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Abstract. – For a family of models of evolving population under selection, which can be
described by noisy traveling-wave equations, the coalescence times along the genealogical tree
scale like lnα N , where N is the size of the population, in contrast with neutral models for
which they scale like N . An argument relating this time scale to the diffusion constant of the
noisy traveling wave leads to a prediction for α which agrees with our simulations. An exactly
soluble case gives trees with statistics identical to those predicted for mean-field spin glasses
by Parisi’s theory.

Traveling-wave equations such as the F-KPP equation ∂th = ∂
2
xh + h − h2 [1–3] describe

how a stable medium h = 1 invades an unstable medium h = 0. They were first introduced to
study how an advantageous gene propagates through a population, h being the fraction of the
population with the advantageous gene. They also appear in other contexts such as disordered
systems [4–6], QCD [7], reaction-diffusion [8, 9], fragmentation [10] or chemistry [11].
Traveling-wave equations often represent a mean-field picture where the fluctuations at the

microscopic scale are ignored. The effect of these fluctuations can be represented [9,11–14] by
a noise term (∂th = ∂

2
xh+h−h2+ǫη(x, t)

√
h− h2, where η(x, t) is a white noise). Determining

quantitatively the effect of such a weak noise (ǫ ≪ 1) on the front position is a subject of
active research. There is increasing evidence that the dynamics of the position of the front
is dominated by the fluctuations near its tip [15–17] and that there is a shift in the velocity
of the front [8, 18–22], logarithmic in the amplitude ǫ of the noise, as predicted by a simple
cut-off theory [23].
In the present letter, we consider models of an evolving population under selection, which

can be described by noisy traveling-wave equations. Instead of focusing on the time depen-
dence of the position of the front, we look at the problem from a different perspective: we
determine how coalescence times in the genealogy depend on the size of the population. Our
simulations as well as a simple argument indicate that these coalescence times scale as the
inverse of the diffusion constant of the front.
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We consider a population of fixed size N with asexual reproduction. Each individual i
is characterized by a real number xi measuring its adequacy to the environment, and the
population is fully specified by these N positions xi’s on the adequacy axis. At each new
generation, all the individuals disappear after giving birth to some offsprings. We consider
the following variants:

InModel A, each individual gives birth to k offsprings, and the j-th offspring of individual i
is at position xi + ǫi,j , where the ǫi,j are uncorrelated random numbers chosen according to
some distribution ρ(ǫ). Thus, each individual inherits its parent’s adequacy, and ǫi,j accounts
for the effects of mutation. Then comes the selection step: out of the kN new individuals, we
only keep the N best ones, the ones with the highest xi’s. Typically, we will take k = 2 and
ρ(ǫ) uniform between 0 and 1. A similar model was proposed recently [16,24–26] to study the
evolution under competitive selection of a population of DNA molecules in vitro. The popu-
lation undergoes several cycles where, in the first part of a cycle, each molecule is amplified
by a fixed number k with possible mutations and in the second part of the cycle selection acts
by keeping only the best 1/k fraction of these offsprings, defined as the molecules with the
highest binding energies to a given target. In this picture, xi represents this binding energy.

In Model A, selection is strict: we keep at each generation the best N individuals among
the kN offsprings, without any randomness. To check whether our results remain valid under a
less stringent selection, we also investigate Model A′: instead of keeping the best N offsprings,
we choose the N surviving individuals uniformly among the best 3N/2 offsprings, thus making
the influence of the xi’s weaker in the selection process. We will see below that Models A and
A′ have very similar behaviours.

In Model B, each individual i has infinitely many offsprings, with positions distributed
according to a Poisson point process of density ψ(x− xi) (i.e., with probability ψ(x− xi) dx,
there is an offspring of individual i at position x). As in Model A, we only keep the N best
offsprings. Here, ψ(ǫ) is a positive function such that

∫

ψ(ǫ)dǫ = ∞ (for the population to
never disappear) and which decays fast enough as ǫ→ ∞ to ensure that these best offsprings
have finite positions. Having infinitely many offsprings at the first step is of course unrealistic,
but after selection, each individual has only a finite number of offsprings. The two main reasons
for considering Model B are to check the robustness of our results and to exhibit an exactly
soluble case for one particular ψ(ǫ).

The genealogical tree of an evolving population can be characterized in many ways [27,28].
Here we measure average coalescence times 〈Tp〉 defined as follows: Tp is the age of the most
recent common ancestor of p individuals chosen at random at generation g, and 〈Tp〉 is the
average of Tp over all choices of these p individuals and over all generations g.

In the absence of selection (for example, when each individual has k offsprings as in
model A, but with N survivors chosen uniformly among these kN offsprings), these 〈Tp〉 grow
linearly with N and their ratios take, for large N , the simple values (independent of k) of the
Kingman coalescent [29,30]:

〈Tp〉 ∼ N,
〈T3〉
〈T2〉

→ 4

3
,

〈T4〉
〈T2〉

→ 3

2
,

〈Tp〉
〈T2〉

→ 2− 2
p
. (1)

One goal of the present work is to show that the effect of selection changes completely
eq. (1): the time scale of these coalescence times 〈Tp〉 becomes

〈Tp〉 ∼
[

lnN
]α

(2)

and the ratios are compatible with the values characterizing the Bolthausen-Sznitman coales-
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Fig. 1 – Times 〈T2〉 vs. N , for different models. The scale of the N axis is ln lnN . The data points
are compared to several power laws of lnN shown by the straight lines.

cent [28,31,32]:
〈T3〉
〈T2〉

≃ 5

4
,

〈T4〉
〈T2〉

≃ 25

18
. (3)

In figs. 1 and 2, we show the results of simulations for different cases: Models A and A′

with k = 2 and a uniform density ρ(ǫ) = 1 for 0 < ǫ < 1, and Model B for three different
choices of the density ψ(ǫ): ψ1(ǫ) = θ(−ǫ), ψ2(ǫ) = (−ǫ)3θ(−ǫ) and ψ3(ǫ) = e

−ǫ.
Typically we simulated populations of sizes ranging from N = 102 to 105 over 107 gener-

ations. We measured the times 〈Tp〉 by recording at each generation g the age T2(i, j) of the
most recent common ancestor of individuals i and j. One then gets 〈T2〉 by averaging T2(i, j)

Fig. 2 – Ratios 〈T3〉/〈T2〉 and 〈T4〉/〈T2〉 vs. N , for the same models (same symbols) as in fig. 1. The
dashed lines represent the neutral case eq. (1), and the dotted lines correspond to eq. (3), i.e. Model
B with ψ(ǫ) = e−ǫ.



4 EUROPHYSICS LETTERS

over i, j and g. As the matrix T2(i, j) is ultrametric, no additional information is needed
to compute the 〈Tp〉: for instance, T3(i, j, k) = max[T2(i, j), T2(i, k)]. For large sizes N , we
actually took advantage of ultrametricity by representing the matrix T2(i, j) as a tree: at
each step, we only kept track of the current N individuals and of all the most recent common
ancestors of any pair of them. There are at most N − 1 such ancestors, so both memory and
execution time grow linearly with N , instead of N2 if we were manipulating the full matrix.
In all cases except for Model B with the exponential distribution, which is special as we

shall see below, fig. 1 indicates that the exponent α defined in eq. (2) is in the range

2 ≤ αmeasured ≤ 3. (4)

For Model B with the exponential distribution, however, our data suggest a significantly
smaller value 0.75 ≤ α ≤ 1.
Figure 2 shows the ratios 〈T3〉/〈T2〉 and 〈T4〉/〈T2〉 for the same models as in fig. 1. In

all cases, including Model B with ψ(ǫ) = e−ǫ, these ratios take for large N values similar to
eq. (3) which differ noticeably from their values (1) in the absence of selection. At present,
we do not have a general theory to explain these numerical results.
Only for Model B with ψ(ǫ) = e−ǫ (the special case), can one calculate these ratios exactly

using a method similar to [5]. If at generation g, the population consists of N individuals
x1(g), . . . , xN (g), the probability of having one of their offsprings in the interval y, y + dy is

N
∑

i=1

ψ
(

y − xi(g)
)

dy =

N
∑

i=1

exi(g)−y dy = eXg−y dy,

where

Xg = ln
[

ex1(g) + ex2(g) + · · ·+ exN (g)
]

.

So, for Model B with ψ(ǫ) = e−ǫ, the offsprings of the whole population are the same as those
of a single effective individual at position Xg. This means that one can write xi(g + 1) =
Xg + yi, where y1, y2, ..., yN are the N largest values of a Poisson point process on the line
with exponential density. The yi’s are therefore distributed according to

P(yN < yN−1 < · · · < y1) = e−(y1+y2+···+yN )−e−yN
. (5)

With this simplification, one can see that the differences ∆Xg = Xg+1 −Xg are independent
identically distributed random variables. At generation g, the N numbers xi(g) form a cloud
of points which does not spread in time, very much like a quantum N -particle bound state.
This cloud has a well-defined velocity vN and diffusion constant DN . As the differences ∆Xg

are independent, vN and DN are given by

vN = 〈∆Xg〉, DN = 〈[∆Xg]
2〉 − 〈∆Xg〉2,

where the expectations are over the distribution (5) of the yi’s and

∆Xg = Xg+1 −Xg = ln [e
y1 + ...+ eyn ] .

Calculations similar to those of [5] lead for large N to

vN = ln lnN +
ln lnN + 1

lnN
+ · · · , DN =

π2

3 lnN
+ · · · . (6)
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We now turn to computing 〈Tp〉 in the exponential case. If one chooses randomly p ≥ 2
individuals at generation g + 1, one can calculate the probability qp that they have the same
ancestor at generation g:

qp =

〈 ∑

i e
pyi

[
∑

i e
yi ]p

〉

≃ 1

p− 1
1

lnN
+ · · · . (7)

One can also show that for large N and fixed p, events with more than one coalescence within
the p individuals between two successive generations have a probability of order (lnN)−2 at
most. Thus, for large N , the genealogical tree of a sample of p individuals consists of single
coalescence events separated by times of order lnN .
From the knowledge of the qp’s, one can obtain for large N the probability rp(k) that p

individuals at generation g + 1 have exactly k < p ancestors at generation g:

rp(k) =

k−1
∑

j=0

(−)j−k+1p!

j!(k − 1− j)!(p− k + 1)!qp−j

=
p

(p− k)(p− k + 1)
1

lnN
+ · · ·

(8)

and one has
〈Tp〉 = 1 + 〈Tp〉+

∑

k<p

rp(k) [〈Tk〉 − 〈Tp〉]. (9)

Using the fact that 〈T1〉 = 0 this immediately gives

〈T2〉 ≃ lnN (10)

(in reasonable agreement with our simulations of fig. 1) and all the ratios 〈Tn〉/〈T2〉. For n = 3
and 4, this gives eq. (3) which is therefore asymptotically exact in the exponential case.
We now return to the general case. Our models are branching processes which are known to

be related to fronts of the F-KPP type [33]. Let us now see how one can associate to Model B
a noisy traveling-wave equation (a similar calculation can be done for Model A). At generation
g the whole population can be characterized by a function hg(x) which counts the fraction of
individuals i such that xi(g) > x. Obviously, hg(x) has the shape of a front (hg(−∞) = 1 and
hg(∞) = 0). From the definition of Model B, one can show that hg(x) satisfies

hg+1(x) = min

[

1,

∫

hg(x− ǫ)ψ(ǫ)dǫ+
ηg(x)√
N

]

, (11)

where ηg(x) is some (correlated in x) noise of zero-mean with a variance equal to the integral
appearing in eq. (11). One can show as in [5] that this noise is Gaussian far from the tip of
the front.
In the large-N limit, eq. (11) becomes deterministic. One can look for traveling-wave

solutions moving at a velocity v. In the region where h ≪ 1, the front has an exponential
shape hg(x) ≃ A exp[−γ(x− vg)], where γ is related to v by

v = v(γ) =
1

γ
ln

[
∫

eγǫψ(ǫ)dǫ

]

. (12)

If the front is of the F-KPP type [3], its velocity for steep enough initial conditions is the
smallest one for which γ is real. Furthermore, for finite but large N , one expects [15, 17, 34]
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a correction to this velocity of order [lnN ]−2 and a diffusion constant scaling like [lnN ]−3.
We checked that these predictions are compatible with our numerical simulations for all the
models that we tested when v(γ) has a minimum value (all the models of figs. 1, 2 except
the exponential case have this property). For other choices such as ψ(ǫ) = exp[−ǫ], however,
v(γ) =∞ for all γ, and the front is not of the F-KPP type. It is therefore not surprising that
the genealogy of the exponential case is special.

In all cases, the times 〈T2〉 or 〈Tp〉 give the order of magnitude of the age of the most
recent common ancestor of the whole population and, therefore, the time scale on which the
population looses memory about its genealogy. Now, the position of this most recent common
ancestor has fluctuations of order 1, and this contributes a random shift of order 1 to the
displacement of the front. Therefore, the fluctuating part of the position at generation g is
the sum of roughly g/〈T2〉-independent random variables of order 1. Within this picture, the
diffusion constant but also all the cumulants of the position would scale like

DN ∼ 1/〈T2〉 ∼ 1/〈Tp〉 . (13)

That all cumulants have the same large-N–dependence was indeed one of the main results
of our previous work [17]. Note that eq. (13) does hold (compare eqs. (6) and (10)) in the
exponential case. Assuming that it remains valid in general, we would then predict

αprediction = 3, (14)

since there is now good numerical evidence [15,34] as well as analytic arguments [17] in favor
of DN ≃ [lnN ]−3 in the generic case, i.e. if v(γ) has a finite minimum. We think that
this prediction agrees with our measurements (4) up to finite-size corrections: in fact, for the
diffusion constant itself, it already turned out [15,17,34] that the large-N asymptotic regime
was only observed for much larger systems than the ones studied here.

Beyond the fact that the time scale is logarithmic in N , which is not surprising for models
of evolution in the presence of strong selection [35–37], the times 〈Tp〉 are characteristic of
the statistical properties of the genalogical trees of samples of a few individuals. For the
exponential model, these statistics are totally specified by the fact that there is at most one
single coalescence event at each generation with probability given by eq. (7). Surprisingly,
these coalescence probabilities (up to the factor lnN which fixes the time scale) are the same
as those which emerged from the theory of spin glasses [28, 31, 32], so that trees, in the
exponential Model B here, have exactly the same statistics as the ultrametric trees of Parisi’s
mean-field theory of spin glasses [38, 39]. So far we have not been able to develop a replica
approach for noisy traveling waves to justify this connection. There is however some hope
to do so since noisy traveling waves appear in the study of directed polymers in a random
medium [5], a system for which Parisi’s theory is known to be valid at the mean-field level [4].

The numerical data presented in this paper show that, for the class of models we considered,
selection has drastic effects on the genealogies: the coalescence times become logarithmic in
the population size (2) instead of linear and the statistics of the coalesence times are modified.
The accuracy of our simulations is not sufficient to be sure that the exponent α and the ratios
of coalescence times are universal (for all models for which v(γ) has a finite minimum). We
however gave an argument (13) which supports the conjecture (14). Of course, developing
an analytical approach susceptible of proving or disproving this universality is a challenging
open problem. Another open issue is whether thinking in terms of genealogies is limited to
the family of selection models discussed here or could be extended to more general noisy
traveling-wave equations.
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Lastly, it would be interesting to know what our ratios (3) would become in other models
of evolution with selection such as [40, 41] and if there is a chance of estimating them from
experimental data on genetic diversity.
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