) and refined time-frequency (RTF) parameters.

Comparative study has shown that the ATF and RTF parameters are very benefi-

cial for several SNRs and noise conditions (including clean speech, for which very

good results were obtained). The ATF-based SONFIN and RTF-based RSONFIN

algorithms have been tested and performed well in fixed and variable noise-level

conditions, respectively. Our experiments showed that the proposed scheme (ATF-

based SONFIN) achieved higher recognition rate by about 2% than the ATF-based

robust algorithm, and thus by about 5% than the TF-based robust algorithm. On

the other performance index, the ATF-based SONFIN reduced the recognition error
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Fig. 12. (a) Recognition rates and (b) error rates of five word boundary detection algorithms
(RTF-based RSONFIN, TF-based RSONFIN, RTF-based SONFIN, RTF-based ANFIS, and
TF-based algorithms) in the condition of variable background noise level.

rate due to endpoint detection to about 10%, compared to about 20% obtained with

the ATF-based robust algorithm. Based on the RTF parameter, our results show

that the RTF-based RSONFIN algorithm achieved higher recognition rate than the

TF-based algorithm by about 12% in variable background noise level conditions.

It also reduced the recognition error rate due to endpoint detection to about 23%,
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compared to about 34% obtained by the TF-based RSONFIN algorithm, about

40% obtained by the RTF-based SONFIN or RTF-based ANFIS algorithms, and

about 47% obtained by the TF-based algorithm in the same condition.

Three major characteristics of the proposed ATF-based SONFIN and RTF-

based RSONFIN word boundary detection algorithm can be seen.

(1) The proposed ATF and RTF parameters can extract both the time and fre-

quency features of noisy speech signals through multiband spectrum analysis,

and can extract more informative frequency energy than the TF parameter by

adaptively choosing proper frequency bands.

(2) The recurrent property of the RSONFIN makes it more suitable for dealing

with temporal problems, thus the proposed algorithm can find the variation of

the background noise level and detect correct word boundaries in the condition

of variable background noise level.

(3) No predetermination, like the number of hidden nodes, must be given to the

SONFIN and RSONFIN, since it can find its optimal structure and parameters

automatically and quickly. This avoids the need of empirically determining the

number of hidden layers and nodes in normal neural networks. Due to this

self-learning ability of SONFIN and RSONFIN, our proposed algorithms avoid

the need of empirically determining ambiguous decision rules in normal word

boundary detection algorithms. Also, since the SONFIN and RSONFIN house

the human-like IF-THEN rules in its network structure, expert knowledge can

be put into the network as a priori knowledge, which can usually increase its

learning speed and detection accuracy.
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