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Abstract

Deep neural networks (DNNs) have gained remarkable success in speech recognition, partially attributed to the
flexibility of DNN models in learning complex patterns of speech signals. This flexibility, however, may lead to serious
over-fitting and hence miserable performance degradation in adverse acoustic conditions such as those with high
ambient noises. We propose a noisy training approach to tackle this problem: by injecting moderate noises into the
training data intentionally and randomly, more generalizable DNN models can be learned. This ‘noise injection’
technique, although known to the neural computation community already, has not been studied with DNNs which
involve a highly complex objective function. The experiments presented in this paper confirm that the noisy training
approach works well for the DNN model and can provide substantial performance improvement for DNN-based
speech recognition.
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1 Introduction
A modern automatic speech recognition (ASR) system
involves three components: an acoustic feature extrac-
tor to derive representative features for speech signals,
an emission model to represent static properties of
the speech features, and a transitional model to depict
dynamic properties of speech production. Conventionally,
the dominant acoustic features in ASR are based on short-
time spectral analysis, e.g., Mel frequency cepstral coef-
ficients (MFCC). The emission and transition models are
often chosen to be the Gaussian mixture model (GMM)
and the hidden Markov model (HMM), respectively.
Deep neural networks (DNNs) have gained brilliant suc-

cess in many research fields including speech recognition,
computer vision (CV), and natural language processing
(NLP) [1]. A DNN is a neural network (NN) that involves
more than one hidden layer. NNs have been studied in the
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ASR community for a decade, mainly in two approaches:
in the ‘hybrid approach’, the NN is used to substitute for
the GMM to produce frame likelihood [2], and in the ‘tan-
dem approach’, the NN is used to produce long-context
features that are used to substitute for or augment to
short-time features, e.g., MFCCs [3].
Although promising, the NN-based approach, either

by the hybrid setting or the tandem setting, did not
deliver overwhelming superiority over the conventional
approaches based on MFCCs and GMMs. The revo-
lution took place in 2010 after the close collaboration
between academic and industrial research groups, includ-
ing the University of Toronto, Microsoft, and IBM [1,4,5].
This research found that very significant performance
improvements can be accomplished with the NN-based
hybrid approach, with a few novel techniques and design
choices: (1) extending NNs to DNNs, i.e., involving a large
number of hidden layers (usually 4 to 8); (2) employing
appropriate initialization methods, e.g., pre-training with
restricted Boltzmann machines (RBMs); and (3) using
fine-grained NN targets, e.g., context-dependent states.
Since then, numerous experiments have been published
to investigate various configurations of the DNN-based
acoustic modeling, and all the experiments confirmed that
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the new model is predominantly superior to the classical
architecture based on GMMs [2,4,6-13].
Encouraged by the success of DNNs in the hybrid

approach, researchers reevaluated the tandem approach
using DNNs and achieved similar performance improve-
ments [3,14-20]. Some comparative studies were con-
ducted for the hybrid and tandem approaches, though no
evidence supports that one approach clearly outperforms
the other [21,22]. The study of this paper is based on the
hybrid approach, though the developed technique can be
equally applied to the tandem approach.
The advantage of DNNs in modeling state emission dis-

tributions, when compared to the conventional GMM, has
been discussed in some previous publications, e.g., [1,2].
Although no full consentience exists, researchers agree
on some points, e.g., the DNN is naturally discriminative
when trained with an appropriate objective function, and
it is a hierarchical model that can learn patterns of speech
signals from primitive levels to high levels. Particularly,
DNNs involve very flexible and compact structures: they
usually consist of a large amount of parameters, and the
parameters are highly shared among feature dimensions
and task targets (phones or states). This flexibility, on one
hand, leads to very strong discriminative models, and on
the other hand, may cause serious over-fitting problems,
leading to miserable performance reduction if the training
and test conditions are mismatched. For example, when
the training data are mostly clean and the test data are cor-
rupted by noises, ASR performance usually suffers from
a substantial degradation. This over-fitting is particularly
serious if the training data are not abundant [23].
A multitude of research has been conducted to improve

noise robustness of DNN models. The multi-condition
training approach was presented in [24], where DNNs
were trained by involving speech data in various chan-
nel/noise conditions. This approach is straightforward
and usually delivers good performance, though collect-
ing multi-condition data is not always possible. Another
direction is to use noise-robust features, e.g., auditory
features based onGammatone filters [23]. The third direc-
tion involves various speech enhancement approaches.
For example, the vector Taylor series (VTS) was applied
to compensate for input features in an adaptive training
framework [25]. The authors of [26] investigated sev-
eral popular speech enhancement approaches and found
that the maximum likelihood spectral amplitude estima-
tor (MLSA) is the best spectral restoration method for
DNNs trained with clean speech and tested on noisy data.
Some other researches involve noise information in DNN
inputs and train a ‘noise aware’ network. For instance,
[27] used the VTS as the noise estimator to generate
noise-dependent inputs for DNNs.
Another related technique is the denoising auto-

encoder (DAE) [28]. In this approach, some noises are

randomly selected and intentionally injected to the origi-
nal clean speech; the noise-corrupted speech data are then
fed to an auto-encoder (AE) network where the targets
(outputs) are the original clean speech. By this config-
uration, the AE will learn the denoising function in a
non-linear way. Note that this approach is not particular
for ASR, but a general denoising technique. The authors
of [29] extended this approach by introducing recurrent
NN structures and demonstrated that the deep and recur-
rent auto-encoder can deliver better performance for ASR
in most of the noise conditions they examined.
This paper presents a noisy training approach for DNN-

based ASR. The idea is simple: by injecting some noises
to the input speech data when conducting DNN training,
the noise patterns are expected to be learned, and the gen-
eralization capability of the resulting network is expected
to be improved. Both may improve robustness of DNN-
basedASR systemswithin noisy conditions. Note that part
of the work has been published in [30], though this paper
presents a full discussion of the technique and reports
extensive experiments.
The paper is organized as follows: Section 2 discusses

some related work, and Section 3 presents the proposed
noisy training approach. The implementation details are
presented in Section 4, and the experimental settings and
results are presented in Section 5. The entire paper is
concluded in Section 6.

2 Related work
The noisy training approach proposed in this paper was
highly motivated by the noise injection theory which has
been known for decades in the neural computing com-
munity [31-34]. This paper employs this theory and con-
tributes in two aspects: first, we examine the behavior
of noise injection in DNN training, a more challeng-
ing task involving a huge amount of parameters; second,
we study mixture of multiple noises at various levels of
signal-to-noise ratios (SNR), which is beyond the con-
ventional noise injection theory that assumes small and
Gaussian-like injected noises.
Another work related to this study is the DAE

approach [28,29]. Both the DAE and the noisy train-
ing approaches corrupt NN inputs by randomly sampled
noises. Although the objective of the DAE approach is to
recover the original clean signals, the focus of the noisy
training approach proposed here is to construct a robust
classifier.
Finally, this work is also related to the multi-condition

training [24], in the sense that both train DNNs with
speech signals in multiple conditions. However, the noisy
training obtains multi-conditioned speech data by cor-
rupting clean speech signals, while the multi-condition
training uses real-world speech data recorded in multiple
noise conditions. More importantly, we hope to set up a
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theoretical foundation and a practical guideline for train-
ing DNNs with noises, instead of just regarding it as a
blind noise pattern learner.

3 Noisy training
The basic process of noisy training for DNNs is as follows:
first of all, sample some noise signals from some real-
world recordings and then mix these noise signals with
the original training data. This operation is also referred to
as ‘noise injection’ or ‘noise corruption’ in this paper. The
noise-corrupted speech data are then used to train DNNs
as usual. The rationale of this approach is twofold: firstly,
the noise patterns within the introduced noise signals can
be learned and thus compensated for in the inference
phase, which is straightforward and shares the same idea
as the multi-condition training approach; secondly, the
perturbation introduced by the injected noise can improve
generalization capability of the resulting DNN, which is
supported by the noise injection theory. We discuss these
two aspects sequentially in this section.

3.1 Noise pattern learning
The impact of injecting noises in training data can be
understood as providing some noise-corrupted instances
so that they can be learned by the DNN structure and
recognized in the inference (test) phase. From this per-
spective, the DNN and GMM are of no difference, since
both can benefit from matched acoustic conditions of
training and testing, by either re-training or adaptation.
However, the DNN is more powerful in noise pattern

learning than the GMM. Due to its discriminative nature,
the DNN model focuses on phone/state boundaries, and
the boundaries it learns might be highly complex. There-
fore, it is capable of addressing more severe noises and
dealing with heterogeneous noise patterns. For exam-
ple, a DNN may obtain a reasonable phone classification
accuracy in a very noisy condition, if the noise does not
drastically change the decision boundaries (e.g., with car
noise). In addition, noises of different types and at differ-
ent magnitude levels can be learned simultaneously, as the
complex decision boundaries that the DNN classifier may
learn provide sufficient freedom to address complicated
decisions in heterogeneous acoustic conditions.
In contrast, the GMM is a generative model and focuses

on class distributions. The decision boundaries a GMM
learns (which are determined by the relative locations
of the GMM components of phones/states) are relatively
much simpler than those a DNNmodel learns. Therefore,
it is difficult for GMMs to address heterogeneous noises.
The above argument explains some interesting observa-

tions in the DNN-based noise training in our experiments.
First, learning a particular type of noise does not neces-
sarily lead to performance degradation in another type
of noise. In fact, our experiments show that learning a

particular noise usually improves performances on other
noises, only if the property of the ‘unknown’ noise is not
drastically different from the one that has been learned.
This is a clear advantage over GMMs, for which a signif-
icant performance reduction is often observed when the
noise conditions of training and test data are unmatched.
Moreover, our experiments show that learning multiple

types of noises are not only possible, but also complemen-
tary. As we will see shortly, learning two noisesmay lead to
better performance than learning any single noise, when
the test data are corrupted by either of the two noises. This
is also different from GMMs, for which learning multiple
noises generally leads to interference among each other.
The power of DNNs in learning noise patterns can

be understood in a deeper way, from three perspectives.
Firstly, the DNN training is related to feature selection.
Due to the discriminative nature, the DNN training can
infer the most discriminative part of the noise-corrupted
acoustic features. For instance, with the training data cor-
rupted by car noise, the DNN training process will learn
that the corruption is mainly on the low-frequency part
of the signal, and so the low-frequency components of the
speech features are de-emphasized in the car noise con-
dition. Learning the car noise, however, did not seriously
impact the decision boundaries in other conditions in our
experiments, e.g., with clean speech, probably due to the
complicated DNN structure that allows to learn noise-
conditioned decision boundaries. Moreover, learning car
noise may benefit other noise conditions where the cor-
ruption mainly resides in low-frequency components (as
the car noise), even though the noise is not involved in the
training.
Secondly, the DNN training is related to perceptual

classification. Thanks to the multi-layer structure, DNNs
learn noise patterns gradually. This means that the
noise patterns presented to the DNN inputs are learned
together with the speech patterns at low levels, but only
at high levels, the noise patterns are recognized and de-
emphasized in the decision. This provides a large space for
DNNs to learn heterogeneous noise patterns and ‘memo-
rize’ them in the abundant parameters. This process also
simulates the processing procedure of the human brain,
where noise patterns are processed and recognized by the
peripheral auditory system but are ignored in the final
perceptual decision by the central neural system.
Finally, the DNN training is related to the theory of

regularization. All admit that a large amount of param-
eters of DNNs allow great potential to learn complex
speech and noise patterns and their class boundaries.
If the training is based on clean speech only, however,
the flexibility provided by the DNN structure is largely
wasted. This is because the phone class boundaries are
relatively clear with clean speech, and so the abundant
parameters of DNNs tend to learn the nuanced variations
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of phone implementations, conditioned on a particular
type of channel and/or background noise. This is a notori-
ous over-fitting problem. By injecting random noises, the
DNN training is enforced to emphasize on the most dis-
criminative patterns of speech signals. In other words, the
DNNs trained with noise injection tend to be less sensi-
tive to noise corruptions. This intuition is supported by
the noise injection theory as presented in the next section.

3.2 Noise injection theory
It has been known for two decades that imposing noises to
the input can improve the generalization capability of neu-
ral networks [35]. A bunch of theoretical studies have been
presented to understand the implication of this ‘noise
injection’. Nowadays, it is clear that involving a small mag-
nitude of noise in the input is equivalent to introducing
a certain regularization in the objective function, which
in turn encourages the network converging to a smoother
mapping function [36]. More precisely, with noise injec-
tion, the training favors an optimal solution at which the
objective function is less sensitive to the change of the
input [32]. Further studies showed that noise injection is
closely correlated to some other well-known techniques,
including sigmoid gain scaling and target smoothing by
convolution [37], at least with Gaussian noises and multi-
layer perceptrons (MLP) with a single layer. The rela-
tionships among regularization, weight decay, and noise
injection, on one hand, provide a better understanding
for each individual technique, and on the other hand,
motivate some novel and efficient robust training algo-
rithms. For example, Bishop showed that noise injection
can be approximated by a Tikhonov regularization on the
square error cost function [33]. Finally, we note that noise
injection can be conducted in different ways, such as per-
turbation onweights and hidden units [31], thoughwe just
consider the noise injection to the input in this paper.
In order to highlight the rationale of noise injection

(and so noisy training), we reproduce the formulation and
derivation in [32] but migrate the derivation to the case of
cross-entropy cost which is usually used in classification
problems such as ASR.
First of all, formulate an MLP as a non-linear mapping

function fθ : RM �−→ RK where M is the input dimen-
sion and K is the output dimension, and θ encodes all the
parameters of the network including weights and biases.
Let x ∈ RM denote the input variables, and y ∈ {0, 1}K
denote the target labels which follow the 1-of-K encoding
scheme. The cross-entropy cost is defined as follows:

E(θ) = −
N∑

n=1

K∑
k=1

{
y(n)lnfk

(
x(n)

)}
(1)

where n indexes the training samples and k indexes the
output units. Consider an identical and independent noise

v whose first and second moments satisfy the following
constraints:

E{v} = 0 E
{
v2

} = εI (2)
where I is the M-dimensional identity matrix, and ε is
a small positive number. Applying the Taylor series of
lnf (x), the cost function with the noise injection can be
derived as follows:

Ev(θ) = −
N∑

n=1

K∑
k=1

{
y(n)

k lnfk
(
x(n) + v(n)

)}

≈ −
N∑

n=1

K∑
k=1

{
y(n)

k lnfk
(
x(n)

)}

−
N∑

n=1

K∑
k=1

y(n)

k

{
v(n)T �fk

(
x(n)

)
fk

(
x(n)

) + 1
2
v(n)THk

(
x(n)

)
v(n)

}

where Hk(x) is defined as follows:

Hk(x) = −1
fk(x)

� fk(x) � fk(x)T + 1
f 2k (x)

�2 fk(x).

Since v(n) is independent of x(n) and E{v} = 0, the first-
order item vanishes and the cost is written as:

Ev(θ) ≈ E(θ) − ε

2

K∑
k=1

tr
(
H̃k

)
(3)

where tr denotes the trace operation, and

H̃k =
∑
n∈Ck

Hk
(
x(n)

)

where Ck is the set of indices of the training samples
belonging to the kth class.
In order to understand the implication of Equation 3, an

auxiliary function can be defined as follows:

E(θ , v) = −
N∑

n=1

K∑
k=1

{
y(n)

k lnfk
(
x(n) + v

)}

where v is a small change to the input vectors
{
x(n)

}
. Note

that E(θ , v) differs from Ev(θ): v in E(θ , v) is a fixed value
for all x(n), while v(n) in Ev(θ) is a random variable and
differs for each training sample. The Laplacian of E(θ , v)
with respect to v is computed as follows:

�2 E(θ , v) = tr
{

∂2E (θ , v)
∂v2

}

= −tr
{ N∑
n=1

K∑
k=1

y(n)

k Hk
(
x(n) + v

)}

= −tr

⎧⎨
⎩

K∑
k=1

∑
n∈Ck

Hk
(
x(n) + v

)⎫⎬
⎭ . (4)

By comparing Equations 4 and 3, we get:

Ev(θ) ≈ E(θ) + ε

2
�2 E(θ , 0). (5)
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Equation 5 indicates that injecting noises to the input
units is equivalent to placing a regularization on the cost
function. This regularization is related to the second-
order derivatives of the cost function with respect to the
input, and its strength is controlled by the magnitude of
the injected noise. Since �2E(θ , 0) is positive at the opti-
mal solution of θ , the regularized cost function tends to
accept solutions with a smaller curvature of the cost. In
other words, the new cost function Ev(θ) is less sensitive
to the change on inputs and therefore leads to better gen-
eralization capability. Note that this result is identical to
the one obtained in [32], where the cost function is the
square error.

4 Noisy deep learning
From the previous section, the validity of the noisy train-
ing approach can be justified in two ways: discriminative
noise pattern learning and objective function smoothing.
The former provides the ability to learn multiple noise
patterns, and the latter encourages a more robust classi-
fier. However, it is still unclear if the noisy training scheme
works for the DNN model which involves a large number
of parameters and thus tends to exhibit a highly complex
cost function. Particularly, the derivation of Equation 5
assumes small noises with diagonal covariances, while in
practice we wish to learn complex noise patterns that
may be large in magnitude and fully dimensional corre-
lated. Furthermore, the DNN training is easy to fall in a
local minimum, and it is not obvious if the random noise
injection may lead to fast convergence.
We therefore investigate how the noise training works

for DNNs when the injected noises are large in magnitude
and heterogeneous in types. In order to simulate noises in
practical scenarios, the procedure illustrated in Figure 1 is
proposed.
For each speech signal (utterance), we first select a type

of noise to corrupt it. Assuming that there are n types
of noises, we randomly select a noise type following a
multinomial distribution:

v ∼ Mult (μ1,μ2, . . . ,μn).

The parameters {μi} are sampled from a Dirichlet distri-
bution:

(μ1,μ2, . . . ,μn) ∼ Dir (α1,α2, . . . ,αn)

where the parameters {αi} are manually set to control
the base distribution of the noise types. This hierarchical
sampling approach (Dirichlet followed by multinomial)
simulates the uncertain noise type distributions in differ-
ent operation scenarios. Note that we allow a special noise
type ‘no-noise’, which means that the speech signal is not
corrupted.
Secondly, sample the noise level (i.e., SNR). This sam-

pling follows a Gaussian distribution N (μSNR, σSNR)

Figure 1 The noise training procedure. ‘Dir’ denotes the Dirichlet
distribution, ‘Mult’ denotes the multinomial distribution, and ‘N ’
denotes the Gaussian distribution. v is a variable that represents the
noise type, b represents the starting frame of the selected noise
segment, and ‘SNR’ is the expected SNR of the corrupted speech data.

where μSNR and σSNR are the mean and variance, respec-
tively, and are both manually defined. If the noise type is
no-noise, then the SNR sampling is not needed.
The next step is to sample an appropriate noise segment

according to the noise type. This is achieved following
a uniformed distribution, i.e., randomly select a starting
point b in the noise recording of the required noise type
and then excerpt a segment of signal which is of the same
length as the speech signal to corrupt. Circular excerption
is employed if the length of the noise signal is less than
that of the speech signal.
Finally, the selected noise segment is scaled to reach the

required SNR level and then is used to corrupt the clean
speech signal. The noise-corrupted speech is fed into the
DNN input units to conduct model training.

5 Experiments
5.1 Databases
The experiments were conducted with the Wall Street
Journal (WSJ) database. The setting is largely standard:
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the training part used the WSJ si284 training dataset,
which involves 37,318 utterances or about 80 h of speech
signals. The WSJ dev93 dataset (503 utterances) was used
as the development set for parameter tuning and cross
validation in DNN training. The WSJ eval92 dataset (333
utterances) was used to conduct evaluation.
Note that theWSJ database was recorded in a noise-free

condition. In order to simulate noise-corrupted speech
signals, the DEMAND noise database (http://parole.loria.
fr/DEMAND/) was used to sample noise segments. This
database involves 18 types of noises, from which we
selected 7 types in this work, including white noise and
noises at cafeteria, car, restaurant, train station, bus and
park.

5.2 Experimental settings
We used the Kaldi toolkit (http://kaldi.sourceforge.net/)
to conduct the training and evaluation and largely fol-
lowed the WSJ s5 recipe for Graphics Processing Unit
(GPU)-based DNN training. Specifically, the training
started from a monophone system with the standard
13-dimensional MFCCs plus the first- and second-order
derivatives. Cepstral mean normalization (CMN) was
employed to reduce the channel effect. A triphone system
was then constructed based on the alignments derived
from the monophone system, and a linear discriminant
analysis (LDA) transform was employed to select the
most discriminative dimensions from a large context (five
frames to the left and right, respectively). A further refined
system was then constructed by applying a maximum
likelihood linear transform (MLLT) upon the LDA fea-
ture, which intended to reduce the correlation among
feature dimensions so that the diagonal assumption of the
Gaussians is satisfied. This MLLT+LDA system involves
351 phones and 3,447 Gaussian mixtures and was used to
generate state alignments.
The DNN system was then trained utilizing the align-

ments provided by the MLLT+LDA GMM system. The
feature used was 40-dimensional filter banks. A symmet-
ric 11-frame window was applied to concatenate neigh-
boring frames, and an LDA transform was used to reduce
the feature dimension to 200. The LDA-transformed fea-
tures were used as the DNN input.
The DNN architecture involves 4 hidden layers, and

each layer consists of 1,200 units. The output layer is
composed of 3,447 units, equal to the total number of
Gaussianmixtures in the GMM system. The cross entropy
was set as the objective function of the DNN training,
and the stochastic gradient descendent (SGD) approach
was employed to perform optimization, with the mini
batch size set to 256 frames. The learning rate started
from a relatively large value (0.008) and was then gradually
shrunk by halving the value whenever no improvement
on frame accuracy on the development set was obtained.

The training stopped when the frame accuracy improve-
ment on the cross-validation data was marginal (less
than 0.001). Neither momentum nor regularization was
used, and no pre-training was employed since we did not
observe a clear advantage by involving these techniques.
In order to inject noises, the averaged energy was com-

puted for each training/test utterance, and a noise seg-
ment was randomly selected and scaled according to the
expected SNR; the speech and noise signals were then
mixed by simple time-domain addition. Note that the
noise injection was conducted before the utterance-based
CMN. In the noisy training, the training data were cor-
rupted by the selected noises, while the development
data used for cross validation remained uncorrupted. The
DNNs reported in this section were all initialized from
scratch and were trained based on the same alignments
provided by the LDA+MLLT GMM system. Note that the
process of the model training is reproducible in spite of
the randomness on noise injection and model initializa-
tion, since the random seed was hard-coded.
In the test phase, the noise type and SNR are all fixed so

that we can evaluate the system performance in a specific
noise condition. This is different from the training phase
where both the noise type and SNR level can be random.
We choose the ‘big dict’ test case suggested in the Kaldi
WSJ recipe, which is based on a large dictionary consist-
ing of 150k English words and a corresponding 3-gram
language model.
Table 1 presents the baseline results, where the DNN

models were trained with clean speech data, and the test
data were corrupted with different types of noises at dif-
ferent SNRs. The results are reported in word error rates
(WER) on the evaluation data. We observe that without
noise, a rather high accuracy (4.31%) can be obtained;
with noise interference, the performance is dramatically
degraded, and more noise (a smaller SNR) results in more
serious degradation. In addition, different types of noises
impact the performance in different degrees: the white
noise is the most serious corruption which causes a ten
times ofWER increase when the SNR is 10 dB; in contrast,

Table 1 WER of the baseline system

Test SNR (dB)

5 10 15 20 25 Clean

White 77.23 46.46 21.21 9.30 5.51 4.31

Car 5.94 5.42 4.87 4.77 4.50 4.31

Cafeteria 25.33 14.27 10.07 8.38 6.88 4.31

Restaurant 46.87 22.15 13.27 9.73 7.48 4.31

Train station 34.36 12.72 6.93 5.40 4.43 4.31

Bus 13.88 8.44 6.57 5.51 4.84 4.31

Park 22.10 11.25 7.44 5.87 4.63 4.31

Values are in WER%.

http://parole.loria.fr/DEMAND/
http://parole.loria.fr/DEMAND/
http://kaldi.sourceforge.net/
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the car noise is the least impactive: It causes a relatively
small WER increase (37% in relative) even if the SNR goes
below 5 dB.
The different behaviors in WER changes can be

attributed to the different patterns of corruptions with
different noises: white noise is broad-band and so it cor-
rupts speech signals on all frequency components; in
contrast, most of the color noises concentrate on a limited
frequency band and so lead to limited corruptions. For
example, car noise concentrates on low frequencies only,
leaving most of the speech patterns uncorrupted.

5.3 Single noise injection
In the first set of experiments, we study the simplest con-
figuration for the noisy training, which is a single noise
injection at a particular SNR. This is simply attained by
fixing the injected noise type and selecting a small σSNR so
that the sampled SNRs concentrate on the particular level
μSNR. In this section, we choose σSNR = 0.01.

5.3.1 White noise injection
We first investigate the effect of white noise injection.
Among all the noises, the white noise is rather special:

it is a common noise that we encounter every day, and
it is broad-band and often leads to drastic performance
degradation compared to other narrow-band noises, as
has been shown in the previous section. Additionally,
the noise injection theory discussed in Section 3 shows
that white noise satisfies Equation 2 and hence leads to
the regularized cost function of Equation 5. This means
that injecting white noise would improve the generaliza-
tion capability of the resulting DNN model; this is not
necessarily the case for most of other noises.
Figure 2 presents the WER results, where the white

noise is injected during training at SNR levels varying
from 5 to 30 dB, and each curve represents a particu-
lar SNR case. The first plot shows the WER results on
the evaluation data that are corrupted by white noise at
different SNR levels from 5 to 25 dB. For comparison,
the results on the original clean evaluation data are also
presented. It can be observed that injecting white noise
generally improves ASR performance on noisy speech,
and a matched noise injection (at the same SNR) leads
to the most significant improvement. For example, inject-
ing noise at an SNR of 5 dB is the most effective for the
test speech at an SNR of 5 dB, while injecting noise at an
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SNR of 25 dB leads to the best performance improvement
for the test speech at an SNR of 25 dB. A serious prob-
lem, however, is that the noise injection always leads to
performance degradation on clean speech. For example,
the injection at an SNR of 5 dB, although very effective
for highly noisy speech (SNR < 10 dB), leads to a WER
ten times higher than the original result on the clean
evaluation data.
The second and third plots show theWER results on the

evaluation data that are corrupted by car noise and cafe-
teria noise, respectively. In other words, the injected noise
in training does not match the noise condition in the test.
It can be seen that the white noise injection leads to some
performance gains on the evaluation speech corrupted
by the cafeteria noise, as far as the injected noise is lim-
ited in magnitude. This demonstrated that the white noise
injection can improve the generalization capability of the
DNN model, as predicted by the noise injection theory in
Section 3. For the car noise corruption, however, the white
noise injection does not show any benefit. This is perhaps
attributed to the fact that the cost function (Equation 1) is
not so bumpy with respect to the car noise, and hence, the
regularization term introduced in Equation 3 is less effec-
tive. This conjecture is supported by the baseline results
which show very little performance degradation with the
car noise corruption.
In both the car and cafeteria noise conditions, if the

injected white noise is too strong, then the ASR perfor-
mance is drastically degraded. This is because a strong
white noise injection does not satisfy the small noise
assumption of Equation 2, and hence, the regularized cost
(Equation 3) does not hold anymore. This, on one hand,
breaks the theory of noise injection so that the improved
generalization capability is not guaranteed, and on the
other hand, it results in biased learning towards the white
noise-corrupted speech patterns that are largely differ-
ent from the ones that are observed in speech signals
corrupted by noises of cars and cafeterias.
As a summary, white noise injection is effective in two

ways: for white noise-corrupted test data, it can learn
white noise-corrupted speech patterns and provides dra-
matic performance improvement particularly at matched
SNRs; for test data corrupted by other noises, it can
deliver a more robust model if the injection is in a small
magnitude, especially for noises that cause a significant
change on the DNN cost function. An aggressive white
noise injection (with a large magnitude) usually leads to
performance reduction on test data corrupted by color
noises.

5.3.2 Color noise injection
Besides white noise, in general, any noise can be used to
conduct the noisy training. We choose the car noise and
the cafeteria noise in this experiment to investigate the

color noise injection. The results are shown in Figures 3
and 4, respectively.
For the car noise injection (Figure 3), we observe that

it is not effective for the white noise-corrupted speech.
However, for the test data corrupted by car noise and
cafeteria noise, it indeed delivers performance gains. The
results with the car noise-corrupted data show clear
advantage with matched SNRs, i.e., with the training and
test data corrupted by the same noise at the same SNR,
the noise injection tends to deliver better performance
gains. For the cafeteria noise-corrupted data, it shows that
a mild noise injection (SNR = 10 dB) performs the best.
This indicates that there are some similarities between
car noise and cafeteria noise, and learning patterns of car
noise is useful to improve robustness of the DNN model
against corruptions caused by cafeteria noise.
For the cafeteria noise injection (Figure 4), some

improvement can be attained with data corrupted by
both white noise and cafeteria noise. For the car noise-
corrupted data, performance gains are found only with
mild noise injections. This suggests that cafeteria noise
possesses some similarities to both white noise and car
noise: It involves some background noise which is gen-
erally white, and some low-frequency components that
resemble car noise. Without surprise, the best perfor-
mance improvement is attained with data corrupted by
cafeteria noise.

5.4 Multiple noise injection
In the second set of experiments, multiple noises are
injected when performing noisy training. For simplicity,
we fix the noise level at SNR = 15 dB, which is obtained
by settingμSNR = 15 and σSNR = 0.01. The hyperparame-
ters {αi} in the noise-type sampling are all set to 10, which
generates a distribution on noise types roughly concen-
trated in the uniform distribution but with a sufficiently
large variation.
The first configuration injects white noise and car noise,

and test data are corrupted by all the seven noises. The
results in terms of absolute WER reduction are presented
in Figure 5a. It can be seen that with the noisy training,
almost all theWER reductions (except in the clean speech
case) are positive, which means that the multiple noise
injection improves the system performance in almost all
the noise conditions. An interesting observation is that
this approach delivers general good performance gains for
the unknown noises, i.e., the noises other than the white
noise and the car noise.
The second configuration injects white noise and cafe-

teria noise; again, the conditions with all the seven noises
are tested. The results are presented in Figure 5b. We
observe a similar pattern as in the case of white + car
noise (Figure 5a): The performance on speech corrupted
by any noise is significantly improved. The difference from
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Figure 3 Performance of noisy training with car noise injected (σ = 0.01). ‘TR’ means the training condition. The ‘baseline’ curves present the
results of the system trained with clean speech data, as have been presented in Table 1. (a)White noise test. (b) Car noise test. (c) Cafeteria noise test.

Figure 5a is that the performance on the speech cor-
rupted by cafeteria noise is more effectively improved,
while the performance on the speech corrupted by car
noise is generally decreased. This is not surprising as the
cafeteria noise is now ‘known’ and the car noise becomes
‘unknown’. Interestingly, the performance on speech cor-
rupted by the restaurant noise and that by the station
noise are both improved in a more effective way than in
Figure 5a. This suggests that the cafeteria noise shares
some patterns with these two types of noises.
As a summary, the noisy training based on multiple

noise injection is effective in learning patterns of multiple
noise types, and it usually leads to significant improve-
ment of ASR performance on speech data corrupted by
the noises that have been learned. This improvement,
interestingly, can be well generalized to unknown noises.
In all the seven investigated noises, the behavior of the car
noise is abnormal, which suggests that car noise is unique
in properties and is better to be involved in noisy training.

5.5 Multiple noise injection with clean speech
An obvious problem of the previous experiments is that
the performance on clean speech is generally degraded
with noisy training. A simple approach to alleviate the

problem is to involve clean speech in the training. This
can be achieved by sampling a special ‘no-noise’ type
together with other noise types. The results are reported
in Figure 6a which presents the configuration with white
+ car noise and in Figure 6b which presents the configu-
ration with white + cafeteria noise. We can see that with
clean speech involved in the noisy training, the perfor-
mance degradation on clean speech is largely solved.
Interestingly, involving clean speech in the noisy train-

ing improves performance not only on clean data, but also
on noise-corrupted data. For example, Figure 6b shows
that involving clean speech leads to general performance
improvement on test data corrupted by car noise, which is
quite different from the results shown in Figure 5b, where
clean speech is not involved in the training and the per-
formance on speech corrupted by car noise is actually
decreased. This interesting improvement on noise data is
maybe due to the ‘no-noise’ data that provide informa-
tion about the ‘canonical’ patterns of speech signals, with
which the noisy training is easier to discover the invari-
ant and discriminative patterns that are important for
recognition on both clean and corrupted data.
We note that the noisy training with multiple noise

injection resembles the multi-condition training: Both
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Figure 4 Performance of noisy training with cafeteria noise injected (σ = 0.01). ‘TR’ means the training condition. The ‘baseline’ curves
present the results of the system trained with clean speech data, as have been presented in Table 1. (a)White noise test. (b) Car noise test.
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involve training speech data under multiple noise condi-
tions. However, there is an evident difference between the
two approaches: In multi-conditional training, the train-
ing data are recorded under multiple noise conditions
and the noise is unchanged across utterances of the same
session; in noisy training, noisy data are synthesized by
noise injection, so it is more flexible in noise selection and

manipulation, and the training speech data can be utilized
more efficiently.

5.6 Noise injection with diverse SNRs
The flexibility of noisy training in noise selection can be
further extended by involving multiple SNR levels. By
involving noise signals at various SNRs, more abundant
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Figure 5 Performance of multiple noise injection. No clean speech is involved in training. (a)White and car noise. (b)White and cafeteria noise.
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Figure 6 Performance ofmultiple noise injectionwith clean speech involved in training. (a)White and car noise. (b)White and cafeteria noise.

noise patterns can be learned. More importantly, we
hypothesize that the abundant noise patterns provide
more negative learning examples for DNN training, so the
‘true speech patterns’ can be better learned.
The experimental setup is the same as the previous

experiment, i.e., fixing μSNR = 15 dB and then inject-
ing multiple noises including ‘non-noise’ data. In order to
introduce diverse SNRs, σSNR is set to be a large value. In
this study, σSNR varies from 0.01 to 50. A larger σSNR leads
to more diverse noise levels and higher possibility for loud
noises. For simplicity, only the results with white + cafete-
ria noise injection are reported, while other configurations
were experimented and the conclusions are similar.
Firstly, we examine the performance with ‘known

noises’, i.e., data corrupted by white noise and cafe-
teria noise. The WER results are shown in Figure 7a
which presents the results on the data corrupted by white
noise and in Figure 7b which presents the results on the
data corrupted by cafeteria noise. We can observe that
with a more diverse noise injection (a larger σSNR), the

performances under both the two noise conditions are
generally improved. However, if σSNR is too large, the per-
formance might be decreased. This can be attributed to
the fact that a very large σSNR results in a significant
proportion of extremely large or small SNRs, which is
not consistent with the test condition. The experimental
results show that the best performance is obtained with
σSNR = 10.
In another group of experiments, we examine perfor-

mance of the noisy-trained DNNmodel on data corrupted
by ‘unknown noises’, i.e., noises that are different from
the ones injected in training. The results are reported in
Figure 8. We observe quite different patterns for different
noise corruptions: For most noise conditions, we observe
a similar trend as in the known noise condition. When
injecting noises at more diverse SNRs, the WER tends to
be decreased, but if the noise is over diverse, the perfor-
mance may be degraded. The maximum σSNR should not
exceed 0.1 in most cases (restaurant noise, park noise, sta-
tion noise). For the car noise condition, the optimal σSNR

Figure 7 Performance of noise training with different σSNR. (a)White noise. (b) Cafeteria noise. White and cafeteria noises are injected, and
μSNR = 15 dB. For each plot, the test data are corrupted by a particular ‘known’ noise. The ‘baseline’ curves present the results of the system trained
with clean speech data, as have been presented in Table 1.
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Figure 8 Performance of noise training with different σSNR. (a) Car noise test. (b) Bus noise test. (c) Restaurant noise test. (d) Park noise test.
(e) Station noise test. White and cafeteria noises are injected, and μSNR = 15 dB. For each plot, the test data are corrupted by a particular ‘unknown’
noise. The ‘baseline’ curves present the results of the system trained with clean speech data, as have been presented in Table 1.

is 0.01, and for the bus noise condition, the optimal σSNR
is 1.0. The smaller optimal σSNR in the car noise condition
indicates again that this noise is significantly different

from the injected white and cafeteria noises; on the con-
trary, the larger optimal σSNR in the bus noise condition
suggests that the bus noise resembles the injected noises.
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In general, the optimal values of σSNR in the condition
of unknown noises are much smaller than those in the
condition of known noises. This is somewhat expected,
since injection of over diverse/loud noises that are differ-
ent from those observed in the test tends to cause acoustic
mismatch between the training and test data, which may
offset the improved generalization capability offered by
the noisy training. Therefore, to accomplish the most pos-
sible gains with the noisy training, the best strategy is
to involve noise types as many as possible in training so
that (1) most of the noises in test are known or partially
known, i.e., similar noises involved in training, and (2) a
larger σSNR can be safely employed to obtain better per-
formance. For a system that operates in unknown noise
conditions, the most reasonable strategy is to involve
some typical noise types (e.g., white noise, car noise, cafe-
teria noise) and choose a moderate noise corruption level,
i.e., a middle-level μSNR not larger than 15 dB and a small
σSNR not larger than 0.1.

6 Conclusions
We proposed a noisy training approach for DNN-based
speech recognition. The analysis and experiments con-
firmed that by injecting a moderate level of noise in the
training data, the noise patterns can be effectively learned
and the generalization capability of the learned DNNs can
be improved. Both the two advantages result in substantial
performance improvement for DNN-based ASR systems
in noise conditions. Particularly, we observe that the noisy
training approach can effectively learn multiple types of
noises, and the performance is generally improved by
involving a proportion of clean speech. Finally, noise injec-
tion at a moderate range of SNRs delivers further per-
formance gains. The future work involves investigating
various noise injection approaches (e.g., weighted noise
injection) and evaluating more noise types.
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