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Abstract

In the noisy tensor completion problem we observe m entries (whose location is chosen

uniformly at random) from an unknown n1 × n2 × n3 tensor T . We assume that T is entry-wise

close to being rank r. Our goal is to fill in its missing entries using as few observations as possible.

Let n = max(n1, n2, n3). We show that if m = n3/2r then there is a polynomial time algorithm

based on the sixth level of the sum-of-squares hierarchy for completing it. Our estimate agrees

with almost all of T ’s entries almost exactly and works even when our observations are corrupted

by noise. This is also the first algorithm for tensor completion that works in the overcomplete case

when r > n, and in fact it works all the way up to r = n3/2−ǫ.

Our proofs are short and simple and are based on establishing a new connection between noisy

tensor completion (through the language of Rademacher complexity) and the task of refuting ran-

dom constant satisfaction problems. This connection seems to have gone unnoticed even in the con-

text of matrix completion. Furthermore, we use this connection to show matching lower bounds.

Our main technical result is in characterizing the Rademacher complexity of the sequence of norms

that arise in the sum-of-squares relaxations to the tensor nuclear norm. These results point to an

interesting new direction: Can we explore computational vs. sample complexity tradeoffs through

the sum-of-squares hierarchy?
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1. Introduction

Matrix completion is a central and well-studied problem in machine learning and has a diverse range

of applications. One of the original motivations for it comes from the Netflix Problem where the

goal is to predict user-movie ratings based on all the ratings we have observed so far, from across

many different users. We can organize this data into a large, partially observed matrix where each

row represents a user and each column represents a movie. The goal is to fill in the missing entries.

The usual assumptions are that the ratings depend on only a few hidden characteristics of each user

and movie and that the underlying matrix is approximately low rank. Another standard assumption

is that it is incoherent, which we elaborate on later. How many entries of M do we need to observe

in order to fill in its missing entries? And are there efficient algorithms for this task?

There have been thousands of papers on this topic and by now we have a relatively complete set

of answers. A representative result (building on earlier works by Fazel (2002), Recht et al. (2010),

Srebro and Shraibman (2005), Candès and Recht (2009), Candès and Tao (2010)) due to Keshavan

et al. (2010) can be phrased as follows: Suppose M is an unknown n1 × n2 matrix that has rank r
but each of its entries has been corrupted by independent Gaussian noise with standard deviation δ.
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Then if we observe roughly

m = (n1 + n2)r log(n1 + n2)

of its entries, the locations of which are chosen uniformly at random, there is an algorithm that

outputs a matrix X that with high probability satisfies

err(X) =
1

n1n2

∑

i,j

∣∣∣Xi,j −Mi,j

∣∣∣ ≤ O(δ) .

There are extensions to non-uniform sampling models (Lee and Shraibman, 2013; Chen et al., 2014),

as well as various efficiency improvements (Jain et al., 2013; Hardt, 2014). What is particularly

remarkable about these guarantees is that the number of observations needed is within a logarithmic

factor of the number of parameters — (n1 + n2)r — that define the model.

In fact, there are benefits to working with even higher-order structure but so far there has

been little progress on natural extensions to the tensor setting. To motivate this problem, con-

sider the Groupon Problem (which we introduce here to illustrate this point) where the goal is to

predict user-activity ratings. The challenge is that which activities we should recommend (and how

much a user liked a given activity) depends on time as well — weekday/weekend, day/night, sum-

mer/fall/winter/spring, etc. or even some combination of these. As above, we can cast this problem

as a large, partially observed tensor where the first index represents a user, the second index rep-

resents an activity and the third index represents the time period. It is again natural to model it as

being close to low rank, under the assumption that a much smaller number of (latent) factors about

the interests of the user, the type of activity and the time period should contribute to the rating.

How many entries of the tensor do we need to observe in order to fill in its missing entries? This

problem is emblematic of a larger issue: Can we always solve linear inverse problems when the

number of observations is comparable to the number of parameters in the mode, or is computational

intractability an obstacle?

In fact, one of the advantages of working with tensors is that their decompositions are unique in

important ways that matrix decompositions are not. There has been a groundswell of recent work

that uses tensor decompositions for exactly this reason for parameter learning in phylogenetic trees

(Mossel and Roch, 2005), HMMs (Mossel and Roch, 2005), mixture models (Hsu and Kakade,

2013), topic models (Anandkumar et al., 2015) and to solve community detection (Anandkumar

et al., 2013). In these applications, one assumes access to the entire tensor (up to some sampling

noise). But given that the underlying tensors are low-rank, can we observe fewer of their entries and

still utilize tensor methods?

A wide range of approaches to solving tensor completion have been proposed (Liu et al., 2013;

Gandy et al., 2011; Signoretto et al., 2010; Tang et al., 2013; Mu et al., 2014; Kressner et al., 2014;

Jain and Oh, 2014; Bhojanapalli and Sanghavi, 2015; Yuan and Zhang, 2014). However, in terms

of provable guarantees none1 of them improve upon the following näive algorithm. If the unknown

tensor T is n1 × n2 × n3 we can treat it as a collection of n1 matrices each of size n2 × n3. It is

easy to see that if T has rank at most r then each of these slices also has rank at most r (and they

1. Most of the existing approaches rely on computing the tensor nuclear norm, which is hard to compute (Gurvits,

2003; Harrow and Montanaro, 2013). The only other algorithms we are aware of are due to Jain and Oh (2014) and

Bhojanapalli and Sanghavi (2015) and require that the factors be orthogonal. This is a rather strong assumption.

First, orthogonality requires the rank to be at most n. Second, even when r ≤ n, most tensors need to be “whitened”

to be put in this form and then a random sample from the “whitened” tensor would correspond to a (dense) linear

combination of the entries of the original tensor, which would be quite a different sampling model.
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inherit incoherence properties as well). By treating a third-order tensor as nothing more than an

unrelated collection of n1 low-rank matrices, we can complete each slice separately using roughly

m = n1(n2+n3)r log(n2+n3) observations in total. When the rank is constant, this is a quadratic

number of observations even though the number of parameters in the model is linear.

Here we show how to solve the (noisy) tensor completion problem with many fewer observa-

tions. Let n1 ≤ n2 ≤ n3. We give an algorithm based on the sixth level of the sum-of-squares

hierarchy that can accurately fill in the missing entries of an unknown, incoherent n1 × n2 × n3

tensor T that is entry-wise close to being rank r with roughly

m = (n1)
1/2(n2 + n3)r log

4(n1 + n2 + n3)

observations. Moreover, our algorithm works even when the observations are corrupted by noise.

When n = n1 = n2 = n3, this amounts to about n1/2r observations per slice which is much smaller

than what we would need to apply matrix completion on each slice separately. Our algorithm needs

to leverage the structure between the various slices.

1.1. Our Results

We give an algorithm for noisy tensor completion that works for third-order tensors. Let T be a

third-order n1 × n2 × n3 tensor that is entry-wise close to being low rank. In particular let

T =

r∑

ℓ=1

σℓ aℓ ⊗ bℓ ⊗ cℓ +∆ (1)

where σℓ is a scalar and aℓ, bℓ and cℓ are vectors of length n1, n2 and n3 respectively. Here ∆ is

a tensor that represents noise. Its entries can be thought of as representing model misspecification

because T is not exactly low rank or noise in our observations or both. We will only make assump-

tions about the average and maximum absolute value of entries in ∆. The vectors aℓ, bℓ and cℓ are

called factors, and we will assume that their norms are roughly
√
ni for reasons that will become

clear later. Moreover we will assume that the magnitude of each of their entries is bounded by C in

which case we call the vectors C-incoherent2. (Note that a random vector of dimension n and norm√
n will be O(

√
log n)-incoherent with high probability.) The advantage of these conventions are

that a typical entry in T does not become vanishingly small as we increase the dimensions of the

tensor. This will make it easier to state and interpret the error bounds of our algorithm.

Let Ω represent the locations of the entries that we observe, which (as is standard) are chosen

uniformly at random and without replacement. Set |Ω| = m. Our goal is to output a hypothesis X
that has small entry-wise error, defined as:

err(X) =
1

n1n2n3

∑

i,j,k

∣∣∣Xi,j,k − Ti,j,k

∣∣∣

This measures the error on both the observed and unobserved entries of T . Our goal is to give

algorithms that achieve vanishing error, as the size of the problem increases. Moreover we will

want algorithms that need as few observations as possible. Here and throughout let n1 ≤ n2 ≤ n3

and n = max{n1, n2, n3}. Our main result is:

2. Incoherence is often defined based on the span of the factors, but we will allow the number of factors to be larger

than any of the dimensions of the tensor so we will need an alternative way to ensure that the non-zero entries of the

factors are spread out
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Theorem 1 (Main theorem) Suppose we are given m observations whose locations are chosen

uniformly at random (and without replacement) from a tensor T of the form (1) where each of the

factors aℓ, bℓ and cℓ are C-incoherent. Let δ = 1
n1n2n3

∑
i,j,k |∆i,j,k|. And let r∗ =

∑r
ℓ=1 |σℓ|.

Then there is a polynomial time algorithm that outputs a hypothesis X that with probability 1 − ǫ
satisfies

err(X) ≤ 4C3r∗

√
(n1)1/2(n2 + n3) log

4 n+ log 2/ǫ

m
+ 2δ

provided that maxi,j,k |∆i,j,k| ≤
√

m
log 2/ǫδ.

Since the error bound above is quite involved, let us dissect the terms in it. In fact, having

an additive δ in the error bound is unavoidable. We have not assumed anything about ∆ in (1)

except a bound on the average and maximum magnitude of its entries. If ∆ were a random tensor

whose entries are +δ and −δ then no matter how many entries of T we observe, we cannot hope

to obtain error less than δ on the unobserved entries3. The crucial point is that the remaining term

in the error bound becomes o(1) when m = Ω̃((r∗)2n3/2) which for polylogarithmic r∗ improves

over the näive algorithm for tensor completion by a polynomial factor in terms of the number of

observations. Moreover our algorithm works without any constraints that factors aℓ, bℓ and cℓ be

orthogonal or even have low inner-product.

In non-degenerate cases we can even remove another factor of r∗ from the number of observa-

tions we need. Suppose that T is a tensor as in (1), but let σℓ be Gaussian random variables with

mean zero and variance one. The factors aℓ, bℓ and cℓ are still fixed, but because of the randomness

in the coefficients σℓ, the entries of T are now random variables.

Corollary 2 Suppose we are given m observations whose locations are chosen uniformly at ran-

dom (and without replacement) from a tensor T of the form (1), where each coefficient σℓ is a

Gaussian random variable with mean zero and variance one, and each of the factors aℓ, bℓ and

cℓ are C-incoherent. Further, suppose that for a 1 − o(1) fraction of the entries of T , we have

var(Ti,j,k) ≥ r/polylog(n) = V and that ∆ is a tensor where each entry is a Gaussian with mean

zero and variance o(V ). Then there is a polynomial time algorithm that outputs a hypothesis X
that satisfies

Xi,j,k =
(
1± o(1)

)
Ti,j,k

for a 1− o(1) fraction of the entries. The algorithm succeeds with probability at least 1− o(1) over

the randomness of the locations of the observations, and the realizations of the random variables

σℓ and the entries of ∆. Moreover the algorithm uses m = C6n3/2r polylog(n) observations.

In the setting above, it is enough that the coefficients σℓ are random and that the non-zero entries in

the factors are spread out to ensure that the typical entry in T has variance about r. Consequently, the

typical entry in T is about
√
r. This fact combined with the error bounds in Theorem 1 immediately

yield the above corollary. Remarkably, the guarantee is interesting even when r = n3/2−ǫ (the so-

called overcomplete case). In this setting, if we observe a subpolynomial fraction of the entries of T

3. The factor of 2 is not important, and comes from needing a bound on the empirical error of how well the low rank

part of T itself agrees with our observations so far. We could replace it with any other constant factor that is larger

than 1.
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we are able to recover almost all of the remaining entries almost entirely, even though there are no

known algorithms for decomposing an overcomplete, third-order tensor even if we are given all of

its entries, at least without imposing much stronger conditions that the factors be nearly orthogonal

(Ge and Ma, 2015).

We believe that this work is a natural first step in designing practically efficient algorithms for

tensor completion. Our algorithms manage to leverage the structure across the slices through the

tensor, instead of treating each slice as an independent matrix completion problem. Now that we

know this is possible, a natural follow-up question is to get more efficient algorithms. Our algo-

rithms are based on the sixth level of the sum-of-squares hierarchy and run in polynomial time, but

are quite far from being practically efficient as stated. Recent work of Hopkins et al. (2015) shows

how to speed up sum-of-squares and obtain nearly linear time algorithms for a number of problems

where the only previously known algorithms ran in a prohibitively large degree polynomial running

time. Another approach would be to obtain similar guarantees for alternating minimization. Cur-

rently, the only known approaches (Jain and Oh, 2014) require that the factors are orthonormal and

only work in the undercomplete case. Finally, it would be interesting to get algorithms that recover

a low rank tensor exactly when there is no noise.

1.2. Our approach

All of our algorithms are based on solving the following optimization problem:

min ‖X‖K s.t. ∃X with
1

m

∑

(i,j,k)∈Ω

|Xi,j,k − Ti,j,k| ≤ 2δ (2)

and outputting the minimizer X , where ‖ · ‖K is some norm that can be computed in polynomial

time. It will be clear from the way we define the norm that the low rank part of T will itself be a

good candidate solution. But this is not necessarily the solution that the convex program finds. How

do we know that whatever it finds not only has low entry-wise error on the observed entries of T ,

but also on the unobserved entries too?

This is a well-studied topic in statistical learning theory, and as is standard we can use the notion

of Rademacher complexity as a tool to bound the error. This has even been used in the context of

matrix completion, and our work is inspired by Srebro and Shraibman (2005). The Rademacher

complexity is a property of the norm we choose, and our main innovation is to use the sum-of-

squares hierarchy to suggest a suitable norm. Our results are based on establishing a connection

between noisy tensor completion and refuting random constraint satisfaction problems. Moreover,

our analysis follows by embedding algorithms for refutation within the sum-of-squares hierarchy as

a method to bound the Rademacher complexity.

A natural question to ask is: Are there other norms that have even better Rademacher complexity

than the ones we use here, and that are still computable in polynomial time? It turns out that any such

norm would immediately lead to much better algorithms for refuting random constraint satisfaction

problems than we currently know. We have not yet introduced Rademacher complexity yet, so we

state our lower bounds informally:

Theorem 3 (informal) For any ǫ > 0, if there is a polynomial time algorithm that achieves error

err(X) ≤ r∗

√
n3/2−ǫ

m
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through the framework of Rademacher complexity then there is an efficient algorithm for refuting

a random 3-SAT formula on n variables with m = n3/2−ǫ clauses. Moreover the natural sum-of-

squares relaxation requires at least n2ǫ-levels in order to achieve the above error (again through

the framework of Rademacher complexity).

These results follow directly from the works of Grigoriev (2001), Schoenebeck (2008) and Feige

(2002). There are similar connections between our upper bounds and the work of Coja-Oghlan

et al. (2007) who give an algorithm for strongly refuting random 3-SAT. In Section 2 we explain

some preliminary connections between these fields, at which point we will be in a better position

to explain how we can borrow tools from one area to address open questions in another. We state

this theorem more precisely in Corollary 16 and Corollary 33, which provide both conditional and

unconditional lower bounds that match our upper bounds.

1.3. Computational vs. Sample Complexity Tradeoffs

It is interesting to compare the story of matrix completion and tensor completion. In matrix comple-

tion, we have the best of both worlds: There are efficient algorithms which work when the number

of observations is close to the information theoretic minimum. In tensor completion, we gave algo-

rithms that improve upon the number of observations needed by a polynomial factor but still require

a polynomial factor more observations than can be achieved if we ignore computational considera-

tions. We believe that for many other linear inverse problems (e.g. sparse phase retrieval), there may

well be gaps between what can be achieved information theoretically and what can be achieved with

computationally efficient estimators. Moreover, proving lower bounds against the sum-of-squares

hierarchy offers a new type of evidence that problems are hard, that does not rely on reductions from

other average-case hard problems which seem (in general) to be brittle and difficult to execute while

preserving the naturalness of the input distribution. In fact, even when there are such reductions

(Berthet and Rigollet, 2013), the sum-of-squares hierarchy offers a methodology to make sharper

predictions for questions like: Is there a quasi-polynomial time algorithm for sparse PCA, or does

it require exponential time?

Organization

In Section 2 we introduce Rademacher complexity, the tensor nuclear norm and strong refutation.

We connect these concepts by showing that any norm that can be computed in polynomial time

and has good Rademacher complexity yields an algorithm for strongly refuting random 3-SAT.

In Section 3 we show how a particular algorithm for strong refutation can be embedded into the

sum-of-squares hierarchy and directly leads to a norm that can be computed in polynomial time

and has good Rademacher complexity. In Section 4 we establish certain spectral bounds that we

need, and prove our main upper bounds. In Section 5 we prove lower bounds on the Rademacher

complexity of the sequence of norms arising from the sum-of-squares hierarchy by a direct reduction

to lower bounds for refuting random 3-XOR. In Appendix A we give a reduction from noisy tensor

completion on asymmetric tensors to symmetric tensors. This is what allows us to extend our

analysis to arbitrary order d tensors, but the proofs are essentially identical to those in the d = 3
case but more notationally involved so we omit them.
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2. Noisy Tensor Completion and Refutation

Here we make the connection between noisy tensor completion and strong refutation explicit. Our

first step is to formulate a problem that is a special case of both, and studying it will help us clarify

how notions from one problem translate to the other.

2.1. The Distinguishing Problem

Here we introduce a problem that we call the distinguishing problem. We are given random ob-

servations from a tensor and promised that the underlying tensor fits into one of the two following

categories. We want an algorithm that can tell which case the samples came from, and succeeds

using as few observations as possible. The two cases are:

1. Each observation is chosen uniformly at random (and without replacement) from a tensor T
where independently for each entry we set

Ti,j,k =





aiajak with probability 7/8

1 with probability 1/16

−1 else

where a is a vector whose entries are ±1.

2. Alternatively, each observation is chosen uniformly at random (and without replacement)

from a tensor T each of whose entries is independently set to either +1 or −1 and with equal

probability.

In the first case, the entries of the underlying tensor T are predictable. It is possible to guess a

15/16 fraction of them correctly, once we have observed enough of its entries to be able to deduce

a. And in the second case, the entries of T are completely unpredictable because no matter how

many entries we have observed, the remaining entries are still random. Thus we cannot predict any

of the unobserved entries better than random guessing.

Now we will explain how the distinguishing problem can be equivalently reformulated in the

language of refutation. We give a formal definition for strong refutation later (Definition 13), but for

the time being we can think of it as the task of (given an instance of a constraint satisfaction problem)

certifying that there is no assignment that satisfies many of the clauses. We will be interested in 3-

XOR formulas, where there are n variables v1, v2, ..., vn that are constrained to take on values +1
or −1. Each clause takes the form

vi · vj · vk = Ti,j,k

where the right hand side is either +1 or −1. The clause represents a parity constraint but over the

domain {+1,−1} instead of over the usual domain F2. We have chosen the notation suggestively

so that it hints at the mapping between the two views of the problem. Each observation Ti,j,k maps

to a clause vi ·vj ·vk = Ti,j,k and vice-versa. Thus an equivalent way to formulate the distinguishing

problem is that we are given a 3-XOR formula which was generated in one of the following two

ways:
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1. Each clause in the formula is generated by choosing an ordered triple of variables (vi, vj , vk)
uniformly at random (and without replacement) and we set

vi · vj · vk =





aiajak with probability 7/8

1 with probability 1/16

−1 else

where a is a vector whose entries are ±1. Now a represents a planted solution and by design

our sampling procedure guarantees that many of the clauses that are generated are consistent

with it.

2. Alternatively, each clause in the formula is generated by choosing an ordered triple of vari-

ables (vi, vj , vk) uniformly at random (and without replacement) and we set vi ·vj ·vk = zi,j,k
where zi,j,k is a random variable that takes on values +1 and −1.

In the first case, the 3-XOR formula has an assignment that satisfies a 15/16 fraction of the clauses

in expectation by setting vi = ai. In the second case, any fixed assignment satisfies at most half

of the clauses in expectation. Moreover if we are given Ω(n log n) clauses, it is easy to see by

applying the Chernoff bound and taking a union bound over all possible assignments that with high

probability there is no assignment that satisfies more than a 1/2 + o(1) fraction of the clauses.

This will be the starting point for the connections we establish between noisy tensor completion

and refutation. Even in the matrix case these connections seem to have gone unnoticed, and the same

spectral bounds that are used to analyze the Rademacher complexity of the nuclear norm (Srebro

and Shraibman, 2005) are also used to refute random 2-SAT formulas (Goerdt and Krivelevich,

2001), but this is no accident.

2.2. Rademacher Complexity

Ultimately our goal is to show that the hypothesis X that our convex program finds is entry-wise

close to the unknown tensor T . By virtue of the fact that X is a feasible solution to (2) we know

that it is entry-wise close to T on the observed entries. This is often called the empirical error:

Definition 4 For a hypothesis X , the empirical error is

emp-err(X) =
1

m

∑

(i,j,k)∈Ω

|Xi,j,k − Ti,j,k|

Recall that err(X) is the average entry-wise error between X and T , over all (observed and

unobserved) entries. Also recall that among the candidate X’s that have low empirical error, the

convex program finds the one that minimizes ‖X‖K for some polynomial time computable norm.

The way we will choose the norm ‖ · ‖K and our bound on the maximum magnitude of an entry of

∆ will guarantee that the low rank part of T will with high probability be a feasible solution. This

ensures that ‖X‖K for the X we find is not too large either. One way to bound err(X) is to show

that no hypothesis in the unit norm ball can have too large a gap between its error and its empirical

error (and then dilate the unit norm ball so that it contains X). With this in mind, we define:
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Definition 5 For a norm ‖ · ‖K and a set Ω of observations, the generalization error is

sup
‖X‖K≤1

∣∣∣err(X)− emp-err(X)
∣∣∣

It turns out that one can bound the generalization error via the Rademacher complexity.

Definition 6 Let Ω = {(i1, j1, k1), (i2, j2, k2), ..., (im, jm, km)} be a set of m locations chosen

uniformly at random (and without replacement) from [n1] × [n2] × [n3]. And let σ1, σ2, ..., σℓ be

random ±1 variables. The Rademacher complexity of (the unit ball of) the norm ‖ · ‖K is defined as

Rm(‖ · ‖K) = E
Ω,σ

[
sup
‖X‖K≤1

∣∣∣
m∑

ℓ=1

σℓXiℓ,jℓ,kℓ

∣∣∣
]

Standard symmetrization arguments from empirical process theory show that the Rademacher

complexity can be used to bound the generalization error. In particular, the following theorem

follows from Theorem 6, Part 12 and Theorem 8 in (Bartlett and Mendelson, 2003):

Theorem 7 Let ǫ ∈ (0, 1) and suppose each X with ‖X‖K ≤ 1 has bounded loss — i.e. |Xi,j,k −
Ti,j,k| ≤ a and that locations (i, j, k) are chosen uniformly at random and without replacement.

Then with probability at least 1− ǫ, for every X with ‖X‖K ≤ 1, we have

err(X) ≤ emp-err(X) + 2Rm(‖ · ‖K) + 2
maxi,j,k |Ti,j,k|√

m
+ 2a

√
ln(1/ǫ)

m

We remark that generalization bounds are often stated in the setting where samples are drawn

i.i.d., but here the locations of our observations are sampled without replacement. Nevertheless for

the settings of m we are interested in, the fraction of our observations that are repeats is o(1) —

in fact it is subpolynomial — and we can move back and forth between both sampling models at

negligible loss in our bounds.

In much of what follows it will be convenient to think of

Ω = {(i1, j1, k1), (i2, j2, k2), ..., (im, jm, km)}

and {σℓ}ℓ as being represented by a sparse tensor Z, defined below.

Definition 8 Let Z be an n1 × n2 × n3 tensor such that

Zi,j,k =

{
0, if (i, j, k) /∈ Ω
∑

ℓ s.t. (i,j,k)=(iℓ,jℓ,kℓ)
σℓ

This definition greatly simplifies our notation. In particular we have

m∑

ℓ=1

σℓXiℓ,jℓ,kℓ =
∑

i,j,k

Zi,j,kXi,j,k = 〈Z,X〉

where we have introduced the notation 〈 · , · 〉 to denote the natural inner-product between tensors.

Our main technical goal in this paper will be to analyze the Rademacher complexity of a sequence of

successively tighter norms that we get from the sum-of-squares hierarchy, and to derive implications

for noisy tensor completion and for refutation from these bounds.
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2.3. The Tensor Nuclear Norm

Here we introduce the tensor nuclear norm and analyze its Rademacher complexity. Many works

have suggested using it to solve tensor completion problems (Liu et al., 2013; Signoretto et al.,

2010; Yuan and Zhang, 2014). This suggestion is quite natural given that it is based on a similar

guiding principle as that which led to ℓ1-minimization in compressed sensing and the nuclear norm

in matrix completion (Fazel, 2002). More generally, one can define the atomic norm for a wide

range of linear inverse problems (Chandrasekaran et al., 2012), and the ℓ1-norm, the nuclear norm

and the tensor nuclear norm are all special cases of this paradigm. Before we proceed, let us first

formally define the notion of incoherence that we gave in the introduction.

Definition 9 A length ni vector a is C-incoherent if ‖a‖ =
√
ni and ‖a‖∞ ≤ C.

Recall that we chose to work with vectors whose typical entry is a constant so that the entries

in T do not become vanishingly small as the dimensions of the tensor increase. We can now define

the tensor nuclear norm4:

Definition 10 (tensor nuclear norm) Let A ⊆ R
n1×n2×n3 be defined as

A =
{
X s.t. ∃ distribution µ on triples of C-incoherent vectors with Xi,j,k = E

(a,b,c)←µ
[aibjck]

}

The tensor nuclear norm of X which is denoted by ‖X‖A is the infimum over α such that X/α ∈ A.

In particular ‖T −∆‖A ≤ r∗. Finally we give an elementary bound on the Rademacher complexity

of the tensor nuclear norm. Recall that n = max(n1, n2, n3).

Lemma 11 Rm(‖ · ‖A) = O(C3
√

n
m)

Proof Recall the definition of Z given in Definition 8. With this we can write

E
Ω,σ

[
sup
‖X‖A≤1

∣∣∣
m∑

ℓ=1

σℓXiℓ,jℓ,kℓ

∣∣∣
]
= E

Ω,σ

[
sup

C-incoherent a,b,c
|〈Z, a⊗ b⊗ c〉|

]

We can now adapt the discretization approach in Friedman et al. (1989), although our task is

considerably simpler because we are constrained to C-incoherent a’s. In particular, let

S =
{
a
∣∣∣a is C-incoherent and a ∈

(
ǫZ

)n}

By standard bounds on the size of an ǫ-net (Matoušek, 2002), we get that |S| ≤ O(C/ǫ)n. Suppose

that |〈Z, a ⊗ b ⊗ c〉| ≤ M for all a, b, c ∈ S. Then for an arbitrary, but C-incoherent a we can

expand it as a =
∑

i ǫ
iai where each ai ∈ S and similarly for b and c. And now

|〈Z, a⊗ b⊗ c〉| ≤
∑

i

∑

j

∑

k

ǫiǫjǫk|〈Z, ai ⊗ bi ⊗ ci〉| ≤ (1− ǫ)−3M

4. The usual definition of the tensor nuclear norm has no constraints that the vectors a, b and c be C-incoherent.

However, adding this additional requirement only serves to further restrict the unit norm ball, while ensuring that the

low rank part of T (when scaled down) is still in it, since the factors of T are anyways assumed to be C-incoherent.

This makes it easier to prove recovery guarantees because we do not need to worry about sparse vectors behaving

very differently than incoherent ones, and since we are not going to compute this norm anyways this modification

will make our analysis easier.

10
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Moreover since each entry in a ⊗ b ⊗ c has magnitude at most C3 we can apply a Chernoff bound

to conclude that for any particular a, b, c ∈ S we have

|〈Z, a⊗ b⊗ c〉| ≤ O
(
C3

√
m log 1/γ

)

with probability at least 1− γ. Finally, if we set γ = ( ǫ
C )
−n and we set ǫ = 1/2 we get that

Rm(A) ≤ (1− ǫ)−3

m
max
a,b,c∈S

|〈Z, a⊗ b⊗ c〉| = O
(
C3

√
n

m

)

and this completes the proof.

The important point is that the Rademacher complexity of the tensor nuclear norm is o(1) when-

ever m = ω(n). In the next subsection we will connect this to refutation in a way that allows us to

strengthen known hardness results for computing the tensor nuclear norm (Gurvits, 2003; Harrow

and Montanaro, 2013) and show that it is even hard to compute in an average-case sense based on

some standard conjectures about the difficulty of refuting random 3-SAT.

2.4. From Rademacher Complexity to Refutation

Here we show the first implication of the connection we have established. Any norm that can be

computed in polynomial time and has good Rademacher complexity immediately yields an algo-

rithm for strongly refuting random 3-SAT and 3-XOR formulas. Next let us finally define strong

refutation.

Definition 12 For a formula φ, let opt(φ) be the largest fraction of clauses that can be satisfied by

any assignment.

In what follows, we will use the term random 3-XOR formula to refer to a formula where each

clause is generated by choosing an ordered triple of variables (vi, vj , vk) uniformly at random (and

without replacement) and setting vi · vj · vk = z where z is a random variable that takes on values

+1 and −1.

Definition 13 An algorithm for strongly refuting random 3-XOR takes as input a 3-XOR formula

φ and outputs a quantity alg(φ) that satisfies

1. For any 3-XOR formula φ, opt(φ) ≤ alg(φ)

2. If φ is a random 3-XOR formula with m clauses, then with high probability alg(φ) = 1/2 +
o(1)

This definition only makes sense when m is large enough so that opt(φ) = 1/2 + o(1) holds

with high probability, which happens when m = ω(n). The goal is to design algorithms that

use as few clauses as possible, and are able to certify that a random formula is indeed far from

satisfiable (without underestimating the fraction of clauses that can be satisfied) and to do so as

close as possible to the information theoretic threshold.

Now let us use a polynomial time computable norm ‖·‖K that has good Rademacher complexity

to give an algorithm for strongly refuting random 3-XOR. As in Section 2.1, given a formula φ we

11
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map its m clauses to a collection of m observations according to the usual rule: If there are n
variables, we construct an n× n× n tensor Z where for each clause of the form vi · vj · vk = zi,j,k
we put the entry zi,j,k at location (i, j, k). All the rest of the entries in Z are set to zero. We solve

the following optimization problem:

max η s.t. ∃X with ‖X‖K ≤ 1 and
1

m
〈Z,X〉 ≥ 2η (3)

Let η∗ be the optimum value. We set alg(φ) = 1/2 + η∗. What remains is to prove that the output

of this algorithm solves the strong refutation problem for 3-XOR.

Theorem 14 Suppose that ‖ · ‖K is computable in polynomial time and satisfies ‖X‖K ≤ 1 when-

ever X = a ⊗ a ⊗ a and a is a vector with ±1 entries. Further suppose that for any X with

‖X‖K ≤ 1 its entries are bounded by C3 in absolute value. Then (3) can be solved in polynomial

time and if Rm(‖ · ‖K) = o(1) then setting alg(φ) = 1/2 + η∗ solves strong refutation for 3-XOR

with O(C6m log n) clauses.

Proof The key observation is the following inequality which relates (3) to opt(φ).

2 opt(φ)− 1 ≤ 1

m
sup
‖X‖K≤1

〈Z,X〉

To establish this inequality, let v1, v2, ..., vn be the assignment that maximizes the fraction of clauses

satisfied. If we set ai = vi and X = a ⊗ a ⊗ a we have that ‖X‖K ≤ 1 by assumption. Thus X
is a feasible solution. Now with this choice of X for the right hand side, every term in the sum that

corresponds to a satisfied clause contributes +1 and every term that corresponds to an unsatisfied

clause contributes −1. We get 2 opt(φ)−1 for this choice of X , and this completes the proof of the

inequality above.

The crucial point is that the expectation of the right hand side over Ω and σ is exactly the

Rademacher complexity. However we want a bound that holds with high probability instead of

just in expectation. It follows from McDiarmid’s inequality and the fact that the entries of Z and

of X are bounded by 1 and by C3 in absolute value respectively that if we take O(C6m log n)
observations the right hand side will be o(1) with high probability. In this case, rearranging the

inequality we have

opt(φ) ≤ 1/2 +
1

m
sup
‖X‖K≤1

〈Z,X〉

The right hand side is exactly alg(φ) and is 1/2 + o(1) with high probability, which implies that

both conditions in the definition for strong refutation hold and this completes the proof.

We can now combine Theorem 14 with the bound on the Rademacher complexity of the tensor

nuclear norm given in Lemma 11 to conclude that if we could compute the tensor nuclear norm

we would also obtain an algorithm for strongly refuting random 3-XOR with only m = Ω(n log n)
clauses. It is not obvious but it turns out that any algorithm for strongly refuting random 3-XOR

implies one for 3-SAT. Let us define strong refutation for 3-SAT. We will refer to any variable vi or

its negation v̄i as a literal. We will use the term random 3-SAT formula to refer to a formula where

each clause is generated by choosing an ordered triple of literals (yi, yj , yk) uniformly at random

(and without replacement) and setting yi ∨ yj ∨ yk = 1.

12
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Definition 15 An algorithm for strongly refuting random 3-SAT takes as input a 3-SAT formula φ
and outputs a quantity alg(φ) that satisfies

1. For any 3-SAT formula φ, opt(φ) ≤ alg(φ)

2. If φ is a random 3-SAT formula with m clauses, then with high probability alg(φ) = 7/8 +
o(1)

The only change from Definition 13 comes from the fact that for 3-SAT a random assignment

satisfies a 7/8 fraction of the clauses in expectation. Our goal here is to certify that the largest

fraction of clauses that can be satisfied is 7/8 + o(1). The connection between refuting random

3-XOR and 3-SAT is often called “Feige’s XOR Trick” (Feige, 2002). The first version of it was

used to show that an algorithm for ǫ-refuting 3-XOR can be turned into an algorithm for ǫ-refuting

3-SAT. However we will not use this notion of refutation so for further details we refer the reader to

Feige (2002). The reduction was extended later by Coja-Oghlan et al. (2007) to strong refutation,

which for us yields the following corollary:

Corollary 16 Suppose that ‖ · ‖K is computable in polynomial time and satisfies ‖X‖K ≤ 1
whenever X = a ⊗ a ⊗ a and a is a vector with ±1 entries. Suppose further that for any X with

‖X‖K ≤ 1 its entries are bounded by C3 in absolute value and that Rm(‖ · ‖K) = o(1). Then there

is a polynomial time algorithm for strongly refuting a random 3-SAT formula with O(C6m log n)
clauses.

Now we can get a better understanding of the obstacles to noisy tensor completion by connecting

it to the literature on refuting random 3-SAT. Despite a long line of work on refuting random 3-

SAT (Goerdt and Krivelevich, 2001; Friedman et al., 2005; Feige and Ofek, 2007; Feige et al.,

2006; Coja-Oghlan et al., 2007), there is no known polynomial time algorithm that works with

m = n3/2−ǫ clauses for any ǫ > 0. Feige (2002) conjectured that for any constant C, there is no

polynomial time algorithm for refuting random 3-SAT with m = Cn clauses5. Daniely et al. (2013)

conjectured that there is no polynomial time algorithm for m = n3/2−ǫ for any ǫ > 0. What we have

shown above is that any norm that is a relaxation to the tensor nuclear norm and can be computed

in polynomial time but has Rademacher complexity is Rm(‖ · ‖K) = o(1) for m = n3/2−ǫ would

disprove the conjecture of Daniely et al. (2013) and would yield much better algorithms for refuting

random 3-SAT than we currently know, despite fifteen years of work on the subject.

This leaves open an important question. While there are no known algorithms for strongly

refuting random 3-SAT with m = n3/2−ǫ clauses, there are algorithms that work with roughly

m = n3/2 clauses (Coja-Oghlan et al., 2007). Do these algorithms have any implications for noisy

tensor completion? We will adapt the algorithm of Coja-Oghlan et al. (2007) and embed it within

the sum-of-squares hierarchy. In turn, this will give us a norm that we can use to solve noisy tensor

completion which uses a polynomial factor fewer observations than known algorithms.

5. In Feige’s paper (Feige, 2002) there was no need to make the conjecture any stronger because it was already strong

enough for all of the applications in inapproximability.
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3. Using Resolution to Bound the Rademacher Complexity

3.1. Pseudo-expectation

Here we introduce the sum-of-squares hierarchy and will use it (at level six) to give a relaxation to

the tensor nuclear norm. This will be the norm that we will use in proving our main upper bounds.

First we introduce the notion of a pseudo-expectation operator from (Barak et al., 2014, 2015; Barak

and Steurer, 2014):

Definition 17 (Pseudo-expectation (Barak et al., 2014)) Let k be even and let Pn′

k denote the

linear subspace of all polynomials of degree at most k on n′ variables. A linear operator Ẽ :
Pn′

k → R is called a degree k pseudo-expectation operator if it satisfies the following conditions:

(1) Ẽ[1] = 1 (normalization)

(2) Ẽ[P 2] ≥ 0, for any degree at most k/2 polynomial P (nonnegativity)

Moreover suppose that p ∈ Pn′

k with deg(p) = k′. We say that Ẽ satisfies the constraint {p = 0} if

Ẽ[pq] = 0 for every q ∈ Pn′

k−k′ . And we say that Ẽ satisfies the constraint {p ≥ 0} if Ẽ[pq2] ≥ 0

for every q ∈ Pn′

⌊(k−k′)/2⌋.

The rationale behind this definition is that if µ is a distribution on vectors in R
n′

then the operator

Ẽ[p] = EY←µ[p(Y )] is a degree d pseudo-expectation operator for every d — i.e. it meets the

conditions of Definition 17. However the converse is in general not true. We are now ready to

define the norm that will be used in our upper bounds:

Definition 18 (SOSk norm) We let Kk be the set of all X ∈ R
n1×n2×n3 such that there exists a de-

gree k pseudo-expectation operator on Pn1+n2+n3

k satisfying the following polynomial constraints

(where the variables are the Y
(a)
i ’s)

(a) {
∑n1

i=1(Y
(1)
i )2 = n1}, {

∑n2

i=1(Y
(2)
i )2 = n2} and {

∑n3

i=1(Y
(3)
i )2 = n3}

(b) {(Y (1)
i )2 ≤ C2}, {(Y (2)

i )2 ≤ C2} and {(Y (3)
i )2 ≤ C2} for all i and

(c) Xi,j,k = Ẽ[Y
(1)
i Y

(2)
j Y

(3)
k ] for all i, j and k.

The SOSk norm of X ∈ R
n1×n2×n3 which is denoted by ‖X‖Kk

is the infimum over α such that

X/α ∈ Kk.

The constraints in Definition 17 can be expressed as an O(nk)-sized semidefinite program.

This implies that given any set of polynomial constraints of the form {p = 0}, {p ≥ 0}, one can

efficiently find a degree k pseudo-distribution satisfying those constraints if one exists. This is often

called the degree k Sum-of-Squares algorithm (Shor, 1988; Nesterov, 2000; Lasserre, 2001; Parrilo,

2000). Hence we can compute the norm ‖X‖Kk
of any tensor X to within arbitrary accuracy

in polynomial time. And because it is a relaxation to the tensor nuclear norm which is defined

analogously but over a distribution on C-incoherent vectors instead of a pseudo-distribution over

them, we have that ‖X‖Kk
≤ ‖X‖A for every tensor X . Throughout most of this paper, we will be

interested in the case k = 6.
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3.2. Resolution in K6

Recall that any polynomial time computable norm with good Rademacher complexity with m ob-

servations yields an algorithm for strong refutation with roughly m clauses too. Here we will use an

algorithm for strongly refuting random 3-SAT to guide our search for an appropriate norm. We will

adapt an algorithm due to Coja-Oghlan et al. (2007) that strongly refutes random 3-SAT, and will

instead give an algorithm that strongly refutes random 3-XOR. Moreover each of the steps in the

algorithm embeds into the sixth level of the sum-of-squares hierarchy by mapping resolution oper-

ations to applications of Cauchy-Schwartz, that ultimately show how the inequalities that define the

norm (Definition 18) can be manipulated to give bounds on its own Rademacher complexity.

Let’s return to the task of bounding the Rademacher complexity of ‖ · ‖K6
. Let X be arbitrary

but satisfy ‖X‖K6
≤ 1. Then there is a degree six pseudo-expectation meeting the conditions of

Definition 18. Using Cauchy-Schwartz we have:

(
〈Z,X〉

)2
=

(∑

i

∑

j,k

Zi,j,kẼ[Y
(1)
i Y

(2)
j Y

(3)
k ]

)2
≤ n1

(∑

i

(∑

j,k

Zi,j,kẼ[Y
(1)
i Y

(2)
j Y

(3)
k ]

)2)

(4)

To simplify our notation, we will define the following polynomial

Qi,Z(Y
(2), Y (3)) =

∑

j,k

Zi,j,kY
(2)
j Y

(3)
k

which we will use repeatedly. If d is even then any degree d pseudo-expectation operator satisfies

the constraint (Ẽ[p])2 ≤ Ẽ[p2] for every polynomial p of degree at most d/2 (e.g., see Lemma A.4
in Barak et al. (2012)). Hence the right hand side of (4) can be bounded as:

n1

(∑

i

(
Ẽ[Y

(1)
i Qi,Z(Y

(2), Y (3))]
)2)

≤ n1

∑

i

Ẽ

[(
Y

(1)
i Qi,Z(Y

(2), Y (3))
)2]

(5)

It turns out that bounding the right-hand side of (5) boils down to bounding the spectral norm

of the following matrix.

Definition 19 Let A be the n2n3×n2n3 matrix whose rows and columns are indexed over ordered

pairs (j, k′) and (j′, k) respectively, defined as

Aj,k′,j′,k =
∑

i

Zi,j,kZi,j′,k′

We can now make the connection to resolution more explicit: We can think of a pair of observa-

tions Zi,j,k, Zi,j′,k′ as a pair of 3-XOR constraints, as usual. Resolving them (i.e. multiplying them)

we obtain a 4-XOR constraint

xj · xk · xj′ · xk′ = Zi,j,kZi,j′,k′

A captures the effect of resolving certain pairs of 3-XOR constraints into 4-XOR constraints. The

challenge is that the entries in A are not independent, so bounding its maximum singular value

will require some care. It is important that the rows of A are indexed by (j, k′) and the columns

are indexed by (j′, k), so that j and j′ come from different 3-XOR clauses, as do k and k′, and
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otherwise the spectral bounds that we will want to prove about A would simply not be true! This is

perhaps the key insight in Coja-Oghlan et al. (2007).

It will be more convenient to decompose A and reason about its two types of contributions

separately. To that end, we let R be the n2n3 × n2n3 matrix whose non-zero entries are of the form

Rj,k,j,k =
∑

i

Zi,j,kZi,j,k

and all of its other entries are set to zero. Then let B be the n2n3 × n2n3 matrix whose entries are

of the form

Bj,k′,j′,k =

{
0, if j = j′ and k = k′
∑

i Zi,j,kZi,j′,k′ else

By construction we have A = B +R. Finally:

Lemma 20 ∑

i

Ẽ

[(
Y

(1)
i Qi,Z(Y

(2), Y (3))
)2]

≤ C2n2n3‖B‖+ C6m

Proof The pseudo-expectation operator satisfies {(Y (1)
i )2 ≤ C2} for all i, and hence we have

∑
i Ẽ

[(
YiQi,Z(Y

(2), Y (3))
)2]

≤ C2
∑

i Ẽ

[(
Qi,Z(Y

(2), Y (3))
)2]

= C2
∑

i

∑
j,k,j′,k′ Ẽ

[
Zi,j,kZi,j′,k′Y

(2)
j Y

(3)
k Y

(2)
j′ Y

(3)
k′

]

Now let Y (2) ∈ R
n2 be a vector of variables where the ith entry is Y

(2)
i and similarly for Y (3). Then

we can re-write the right hand side as a matrix inner-product:

C2
∑

i

∑

j,k,j′,k′

Zi,j,kZi,j′,k′Ẽ[Y
(2)
j Y

(3)
k Y

(2)
j′ Y

(3)
k′ ] = C2〈A, Ẽ[(Y (2) ⊗ Y (3))(Y (2) ⊗ Y (3))T ]〉

We will now bound the contribution of B and R separately.

Claim 21 Ẽ[(Y (2) ⊗ Y (3))(Y (2) ⊗ Y (3))T ] is positive semidefinite and has trace at most n2n3

Proof It is easy to see that a quadratic form on Ẽ[(Y (2) ⊗ Y (3))(Y (2) ⊗ Y (3))T ] corresponds to

Ẽ[p2] for some p ∈ Pn2+n3

2 and this implies the first part of the claim. Finally

Tr(Ẽ[(Y (2) ⊗ Y (3))(Y (2) ⊗ Y (3))T ]) =
∑

j,k

Ẽ[(Y
(2)
j )2(Y

(3)
k )2] ≤ n2n3

where the last equality follows because the pseudo-expectation operator satisfies the constraints

{
∑n2

i=1(Y
(2)
i )2 = n2} and {

∑n3

i=1(Y
(3)
i )2 = n3}.

Hence we can bound the contribution of the first term as C2〈B, Ẽ[(Y (2)⊗Y (3))(Y (2)⊗Y (3))T ]]〉 ≤
C2n2n3‖B‖. Now we proceed to bound the contribution of the second term:

Claim 22 Ẽ[(Y
(2)
j )2(Y

(3)
k )2] ≤ C4
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Proof It is easy to verify by direction computation that the following equality holds:

C4−(Y
(2)
j )2(Y

(3)
k )2 =

(
C2−(Y

(2)
j )2

)(
C2−(Y

(3)
k )2

)
+
(
C2−(Y

(3)
k )2

)
(Y

(2)
j )2+

(
C2−(Y

(2)
j )2

)
(Y

(3)
k )2

Moreover the pseudo-expectation of each of the three terms above is nonnegative, by construction.

This implies the claim.

Moreover each entry in Z is in the set {−1, 0,+1} and there are precisely m non-zeros. Thus the

sum of the absolute values of all entries in R is at most m. Now we have:

C2〈R, Ẽ[(Y (2) ⊗ Y (3))(Y (2) ⊗ Y (3))T ]〉 ≤ C2
∑

j,k

Rj,k,j,kẼ[(Y
(2)
j )2(Y

(3)
k )2] ≤ C6m

And this completes the proof of the lemma.

4. Spectral Bounds

Recall the definition of B given in the previous section. In fact, for our spectral bounds it will be

more convenient to relabel the variables (but keeping the definition intact):

Bj,k,j′,k′ =

{
0, if j = j′ and k = k′
∑

i Zi,j,k′Zi,j′,k else

Let us consider the following random process: For r = 1, 2, ..., O(log n) partition the set of all

ordered triples (i, j, k) into two sets Sr and Tr. We will use this ensemble of partitions to define an

ensemble of matrices {Br}O(logn)
r=1 : Set U r

i,j,k′ as equal to Zi,j,k′ if (i, j, k′) ∈ Sr and zero otherwise.

Similarly set V r
i,j′,k equal to Zi,j′,k if (i, j′, k) ∈ Tr and zero otherwise. Also let Ei,j,j′,k,k′,r be the

event that there is no r′ < r where (i, j, k′) ∈ Sr′ and (i, j′, k) ∈ Tr′ or vice-versa. Now let

B
r
j,k,j′,k′ =

∑

i

U r
i,j,k′V

r
i,j′,k✶E

where ✶E is short-hand for the indicator function of the event Ei,j,j′,k,k′,r. The idea behind this

construction is that each pair of triples (i, j, k′) and (i, j′, k) that contributes to B will be contribute

to some Br with high probability. Moreover it will not contribute to any later matrix in the ensemble.

Hence with high probability

B =

O(logn)∑

r=1

B
r

Throughout the rest of this section, we will suppress the superscript r and work with a particular

matrix in the ensemble, B. Now let ℓ be even and consider

Tr(BBT
BB

T ...BBT
︸ ︷︷ ︸

ℓ times

)

As is standard, we are interested in bounding E[Tr(BBT
BB

T ...BBT )] in order to bound ‖B‖. But

note that B is not symmetric. Also note that the random variables U and V are not independent,
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however whether or not they are non-zero is non-positively correlated and their signs are mutually

independent. Expanding the trace above we have

Tr(BBT
BB

T ...BBT ) =
∑

j1,k1

∑
j2,k2

...
∑

jℓ−1,kℓ−1
Bj1,k1,j2,k2Bj3,k3,j2,k2 ...Bj1,k1,jℓ,kℓ

=
∑

j1,k1

∑
i1

∑
j2,k2

∑
i2
...

∑
jℓ,kℓ

∑
iℓ
Ui1,j1,k2Vi1,j2,k1✶E1

Ui2,j3,k2Vi2,j2,k3✶E2
...Uiℓ,j1,kℓViℓ,jℓ,k1✶Eℓ

where ✶E1
is the indicator for the event that the entry Bj1,k1,j2,k2 is not covered by an earlier matrix

in the ensemble, and similarly for ✶E2
, ...,✶Eℓ

.

Notice that there are 2ℓ random variables in the above sum (ignoring the indicator variables).

Moreover if any U or V random variable appears an odd number of times, then the contribution

of the term to E[Tr(BBT
BB

T ...BBT )] is zero. We will give an encoding for each term that has a

non-zero contribution, and we will prove that it is injective.

Fix a particular term in the above sum where each random variable appears an even number of

times. Let s be the number of distinct values for i. Moreover let i1, i2, ..., is be the order that these

indices first appear. Now let rj1 denote the number of distinct values for j that appear with i1 in

U terms — i.e. rj1 is the number of distinct j’s that appear as Ui1,j,∗. Let rk1 denote the number

of distinct values for k that appear with i1 in U terms — i.e. rk1 is the number of distinct k’s that

appear as or Ui1,∗,k. Similarly let qj1 denote the number of distinct values for j that appear with i1
in V terms — i.e. qj1 is the number of distinct j’s that appear as Vi1,j,∗. And finally let qk1 denote the

number of distinct values for k that appear with i1 in V terms — i.e. qk1 is the number of distinct

k’s that appear as Vi1,∗,k.

We give our encoding below. It is more convenient to think of the encoding as any way to

answer the following questions about the term.

(a) What is the order i1, i2, ..., is of the first appearance of each distinct value of i?

(b) For each i that appears, what is the order of each of the distinct values of j’s and k’s that

appear along with it in U? Similarly, what is the order of each of the distinct values of j’s and

k’s that appear along with it in V ?

(c) For each step (i.e. a new variable in the term when reading from left to right), has the value of

i been visited already? Also, has the value for j or k that appears along with U been visited?

Has the value for j or k that appears along with V been visited? Note that whether or not j
or k has been visited (together in U ) depends on what the value of i is, and if i is a new value

then the j or k value must be new too, by definition. Finally, if any value has already been

visited, which earlier value is it?

Let rj = rj1 + rj2 + ... + rjs and rk = rk1 + rk2 + ... + rks . Similarly let qj = qj1 + qj2 + ...qjs
and qk = qk1 + qk2 + ...qks . Then the number of possible answers to (a) and (b) is at most ns

1 and

n
rj
2 nrk

3 n
qj
2 nqk

3 respectively. It is also easy to see that the number of answers to (c) that arise over

the sequence of ℓ steps is at most 8ℓ(s(rj + rk)(qj + qk))
ℓ. We remark that much of the work

on bounding the maximum eigenvalue of a random matrix is in removing any ℓℓ type terms, and

so one needs to encode re-visiting indices more compactly. However such terms will only cost us

polylogarithmic factors in our bound on ‖B‖.

It is easy to see that this encoding is injective, since given the answers to the above questions

one can simulate each step and recover the sequence of random variables. Next we establish some

easy facts that allow us to bound E[Tr(BBT
BB

T ...BBT )].
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Claim 23 For any term that has a non-zero contribution to E[Tr(BBT
BB

T ...BBT )], we must have

s ≤ ℓ/2 and rj + qj + rk + qk ≤ ℓ

Proof Recall that there are 2ℓ random variables in the product and precisely ℓ of them correspond

to U variables and ℓ of them to V variables. Suppose that s > ℓ/2. Then there must be at least

one U variable and at least one V variable that occur exactly once, which implies that its expecta-

tion is zero because the signs of the non-zero entries are mutually independent. Similarly suppose

rj + qj + rk + qk > ℓ. Then there must be at least one U or V variable that occurs exactly once,

which also implies that its expectation is zero.

Claim 24 For any valid encoding, s ≤ rj + qj and s ≤ rk + qk.

Proof This holds because in each step where the i variable is new and has not been visited before,

by definition the j variable is new too (for the current i) and similarly for the k variable.

Finally, if s, rj , qj , rk and qk are defined as above then for any contributing term

Ui1,j1,k2Vi1,j2,k1Ui2,j3,k2Vi2,j2,k3 ...Uiℓ,j1,lℓViℓ,jℓ,k1

its expectation is at most prj+rkpqj+qk where p = m/n1n2n3 because there are exactly rj + rk
distinct U variables and qj + qk distinct V variables whose values are in the set {−1, 0,+1} and

whether or not a variable is non-zero is non-positively correlated and the signs are mutually inde-

pendent.

This now implies the main lemma:

Lemma 25 E[Tr(BBT
BB

T ...BBT )] ≤ n
ℓ/2
1 (max(n2, n3))

ℓpℓ(ℓ)3ℓ+3

Proof Note that the indicator variables only have the effect of zeroing out some terms that could

otherwise contribute to E[Tr(BBT
BB

T ...BBT )]. Returning to the task at hand, we have

E[Tr(BBT
BB

T ...BBT )] ≤
∑

s,rj ,rk,qj ,qk

ns
1n

rj
2 nrk

3 n
qj
2 nqk

3 prj+rkpqj+qk8ℓ(s(rj + rk)(qj + qk))
ℓ

where the sum is over all valid triples s, rj , rk, qj , qk and hence s, r, q ≤ ℓ/2 and s ≤ rj + rk and

s ≤ qj + qk using Claim 23 and Claim 24. We can upper bound the above as

E[Tr(BBT
BB

T ...BBT )] ≤
∑

s,rj ,rk,qj ,qk

ns
1(pn2)

rj+qj (pn3)
rk+qk(ℓ)3ℓ+3

≤
∑

s,rj ,rk,qj ,qk

ns
1(pmax(n2, n3))

rj+qj+rk+qk(ℓ)3ℓ+3

Now if pmax(n2, n3) ≤ 1 then using Claim 24 followed by the first half of Claim 23 we have:

E[Tr(BBT
BB

T ...BBT )] ≤ ns
1(pmax(n2, n3))

2s(ℓ)3ℓ+3 ≤ n
ℓ/2
1 (pmax(n2, n3))

ℓ(ℓ)3ℓ+3
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where the last inequality follows because pn
1/2
1 max(n2, n3) > 1. Alternatively if pmax(n2, n3) >

1 then we can directly invoke the second half of Claim 23 and get:

E[Tr(BBT
BB

T ...BBT )] ≤ ns
1(pmax(n2, n3))

ℓ(ℓ)3ℓ+3 ≤ n
ℓ/2
1 (pmax(n2, n3))

ℓ(ℓ)3ℓ+3

Hence E[Tr(BBT
BB

T ...BBT )] ≤ n
ℓ/2
1 max(n2, n3)

ℓpℓ(ℓ)3ℓ+3 and this completes the proof.

As before, let n = max(n1, n2, n3). Then the last piece we need to bound the Rademacher

complexity is the following spectral bound:

Theorem 26 With high probability, ‖B‖ ≤ O
(

m log4 n

n
1/2
1

min(n2,n3)

)

Proof We proceed by using Markov’s inequality:

Pr[‖B‖ ≥ n
1/2
1 max(n2, n3)p(2ℓ)

3] = Pr

[
‖B‖ℓ ≥

(
n
1/2
1 max(n2, n3)p(2ℓ)

3
)ℓ]

≤ E[Tr(BBT
BB

T ...BBT )]

n
ℓ/2
1 max(n2, n3)ℓpℓ(2ℓ)3ℓ

≤ ℓ3

23ℓ

and hence setting ℓ = Θ(log n) we conclude that ‖B‖ ≤ 8n
1/2
1 max(n2, n3)p log

3 n holds with

high probability. Moreover B =
∑O(logn)

r=1 B
r also holds with high probability. If this equality

holds and each B
r satisfies ‖Br‖ ≤ 8n

1/2
1 max(n2, n3)p log

3 n, we have

‖B‖ ≤ max
r

O(‖Br‖ log n) = O
( m log4 n

n
1/2
1 min(n2, n3)

)

where we have used the fact that p = m/n1n2n3. This completes the proof of the theorem.

Proofs of Theorem 1 and Corollary 2

We can now bound the Rademacher complexity of the norm that we get from the six level sum-of-

squares relaxation to the tensor nuclear norm:

Theorem 27 Rm(‖ · ‖K6
) ≤ O

(√
(n1)1/2(n2+n3) log

4 n
m

)

Proof Consider any X with ‖X‖K6
≤ 1. Then using Lemma 20 and Theorem 26 we have

(
〈Z,X〉

)2
≤ n1

(∑

i

(∑

j,k

Zi,j,kXi,j,k

)2)
≤ C2n1n2n3‖B‖+ C6mn1

= O
(
mn

1/2
1 max(n2, n3) log

4 n+mn1

)

Recall that Z was defined in Definition 8. The Rademacher complexity can now be bounded as

1

m
(〈Z,X〉) ≤ O

(
√

(n1)1/2(n2 + n3) log
4 n

m

)
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which completes the proof of the theorem.

Recall that bounds on the Rademacher complexity readily imply bounds on the generalization

error (see Theorem 7). We can now prove Theorem 1:

Proof We solve (2) using the norm ‖ · ‖K6
. Since this norm comes from the sixth level of the sum-

of-squares hierarchy, it follows that (2) is an n6-sized semidefinite program and there is an efficient

algorithm to solve it to arbitrary accuracy. Moreover we can always plug in X = T − ∆ and the

bounds on the maximum magnitude of an entry in ∆ together with the Chernoff bound imply that

with high probability X = T −∆ is a feasible solution. Moreover ‖T −∆‖K6
≤ r∗. Hence with

high probability, the minimizer X satisfies ‖X‖K6
≤ r∗. Now if we take any such X returned by

the convex program, because it is feasible its empirical error is at most 2δ. And since ‖X‖K6
≤ r∗

the bounds on the Rademacher complexity (Theorem 27) together with Theorem 7 give the desired

bounds on err(X) and complete the proof of our main theorem.

Finally we prove Corollary 2:

Proof Our goal is to lower bound the absolute value of a typical entry in T . To be concrete, suppose

that var(Ti,j,k) ≥ f(r, n) for a 1− o(1) fraction of the entries where f(r, n) = r1/2/ logD n. Con-

sider Ti,j,k, which we will view as a degree three polynomial in Gaussian random variables. Then

the anti-concentration bounds of Carbery and Wright (2001) now imply that |Ti,j,k| ≥ f(r, n)/ log n
with probability 1− o(1). With this in mind, we define

R = {(i, j, k) s.t. |Ti,j,k| ≥ f(r, n)/ log n}

and it follows form Markov’s bound that that |R| ≥ (1 − o(1))n1n2n3. Now consider just those

entries in R which we get substantially wrong:

R′ = {(i, j, k) s.t. (i, j, k) ∈ R and |Xi,j,k − Ti,j,k| ≥ 1/ log n}

We can now invoke Theorem 1 which guarantees that the hypothesis X that results from solving (2)

satisfies err(X) = o(1/ log n) with probability 1− o(1) provided that m = Ω̃(n3/2r). This bound

on the error immediately implies that |R′| = o(n1n2n3) and so |R\R′| = (1− o(1))n1n2n3. This

completes the proof of the corollary.

5. Sum-of-Squares Lower Bounds

Here we will show strong lower bounds on the Rademacher complexity of the sequence of relax-

ations to the tensor nuclear norm that we get from the sum-of-squares hierarchy. Our lower bounds

follow as a corollary from known lower bounds for refuting random instances of 3-XOR (Grigoriev,

2001; Schoenebeck, 2008). First we need to introduce the formulation of the sum-of-squares hierar-

chy used in Schoenebeck (2008): We will call a Boolean function f a k-junta if there is set S ⊆ [n]
of at most k variables so that f is determined by the values in S.

Definition 28 The k-round Lasserre hierarchy is the following relaxation:
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(a) ‖v0‖2 = 1, ‖vC‖2 = 1 for all C ∈ C

(b) 〈vf , vg〉 = 〈vf ′ , vg′〉 for all f, g, f ′, g′ that are k-juntas and f · g ≡ f ′ · g′

(c) vf + vg = vf+g for all f, g that are k-juntas and satisfy f · g ≡ 0

Here we define a vector vf for each k-junta, and C is a class of constraints that must be satisfied by

any Boolean solution (and are necessarily k-juntas themselves). See Schoenebeck (2008) for more

background, but it is easy to construct a feasible solution to the above convex program given a dis-

tribution on feasible solutions for some constraint satisfaction problem. In the above relaxation, we

think of functions f as being {0, 1}-valued. It will be more convenient to work with an intermediate

relaxation where functions are {−1, 1}-valued and the intuition is that uS for some set S ⊆ [n]
should correspond to the vector for the character χS .

Definition 29 Alternatively, the k-round Lasserre hierarchy is the following relaxation:

(a) ‖u∅‖2 = 1, 〈u∅, uS〉 = (−1)ZS for all (⊕S , ZS) ∈ C

(b) 〈uS , uT 〉 = 〈uS′ , uT ′〉 for sets S, T, S′, T ′ that are size at most k and satisfy S∆T = S′∆T ′,
where ∆ is the symmetric difference.

Here we have explicitly made the switch to XOR-constraints — namely (⊕S , ZS) has ZS ∈ {0, 1}
and correspond to the constraint that the parity on the set S is equal to ZS . Now if we have a

feasible solution to the constraints in Definition 28 where all the clauses are XOR-constraints, we

can construct a feasible solution to the constraints in Definition 29 as follows. If S is a set of size at

most k, we define

uS ≡ vg − vf

where f is the parity function on S and g = 1− f is its complement. Moreover let u∅ = v0.

Claim 30 {uS} is a feasible solution to the constraints in Definition 29

Proof Consider Constraint (b) in Definition 29, and let S, T, S′, T ′ be sets of size at most k that

satisfy S ⊕ T = S′ ⊕ T ′. Then our goal is to show that

〈vgS − vfS , vgT − vfT 〉 = 〈vgS′ − vfS′
, vgT ′ − vfT ′

〉

where fS is the parity function on S, and similarly for the other functions. Then we have fS · fT ≡
fS′ · fT ′ because S ⊕ T = S′ ⊕ T ′, and this implies that 〈vfS , vfT 〉 = 〈vfS′

, vfT ′
〉. An identical

argument holds for the other terms. This implies that all the Constraints (b) hold. Similarly suppose

(⊕S , ZS) ∈ C. Since fS · gS ≡ 0 and fS + gS ≡ 1 it is well-known that (1) vfS and vgS are

orthogonal (2) vfS + vgS = v0 and (3) since fS ∈ C in Definition 28, we have vgS = 0 (see

Schoenebeck (2008)). Thus

〈u∅, uS〉 = 〈v0, vgS 〉 − 〈v0, vfS 〉 = −1

and this completes the proof.
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Now following Barak et al. (2012) we can use the constraints in Definition 29 to define the

operator Ẽ[·]. In particular, given p ∈ Pn
k where p ≡

∑
S cS

∏
i∈S Yi and p is multilinear, we set

Ẽ[p)] =
∑

S

cS〈u∅, uS〉

Here we will also need to define Ẽ[p] when p is not multilinear, and in that case if Yi appears an

even number of times we replace it with 1 and if it appears an odd number of times we replace it by

Yi to get a multilinear polynomial q and then set Ẽ[p] = Ẽ[q].

Claim 31 Ẽ[·] is a feasible solution to the constraints in Definition 18, and for any (⊕S , ZS) ∈ C
we have Ẽ[

∏
i∈S Yi] = (−1)ZS .

Proof Then by construction Ẽ[1] = 1, and the proof that Ẽ[p2] ≥ 0 is given in Barak et al.

(2012), but we repeat it here for completeness. Let p =
∑

S cS
∏

i∈S Yi be multilinear where

we follow the above recipe and replace terms of the form Y 2
i with (1/n) as needed. Then p2 =∑

S,T cScT
∏

i∈S Yi
∏

i∈T Yi and moreover

Ẽ[p2] =
∑

S,T

cScT 〈u∅, uS∆T 〉 =
∑

S,T

cScT 〈uS , uT 〉 =
∥∥∥
∑

S

cSuS

∥∥∥
2
≥ 0

as desired. Next we must verify that Ẽ[·] satisfies the constraints {
∑n

i=1 Y
2
i = n} and {Y 2

i ≤ C2}
for all i ∈ {1, 2, ..., n}, in accordance with Definition 17. To that end, observe that

Ẽ

[( n∑

i=1

Y 2
i − n

)
q
]
= 0

which holds for any polynomial q ∈ Pn
k−2. Finally consider

Ẽ

[(
C2 − Y 2

i

)
q2
]
= Ẽ

[(
C2 − 1

)
q2
]
≥ 0

which follows because C2 ≥ 1 and holds for any polynomial q ∈ Pn
⌊(d−d′)/2⌋. This completes the

proof.

Theorem 32 (Grigoriev, 2001; Schoenebeck, 2008) Let φ be a random 3-XOR formula on n vari-

ables with m = n3/2−ǫ clauses. Then for any ǫ > 0 and any c < 2, the k = Ω(ncǫ) round Lasserre

hierarchy given in Definition 28 permits a feasible solution, with probability 1− o(1).

Note that the constant in the Ω(·) depends on ǫ and c. Then using the above reductions, we have the

following as an immediate corollary:

Corollary 33 For any ǫ > 0 and any c < 2 and k = Ω(ncǫ), if m = n3/2−ǫ the Rademacher

complexity Rm(‖ · ‖Kk
) = 1− o(1).

Thus there is a sharp phase transition (as a function of the number of observations) in the Rademacher

complexity of the norms derived from the sum-of-squares hierarchy. At level six, Rm(‖ · ‖K6
) =

o(1) whenever m = ω(n3/2 log4 n). In contrast, Rm(‖ · ‖Kk
) = 1 − o(1) when m = n3/2−ǫ even

for very strong relaxations derived from n2ǫ rounds of the sum-of-squares hierarchy. These norms

require time 2n
2ǫ

to compute but still achieve essentially no better bounds on their Rademacher

complexity.
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Appendix A. Reduction from Asymmetric to Symmetric Tensors

Here we give a general reduction, and show that any algorithm for tensor prediction that works

for symmetric tensors can be used to predict the entries of an asymmetric tensor too. Hardt gave

a related reduction for the cases of matrices (Hardt, 2014) and it is instructive to first understand

this reduction, before proceeding to the tensor case. Suppose we are given a matrix M that is not

27



BARAK MOITRA

necessarily symmetric. Then the approach of Hardt (2014) is to construct the following symmetric

matrix:

S =

[
0 MT

M 0

]
.

We have not precisely defined the notion of incoherence that is used in the matrix completion liter-

ature, but it turns out to be easy to see that S is low rank and incoherent as well.

The important point is that given m samples generated uniformly at random from M , we can

generate random samples from S too. It will be more convenient to think of these random samples

as being generated without replacement, but this reduction works just as well without replacement

too. Let M ∈ R
n1×n2 . Now for each sample from S, with probability p =

n2

1
+n2

2

(n1+n2)2
we reveal

a uniformly random entry in the either block of zeros. And with probability 1 − p we reveal a

uniformly random entry from M . Each entry in M appears exactly twice in S, and we choose to

reveal this entry of M with probability 1/2 from the top-right block, and otherwise from the bottom-

left block. Thus given m samples from M , we can generate from S (in fact we can generate even

more, because some of the revealed entries will be zeros). It is easy to see that this approach works

for the case of sampling without replacement to, in that m samples without replacement from M
can be used to generate at least m samples without replacement from S.

Now let us proceed to the tensor case. Let us introduce the following definition, for ease of

notation:

Definition 34 Let m(n, r, ǫ, f, C) be such that, there is an algorithm that on a rank r, order d, size

n × n × ... × n symmetric tensor where each factor has norm at most C, the algorithm returns an

estimate X with err(X) = f with probability 1 − ǫ when it is given m(n, r, ǫ, f) samples chosen

uniformly at random (and without replacement).

Lemma 35 For any odd d, suppose we are given m(
∑d

j=1 nj , r2
d−1, ǫ, f,

√
d) samples chosen

uniformly at random (and without replacement) from an n1 × n2 × ...× nd tensor

T =
r∑

i=1

a1i ⊗ a2i ⊗ ...⊗ adi

where each factor is unit norm. There is an algorithm that with probability at least 1− ǫ returns an

estimate Y with

err(Y ) ≤
(
∑d

j=1 nj)
d

d!2d−1
∏d

j=1 nj

f

Proof Our goal is to symmetrize an asymmetric tensor, and in such a way that each entry in the

symmetrized tensor is either zero or else corresponds to an entry in the original tensor. Our reduction

will work for any odd order d tensor. In particular let

T =
r∑

i=1

a1i ⊗ a2i ⊗ ...⊗ adi

be an order d tensor where the dimension of aj is nj . Also let n =
∑d

j=1 nj . Then we will construct

a symmetric, order d tensor as follows. Let σ1, σ2, ...σd be a collection of d random ± variables
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that are chosen uniformly at random from the 2d−1 configurations where
∏d

j=1 σj = 1. Then we

consider the following random vector

ai(σ1, σ2, ...σd) = [σ1a
1
i , σ2a

2
i , ..., σda

d
i ]

Here ai(σ1, σ2, ...σd) is an n-dimensional vector that results from concatenating the vectors a1i , a
2
i , ..., a

d
i

but after flipping some of their signs according to σ1, σ2, ...σd. Then we set

S = E
σ1,σ2,...σd

[

r∑

i=1

(
ai(σ1, σ2, ...σd)

)⊗d
]

It is immediate that S is symmetric and has rank at most 2d−1r by expanding out the expectation

into a sum over the valid sign configurations. Moreover each rank one term in the decomposition is

of the form a⊗d where ‖a‖22 = d because it is the concatenation of d unit vectors.

If σ1, σ2, ...σd is fixed, then each entry in S is itself a degree d polynomial in the σj variables. By

our construction of the σj variables, and because d is odd so there are no terms where every variable

appears to an even power, it follows that all the terms vanish in expectation except for the terms

which have a factor of
∏d

j=1 σj , and these are exactly terms that correspond to some permutation

π : [d] → [d], and a term of the form

d∑

i=1

a
π(1)
i ⊗ a

π(2)
i ⊗, ...,⊗a

π(d)
i

Hence all of the entries in S are either zero or are 2d−1 times an entry in T . As before, we can

generate m uniformly random samples from S given m uniformly random samples from T , by

simply choosing to sample an entry from one of the blocks of zeros with the appropriate probability,

or else revealing an entry of T and choosing where in S to reveal this entry uniformly at random.

Hence:

1

(
∑d

j=1 nj)d

∑

(i1,i2,...,id)∈Γ

|Yi1,i2,...,id − Si1,i2,...,id | ≤
1

(
∑d

j=1 nj)d

∑

i1,i2,...,id

|Yi1,i2,...,id − Si1,i2,...,id |

where Γ represents the locations in S where an entry of T appears. The right hand side above is at

most f with probability 1− ǫ. Moreover each entry in T appears in exactly d! locations in S. And

when it does appear, it is scaled by 2d−1. And hence if we multiply the left hand side by

(
∑d

j=1 nj)
d

d!2d−1
∏d

j=1 nj

we obtain err(Y ). This completes the reduction.

Note that in the case where n1 = n2 = n3... = nd, the error and the rank in this reduction increase

only by at most an ed and 2d factor respectively.
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