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NOMA: An Information Theoretic Perspective
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Abstract—In this letter, the performance of non-orthogonal
multiple access (NOMA) is investigated from an informationthe-
oretic perspective. The relationships among the capacity region of
broadcast channels and two rate regions achieved by NOMA and
time-division multiple access (TDMA) are illustrated first. Then,
the performance of NOMA is evaluated by considering TDMA as
the benchmark, where both the sum rate and the individual user
rates are used as the criteria. In a wireless downlink scenario with
user pairing, the developed analytical results show that NOMA
can outperform TDMA not only for the sum rate but also for each
user’s individual rate, particularly when the difference between
the users’ channels is large.

I. I NTRODUCTION

Because of its superior spectral efficiency, non-orthogonal
multiple access (NOMA) has been recognized as a promising
technique to be used in the fifth generation (5G) networks [1]–
[4]. NOMA utilizes the power domain for achieving multiple
access, i.e., different users are served at different power
levels. Unlike conventional orthogonal MA, such as time-
division multiple access (TDMA), NOMA faces strong co-
channel interference between different users, and successive
interference cancellation (SIC) is used by the NOMA users
with better channel conditions for interference management.

The concept of NOMA is essentially a special case of
superposition coding developed for broadcast channels (BC).
Cover first found the capacity region of a degraded discrete
memoryless BC by using superposition coding [5]. Then,
the capacity region of the Gaussian BC with single-antenna
terminals was established in [6]. Moreover, the capacity region
of the multiple-input multiple-output (MIMO) Gaussian BC
was found in [7], by applying dirty paper coding (DPC) instead
of superposition coding. This paper mainly focuses on the
single-antenna scenario.

Specifically, consider a Gaussian BC with a single-antenna
transmitter and two single-antenna receivers, where each re-
ceiver is corrupted by additive Gaussian noise with unit vari-
ance. Denote the ordered channel gains from the transmitter
to the two receivers byhw andhb, i.e., |hw|2 < |hb|2. For a
given channel pair(hw, hb), the capacity region is given by
[6]

CBC ,
⋃

a1+a2=1, a1, a2 ≥ 0

{

(R1, R2) : R1, R2 ≥ 0,

R1≤ log2

(

1+
a1x

1+a2x

)

, R2≤ log2 (1+a2y)

}

, (1)

whereai denotes the power allocation coefficient,x = |hw|2ρ,
y = |hb|2ρ, and ρ denotes the transmit signal-noise-ratio
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Fig. 1. The capacity region, NOMA and TDMA regions for
a given channel pair(hw, hb), where the point F is located at
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(SNR). Based on SIC, the rate region achieved by NOMA,
denoted byRN, can be expressed the same asCBC in (1), but
with an additional constrainta1 ≥ a2 in order to guarantee the
quality of service at the user with the poorer channel condition.

In addition, the TDMA region is given by

RT ,

{

(R1, R2) :R1, R2 ≥ 0,
R1

R∗
1

+
R2

R∗
2

≤ 1

}

, (2)

whereR∗
1 = log2(1 + x) andR∗

2 = log2(1 + y).
The three regions are illustrated in Fig. 1. In the rest of this

letter, we are interested in the two region boundaries, i.e., the
curve A-F and the segment A-E, which represent the optimal
rate pairs achieved by NOMA and TDMA, respectively. The
relationship between the rate pairs on the two boundaries will
be further interpreted based on plane geometry as shown in
Section III-A. Then, based on their relationship, the perfor-
mance of NOMA is characterized in terms of both the sum
rate and individual user rates, by considering the conventional
TDMA scheme as the benchmark. In a wireless downlink
scenario with user pairing, analytical results are developed to
demonstrate that NOMA can outperform TDMA when there
exists a significant difference between the channel conditions
of the scheduled users.

II. PRELIMINARY

Two propositions are provided in this section, which will be
used in the next section. Specifically, definefN (·) andfT (·)
as the following two functions:

fN(z) = log2

(
(1 + x)y

y + (2z − 1)x

)

, 0 ≤ z ≤ R∗
2, (3)

fT (z) =

(

1− z

R∗
2

)

R∗
1, 0 ≤ z ≤ R∗

2. (4)

For a givenz0 ∈ (0, R∗
2), two propositions are provided as

follows.
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Proposition 1: If z > z0, thenfN (z) + z > fT (z0) + z0.
Proof: We can first obtaind fN

d z
= −x2z

y−x+x2z . Define

fN
sum = fN + z, so d fN

sum

d z
= y−x

y−x+x2z > 0, which means
that fN

sum(z) is a monotonic increasing function ofz. Thus,
fN
sum(z) > fN

sum(z0) = fN (z0) + z0.
On the other hand,fN (z) is a concave function ofz (i.e.,

d2 fN

d z2 < 0) whenz ∈ (0, R∗
2). Hence

λfN (0) + (1− λ)fN (R∗
2) ≤ fN(λ× 0 + (1 − λ)R∗

2),

for ∀λ ∈ (0, 1). SincefN(0) = R∗
1 and fN (R∗

2) = 0, we
can obtainfN(z0) ≥ fT (z0) by settingλ = 1− z0/R

∗
2. This

proposition has been proved.
Proposition 2: If z < z0, thenfN (z) > fT (z0).

Proof: Since fN(z) is monotonically decreasing inz,
fN (z) > fN (z0) for z < z0. Furthermore, due to the fact
that fN(z) is a concave function ofz, fN(z0) > fT (z0) as
discussed above. This proposition has been proved.

III. PERFORMANCEANALYSIS

In this section, the performance of NOMA will be studied
by considering the achievable rates of TDMA as a benchmark.

A. Comparison to TDMA

Here, the individual rates and the sum rate achieved by
NOMA will be compared with those of TDMA using plane
geometry.

As shown in Fig. 2, for a given channel pair(hw, hb) and
|hw| < |hb|, suppose the point N is located at

(RN
2 , RN

1 ) =

(

log2(1 + a2y), log2

(

1 +
a1x

1 + a2x

))

, (5)

wherea1+a2= 1, 0≤ a2≤ a1; and the point T is located at

(RT
2 , R

T
1 ) = (b2R

∗
2, b1R

∗
1) , (6)

whereb1+b2 =1, b1, b2 ≥ 0. This means that the points N and
T lie on the curve A-F (NOMA rate pair) and the segment A-
E (TDMA rate pair), respectively. In addition, consider three
important lines:R1 =RN

1 , R2 = RN
2 andR1+R2 =RN

1 +R
N
2 ,

which represent the two NOMA users’ individual rates and
their sum rate, respectively. It is easy to prove thatRN

1 +RN
2 <

R∗
2, and these three lines will divide the line segment A-E into

four subsegments with intersection points B, C and D.
When consideringhw and hb to be random variables and

fixing ai, we can define four random events according to the
location of point T and these four subsegments as follows.

ε1 , {Point T lies on subsegment A-B} , (7)

ε2 , {Point T lies on subsegment B-C} , (8)

ε3 , {Point T lies on subsegment C-D} , (9)

ε4 , {Point T lies on subsegment D-E} . (10)

These events comprehensively reflect the relationship between
the rates (including the individual rates and the sum rate) of
NOMA and TDMA, i.e.,

ε1=
{
RN

1 < RT
1 , R

N
2 > RT

2 , R
N
1 +RN

2 > RT
1 +RT

2

}
, (11)

ε2=
{
RN

1 > RT
1 , R

N
2 > RT

2 , R
N
1 +RN

2 > RT
1 +RT

2

}
, (12)
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Fig. 2. Comparison of the rate pairs achieved by NOMA and TDMAschemes
for a given channel pair(hw, hb), where(RN

2 , RN
1 ) is defined in (5). In this

example,T lies on the line segment B-C.

ε3=
{
RN

1 > RT
1 , R

N
2 < RT

2 , R
N
1 +RN

2 > RT
1 +RT

2

}
, (13)

ε4=
{
RN

1 > RT
1 , R

N
2 < RT

2 , R
N
1 +RN

2 < RT
1 +RT

2

}
. (14)

Notice that (RN
1 , RN

2 , RT
1 , R

T
2 ) satisfies the relationship

RN
1 = fN(RN

2 ) and RT
1 = fT (RT

2 ) as shown in (3) and
(4). Hence, based on Propositions 1 and 2 by replacing
(fN , z, fT , z0) with (RN

1 , RN
2 , RT

1 , R
T
2 ), we can remove some

redundant conditions for each event, i.e.,

ε1
(a)
=
{
RN

1 < RT
1 , R

N
2 > RT

2

}
, (15)

ε2
(b)
=
{
RN

1 > RT
1 , R

N
2 > RT

2

}
, (16)

ε3
(c)
=
{
RN

2 < RT
2 , R

N
1 +RN

2 > RT
1 +RT

2

}
, (17)

ε4
(d)
=
{
RN

1 +RN
2 < RT

1 +RT
2

}
, (18)

where (a) and (b) are based on Proposition 1;(c) is based
on Proposition 2; and(d) is based on the converse-negative
proposition of Proposition 1 (i.e.,{RN

1 +RN
2 < RT

1 +RT
2 } ⇒

{RN
2 < RT

2 }) and Proposition 2.
Remark 1: Among these four events, of particular interest is

ε2 which represents the situation in which NOMA outperforms
TDMA in terms of not only the sum rate but also each
individual rate.

In the next subsection, the probability of each event will be
calculated, which characterizes the performance of NOMA in
comparison with TDMA.

B. Probability Analysis

Let the two users in the considered BC be selected from
M mobile users in a downlink communication scenario, as
motivated in [8]. Without loss of generality, assume that all
the users’ channels are ordered as|h1|2 ≤ · · · ≤ |hM |2, where
hm is the Rayleigh fading channel gain from the base station
to them-th user. Considered that them-th user is paired with
the n-th user to perform NOMA. Hencehw = hm, hb = hn,
and x and y can be rewritten asx = ρ|hm|2, y = ρ|hm|2,
with joint probability density function (PDF) as follows [9]:

fX,Y (x, y) =w1f(x)f(y)[F (x)]m−1[1− F (y)]M−n

× [F (y)− F (x)]n−1−m, 0 < x < y, (19)

where f(x) = 1
ρ
e−

x
ρ , F (x) = 1 − e−

x
ρ , and w1 =

M !
(m−1)!(n−1−m)!(M−n)! . A fixed power allocation strategy
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(a1, a2) is considered in this NOMA system for the sake
of simplicity. Dynamically changing(a1, a2) according to
the random channel state information (CSI) could achieve a
larger ergodic rate region [10], but at the expense of higher
complexity.

Using the PDF ofx and y, the probability of each event
defined in the previous subsection can be calculated in order
to evaluate the performance of NOMA. The probability of the
eventε2 is first given in the following lemma, where we set
b2 = 1/2 (each user is allocated an equal-length time slot,
which is also called “naive TDMA” in [11]) for simplicity.

Lemma 1: Given (M,m, n, ρ, a2) and b2 = 1/2, the prob-
ability that NOMA achieves larger individual rates than con-
ventional TDMA for both userm and usern is given by

P (ε2)=w1

m−1∑

k=0

(−1)m−1−kCk
m−1

[
n−1∑

i=0

(−1)n−1−iCi
n−1d

M−i

M − i

−
k∑

i=0

n−1−k∑

j=0

(−1)n−1−i−jCi
kC

j
n−1−kd

M−i

M − i− j

]

. (20)

Proof: From (16),P (ε2) can be calculated as follows:

P (ε2) = P (RN
1 > R∗

1/2, R
N
2 > R∗

2/2)

(a)
= P (x < w2, y > w2)

= w1

∫ +∞

w2

f(y)[1− F (y)]M−n

×
(∫ w2

0

f(x)[F (x)]m−1[F (y)− F (x)]n−1−mdx

)

dy

(b)
= w1

∫ +∞

w2

f(y)[1− F (y)]M−n

×
(∫ 1

d

(1− t)m−1(t− e−
y
ρ )n−1−mdt

)

dy

=w1

∫ +∞

w2

f(y)[1− F (y)]M−n

×





∫ 1−e
−

y
ρ

d−e
−

y
ρ

(1− e−
y
ρ − u)m−1un−1−mdu



 dy

(c)
= w1

∫ +∞

w2

f(y)[1− F (y)]M−n

m−1∑

k=0

(−1)m−1−kCk
m−1

× (1− e−
y
ρ )n−1 − (1− e−

y
ρ )k(d− e−

y
ρ )n−1−k

n− 1− k
dy

=w1

m−1∑

k=0

(−1)m−1−kCk
m−1

n− 1− k

[
∫ d

0

vM−n(1 − v)n−1dv

︸ ︷︷ ︸

Q1

−
∫ d

0

vM−n(1− v)k(d− v)n−1−kdv

︸ ︷︷ ︸

Q2,k

]

(21)

where (a) follows the definitionw2 = 1−2a2

a2

2

; (b) follows

d = e−
w2

ρ ; and(c) followsCq
p = p!

q!(p−q)! , p > q. Furthermore,

the two termsQ1 andQ2,k can be calculated as follows:

Q1 =

n−1∑

i=0

(−1)n−1−iCi
n−1

∫ d

0

vM−1−idv

=

n−1∑

i=0

(−1)n−1−iCi
n−1d

M−i

M − i
, (22)

Q2,k=

k∑

i=0

n−1−k∑

j=0

(−1)n−1−i−jCi
kC

j
n−1−kd

j

∫ d

0

vM−1−i−jdv

=

k∑

i=0

n−1−k∑

j=0

(−1)n−1−i−jCi
kC

j
n−1−kd

M−i

M − i− j
. (23)

Substituting the above two relationships into (21), this lemma
has been proved.

Moreover, for the first event, it is not difficult to obtain that

P (ε1) = P (RN
2 > RT

2 )− P (ε2)

= 1−w3

n−1∑

i=0

(−1)iCi
n−1

M− n+ i+ 1

(
1− dM−n+i+1

)
−P (ε2), (24)

wherew3 = M !
(m−1)!(M−m)! . For the fourth event, from [8]

(Theorem 1), we have

P (ε4) = P (RN
1 +RN

2 < RT
1 +RT

2 ) =

1−w1

n−1−m∑

i=0

(−1)iCi
n−1−m

m+ i

∫ w2

√
w2+1−1

f(y)[F (y)]n−1−m−i

× [1− F (y)]M−n

(

[F (y)]m+i −
[

F

(
w2 − y

1 + y

)]m+i
)

dy

− w3

n−1∑

j=0

(−1)jCj
n−1

M − n+ j + 1
d−(M−n+j+1). (25)

Thus, the probability of the third event can be written as

P (ε3) = 1− P (ε1)− P (ε2)− P (ε4). (26)

Now, P (εi), i = 2, 1, 4, 3, have been obtained as in Eqs.
(21), (24), (25), and (26), respectively.

Special Case:The expression forP (ε2) in Lemma 1 can
be simplified when considering a special pairing case, i.e.,
m = 1, n = M . In this case,k = 0, andQ1 andQ2,0 in (22)
and (23), respectively, can be derived as

Q1 = − 1

M

M−1∑

i=0

(−1)M−iCi
MdM−i

=− 1

M

[
M∑

i=0

Ci
M (−d)M−i − 1

]

=
1−(1−d)M

M
, (27)

Q2,0=

M−1∑

j=0

(−1)M−1−jCj
M−1d

M

M − j
=−dM

M

M−1∑

i=0

(−1)M−jCj
M

= −dM

M

[
M∑

i=0

(−1)M−jCj
M − 1

]

= −dM

M

[
(1 − 1)M − 1

]
=

dM

M
. (28)
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Analytical results
Simulation results

Fig. 3. Probability that the point T lies on a certain segmentin Fig. 2, where
ρ = 25 (dB), a2 = 1/

√
ρ.

Hence,P (ε2) = 1−(1−d)M−dM . The optimald in this case
is 1/2, which impliesa2 = −1+

√
1+ρ ln 2

ρ ln 2 < 1
2 , andP (ε2) =

1− 1
2M−1 . Here ln(·) denotes the natural logarithm.

Remark 2: This special case shows thatP (ε2) → 1 when
M is sufficiently large. This means that, almost for all the
possible channel realizations, NOMA achieves larger individ-
ual rates than naive TDMA for both userm and n as long
as the difference between the better and worse channel gains
is sufficiently large. This phenomenon is also valid for other
pairing cases (i.e.,(n,m) 6= (M, 1)) as verified via some
numerical examples in the next section.

IV. N UMERICAL RESULTS

In this section, the performance of NOMA is evaluated in
comparison with TDMA by using computer simulations. The
total number of users in the wireless downlink system isM =
10, and different choices of(m,n) will be considered.

In Fig. 3, the probability of each event defined in Section
III-A is displayed via column diagrams. Specifically, the
probabilities that the point T lies on subsegments A-B, B-C,
C-D and D-E in Fig. 2 are displayed, where we setρ = 25 dB
anda2 = 1/

√
ρ for simplicity. Four different user pairs(m,n)

are considered, which shows that the probability that the point
T lies on subsegment B-C (i.e.,P (ε2)) increases with the value
of (n − m), as discussed in Remark 2. In Fig. 4, additional
numerical results are provided to showP (ε2) as a function of
n. As shown in this figure,P (ε2) increases with the value of
(n−m), i.e., NOMA is prone to perform better than TDMA
in terms of individual rates when the difference between the
users’ channels is large. In addition, it is worth pointing out
that the Monte Carlo simulation results provided in Figs. 3
and 4 match well with the analytical results developed in
(21), (24), (25) and (26). In Fig. 5, individual rates of NOMA
and TDMA averaged over the fading channels are depicted as
functions of SNR (i.e.,ρ), where we set(m,n) = (1,M), and
a2 = (

√

ρ ln(2) + 1− 1)/(ρ ln(2)) according to the special
case in Section III-B. As shown in this figure, NOMA has
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Analytical results, m=3
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Analytical results, m=5

Fig. 4. Probability of the eventε2, whereρ = 25 (dB), a2 = 1/
√
ρ.
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TDMA: Average rate of user m
TDMA: Average rate of user n
NOMA: Average rate of user m
NOMA: Average rate of user n

Fig. 5. Average individual rates,a2 =

√
ρ ln(2)+1−1

ρ ln(2)
, m = 1, n = 10.

a constant performance gain over TDMA for each individual
rate. Whenρ = 55 dB, the performance gains with respect
to user m and usern are about 1 bits per channel uses
(BPCU) and 2 BPCU, respectively. This is due to the fact that
P (ε2) → 1 in this case, i.e., NOMA outperforms TDMA in
terms of each user’s rate for almost all the possible realizations
of (hm, hn).

V. CONCLUSIONS

This letter has investigated the performance of NOMA in a
downlink network from an information theoretic perspective.
The relationship among the BC capacity region, the NOMA
rate region and the TDMA rate region was first described. Ac-
cording to their relationship, the performance of NOMA was
evaluated in terms of both the sum rate and users’ individual
rate, by considering TDMA as the benchmark. Future work of
interest is to dynamically change power allocation according
to instantaneous CSI for enlarging the ergodic achievable rates
[10]. Moreover, it is important to establish the connection
between MIMO NOMA and information theoretic MIMO
broadcasting concepts.
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