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Crowd-sourcing materials-science challenges with

the NOMAD 2018 Kaggle competition
Christopher Sutton1*, Luca M. Ghiringhelli 1*, Takenori Yamamoto 2, Yury Lysogorskiy3, Lars Blumenthal4,5,

Thomas Hammerschmidt 3, Jacek R. Golebiowski 4,5, Xiangyue Liu1, Angelo Ziletti1 and Matthias Scheffler1

A public data-analytics competition was organized by the Novel Materials Discovery (NOMAD) Centre of Excellence and hosted by
the online platform Kaggle by using a dataset of 3,000 (AlxGayIn1–x–y)2O3 compounds. Its aim was to identify the best machine-
learning (ML) model for the prediction of two key physical properties that are relevant for optoelectronic applications: the
electronic bandgap energy and the crystalline formation energy. Here, we present a summary of the top-three ranked ML
approaches. The first-place solution was based on a crystal-graph representation that is novel for the ML of properties of materials.
The second-place model combined many candidate descriptors from a set of compositional, atomic-environment-based, and
average structural properties with the light gradient-boosting machine regression model. The third-place model employed the
smooth overlap of atomic position representation with a neural network. The Pearson correlation among the prediction errors of
nine ML models (obtained by combining the top-three ranked representations with all three employed regression models) was
examined by using the Pearson correlation to gain insight into whether the representation or the regression model determines the
overall model performance. Ensembling relatively decorrelated models (based on the Pearson correlation) leads to an even higher
prediction accuracy.
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INTRODUCTION

Computational approaches have become a powerful tool for
guided design of new compounds to potentially aid the
development of advanced technologies. However, the identifica-
tion and discovery of new materials that are ideal for targeted
applications is a nontrivial task that requires examining enormous
compositional and configurational degrees of freedom. For
example, an alloy with two substitutional atoms in the unit cell
and with M sites displays about 2M possible configurational states
(neglecting symmetry) for each lattice, and most often several
polymorphs have to be examined.
Density-functional theory (DFT) typically provides the best

compromise between accuracy and cost; nevertheless, we used a
single energy evaluation by using DFT scaling as a high-order
polynomial with system size. As a result of the high computational
demand, DFT-based exploration of configurational spaces of alloys
is only feasible for unit cells with a relatively small number of
atoms. To efficiently search this vast chemical space, methods that
allow for fast and accurate estimates of material properties have to
be developed.
Machine learning (ML) promises to accelerate the discovery of

novel materials by allowing to rapidly screen candidate com-
pounds at significantly lower computational cost than traditional
electronic structure approaches.1–7 A key consideration for an ML
model of material properties is how to include atomic and
structural information as a fixed-length feature vector to enable
regression, which is referred to as the representation or descriptor.
Given that knowledge of the atomic positions and chemical
species (e.g., the atomic number) for a given system is sufficient to
construct the Hamiltonian, a ML descriptor should include the

geometrical and chemical information in a convenient way. A
considerable amount of work has been devoted to defining
suitable ML descriptors of molecules or materials by encoding the
chemical and geometrical information in various ways such as
Coulomb matrices,8,9 scattering transforms,10 diffraction pat-
terns,11 bags of bonds,12 many-body tensor representation,13

smooth overlap of atomic positions (SOAP),14,15 and several
symmetry-invariant transformations of atomic coordinates.16–18 All
of these approaches represent the training or test samples and are
typically combined with kernel ridge regression (KRR) or Gaussian
process regression (GPR)19 methods to effectively identify
differences in the structures of the dataset. In addition, general-
ized atom-centered symmetry functions have also been devel-
oped to be combined with a neural network (NN).20 Other
approaches such as a modified Least Absolute Shrinkage and
Selection Operator (LASSO)21 and the Sure Independence Screen-
ing and Sparsifying Operator (SISSO)22 have focused on identify-
ing the best descriptor out of a large space of mathematical
combinations of simple features that represent the chemical
information and structural information.23–25 Of particular impor-
tance for the efficient modeling of the large configurational space
of substitutional alloys, the cluster expansion (CE) method26–32 is
an ML representation by using only an occupational variable for
each substitutional lattice site. However, the lack of explicit local
atomic information (e.g., bond distances and angles) of the
crystalline systems prevents a broad and transferable application
of this approach. Along these same lines, semiempirical
interatomic potentials or force field-based approaches use
parameterized models based on classical mechanics (e.g., short-
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range two-body and three-body interactions, long-range Coulomb
interactions) to approximate quantum mechanical properties.
With so many choices of the various structural representations,

it is often unclear which will be the most insightful or accurate for
a given problem. Furthermore, optimizing an ML model for a
particular application can be a time-consuming endeavor: a given
representation is combined with a specific regression model (i.e., a
model class and an induction algorithm) whose hyperparameters
are tuned subsequently. Therefore, typically, only a few combina-
tions of representation and regression algorithms are carefully
tested for a specific application, which limits the understanding of
how well various ML models perform. Crowd sourcing offers an
alternative approach for examining several ML models by
identifying a key problem and challenging the community to
solve it by proposing solutions that are ranked in an unbiased
way. To this end, the Novel Materials Discovery (NOMAD)33 Centre
of Excellence organized a data-analytics competition for predict-
ing the key properties of transparent conducting oxides (TCOs)
with Kaggle, which is one of the most recognized online platforms
for hosting data-science competitions.
TCOs are an important class of well-developed and commercia-

lized wide bandgap materials that have been employed in a
variety of (opto)electronic devices such as solar cells, light-
emitting diodes, field-effect transistors, touch screens, sensors,
and lasers.34–44 However, only a small number of compounds
display both transparency and electronic conductivity suitable
enough for these applications. For example, tin-doped indium
oxide (In2O3:Sn) serves as the primary transparent electrode
material for (opto)electronic devices because of its high transpar-
ency over the visible range, resulting from an electronic bandgap
energy of 2.7 eV,45,46 and its high electrical conductivity,47–49

which are typically competing properties. A wide range of
experimental bandgap energies from 3.6 to 7.5 eV have been
reported from alloying In2O3/Ga2O3 or Ga2O3/Al2O3,

50–56 which
suggest that alloying of group-III oxides is a viable strategy for
designing new wide-bandgap semiconductors. However, Al2O3,
Ga2O3, and In2O3 all display very different ground-state structures.
Therefore, it is unclear which structure will be stable for various
compositions.
The goal of the competition was to identify the best ML model

for both the formation energy (an indication of the stability) and
the bandgap energy (an indication of transparency) by using a
dataset that contained 3,000 (AlxGayInz)2O3 compounds (with x+
y+ z= 1) spanning six preassigned lattice symmetries (C/2m,
Pna21, R3c, P63/mmc, and Ia3, and Fd3m), which are some of the
phases that have been experimentally reported for the binary or
ternary compounds.57–67 In terms of the dataset, 2,400 structures
were used for the training set, with the remaining 600 structures
included in the test set that was kept secret throughout the entire
competition. A similar distribution of the two target properties is
observed for the training and test sets (Fig. S1); a boxplot of the
two target properties for each of the six lattices is provided in the
Supporting Information (see Fig. S2). A ternary diagram of the
unique compositions used in the dataset is provided in Fig. S3.
The competition was launched on 18 December, 2017 and

ended on 15 February, 2018, attracting 883 participants. Figure 1
shows the distribution of the so-called public and private
leaderboard scores for all the participants of the competition.
The public score was calculated for only 100 fixed samples from
the test set in order to quickly assess the performance of the
submitted models, with the two target properties of these
samples still kept secret. The remaining 500 samples of the test
set were used to determine the winner of the competition, which
is displayed in the private leaderboard. The scoring metric used in
the competition was the root mean square logarithmic

error (RMSLE)

RMSLE ¼
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where N is the total number of samples. The error is calculated as
the log ratio of the predicted target property ŷi and the
corresponding reference value yi. The error for both the formation
energy and bandgap energy is then averaged for a final
assessment of the model performance. The log ratio of the errors
is a convenient choice because it prevents the bandgap, which is
an order of magnitude larger than the formation energy (see Fig.
S1), from dominating an analysis of the predictive capability of
each model.
For the practical application of ML models for high-throughput

screening, it is of particular importance to have a model that
inputs structural features based on a generalized unrelaxed
geometry because the relaxed structures are not readily available.
If the relaxed geometry needed to be calculated to obtain the
input features for an ML model, then all of the quantities of
interest would already be available. In this competition, the
structures were provided by the linear combination of the
stoichiometric amounts of the Al2O3, Ga2O3, and In2O3 geometries
at the same lattice symmetry (i.e., obtained by applying Vegard’s
law68,69 for the lattice vectors to generate the input structures);
however, the target properties are computed from the fully
relaxed geometries.
In this paper, we first describe the performance of the three ML

approaches on the original dataset provided in the NOMAD 2018
Kaggle competition. We then provide a comparison in the
performance of these three representations with various regres-
sion methods to gain an understanding of the key determining
factors for the high performance of the winning models. A
comparison between the errors of the fully optimized geometries
and those obtained by using the starting structures generated by
using Vegard’s law is also provided. Finally, we examine the
generalization error of the ML models for lattice symmetries
outside of the training set. We only briefly describe the models in

Fig. 1 Histogram of averaged RMSLE of the bandgap and formation
energies for all of the 883 models submitted in the NOMAD 2018
Kaggle competition. The scores are shown for the Kaggle public and
private scoreboards of the test containing 600 samples with the
values of these two target properties withheld for the entire
competition. The public score was calculated for 100 fixed samples;
the private score was calculated for 500 samples and was used to
determine the winner of the competition. The vertical red lines
correspond to the predictions from taking the average value of the
training set to predict the public (dashed line) and private (line)
datasets
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the main text; a detailed description of each of the three winning
ML models from the competition is provided in the “Methods”
section.

RESULTS

Performance of the three winning approaches from the NOMAD
2018 Kaggle competition
As already mentioned in the introduction, the errors in both the
bandgap and formation energy of the crystalline system differ by
about an order of magnitude in their mean and standard
deviations. Thus, simply averaging the two absolute errors would
result in an error metric that is dominated by the bandgap energy
because of its larger magnitude. This is why the RMSLE was the
performance metric used in the competition. However, for this
discussion, we use the mean absolute errors (MAE) of the bandgap
and formation energies separately because they allow for a more
intuitive quantification of model performance from a physical
point of view:

MAE ¼
1
N

X

N

i¼1

ŷi � yij j

Table 1 compares the RMSLE and MAE for the top-three models.
The first-place model employed a crystal-graph representation
composed of histograms of unique coordination environments
and unique edge sequences (called n-grams70) extracted from a
multigraph representing a bonding network in the crystal
structure, which was combined with kernel ridge regression
(KRR). An ensemble of n-gram feature lengths was used in the
model submission because it gave the lowest cross-validation
(CV)-score RMSLE; however, in this paper, the results from the
concatenated list of 1-gram, 2-gram, 3-gram, and 4-gram features
(which is referred to as the 4-gram herein) are discussed to
facilitate a comparison between each of the different regression
methods without the need for additional tuning of the mixing
coefficient in the ensemble model.
The second-place model (c/BOP+LGBM) starts from a large set

of candidate features (i.e., weighted chemical properties as well as
atomic-environment representations based on analytic bond-
order potentials (BOP)71–74 and basic geometric measures), which
was then optimized and combined with the light gradient-
boosting machine (LGBM) regression model.75 The third-place
solution used the SOAP representation developed by Bartók
et al.14,15 that incorporates information on the local atomic
environment through a rotationally integrated overlap of the
Gaussian-shaped densities centered at the neighbor atoms, which
was combined with a three-layer feed-forward NN (SOAP+NN).
The top-three models have a test-set MAE for the formation

energy within 2 meV/cation, whereas a larger range of 21meV is
observed for the predictions of the bandgap energy (Table 1).
Based on the learning curves provided in Fig. S4, the formation
energy MAEs of all the three methods converge to ≤ca. 2.4 meV/
cation for training-set sizes ≥960 samples relative to the error

obtained when training on the full dataset of 2,400 structures. For
the bandgap energies, a test-set MAE ≤16meV relative to the error
obtained when training on the full 2400 samples is achieved for
960, 1440, and 1920 training samples for SOAP+ NN, c/BOP+
LGBM, and 4-gram+ KRR, respectively. Furthermore, for all three
models, these errors vary by <ca. 3 meV/cation and 20meV for the
formation energy and bandgap energy, respectively, for five
additional random 80/20% splits of the entire 3000-compound
dataset (Table S1).
Overall, the higher accuracy in the formation energy for all three

approaches is attributed to the inclusion of the local atomic
topography in each model. The lower accuracy for the bandgap
energy is attributed partly to the fact that the valence band is
determined by hybridization of oxygen atoms, whereas the
conduction band is described by the metal–metal interactions.
Therefore, an accurate description of this property most likely
requires additional information to be included in the representa-
tion beyond the local structure.

Three winning representations combined with all three regression
methods
To understand the effect of the choice of representation vs.
regression model on the overall error, we now examine the
performance of each representation combined with KRR/GPR, NN,
and LGBM, with the hyperparameters optimized for each
representation and regression method combination. A detailed
description of each of the nine models is provided in the Methods
section.
The primary goal for training an ML model is to accurately

generalize the rules learned on the training set to make
predictions on unseen data. Overfitting describes the propensity
of an ML model to give a higher accuracy on the training set
compared with the test set, which is an indication of poorly
generalizable predictions of the model. To evaluate the general-
izable error, we investigate the difference between the 95%
percentiles of the MAE for the training and test sets for each of the
nine ML models (Δ95%). The 95% percentiles for the training set
and test set are given by the upper edges of the boxplots in Fig. 2
(the explict values for the MAE and 95% percentile are provided in
Table S2).
Beginning with a discussion of the errors in the formation

energy, a practically identical error is observed among the
predictions from all the three regression models (KRR/GPR, NN,
and LGBM) by using the same c/BOP, SOAP, and 4-gram
representations, with a maximum difference of 4 meV/cation,
2 meV/cation, and 2meV/cation, respectively (Fig. 2). However, a
large variation of the Δ95% value between the training and test
predictions is observed. For example, a consistently larger Δ95%
value is calculated when the NN and LGBM regression methods
are used, irrespective of the three representations. This is apparent
in Fig. 2 with a much narrower distribution of the training-set
absolute errors (blue) compared with the test-set absolute errors
(red). More specifically and focusing only on the formation energy,

Table 1. A summary of the three winning models of the competition with the test-set root mean square log error (RMSLE) and mean absolute error

(MAE) of the formation energy and bandgap energy

Ranking ML representation+
regression method

Formation energy Bandgap energy

Room mean square
log error

Mean absolute error
(meV/cation)

Root mean square
log error

Mean absolute error
(meV/cation)

First n-gram+ KRR 0.020 (0.021a) 14 (15a) 0.078 (0.077a) 106 (114a)

Second c/BOP+ LGBM 0.022 15 0.081 93

Third SOAP+NN 0.021 13 0.083 98

aDetermined by using the 4-gram representation instead of an ensemble of 3-gram and 4-gram that was used in the actual competition
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a markedly larger Δ95% is observed for 4-gram+ NN (Δ95%=
95%train–95%test= 37meV/cation) and LGBM (Δ95%= 49meV/
cation) compared with KRR (Δ95%= 20meV/cation). A similar
trend is found for SOAP representation combined with NN (Δ95%
= 36meV/cation), LGBM (Δ95%= 55meV/cation), and GPR (Δ95%
= 31meV/cation). In comparison, only a slightly larger difference
between the 95% confidence thresholds of the training and test
sets is computed for c/BOP with LGBM (Δ95%= 39meV/cation), c/
BOP+ NN (Δ95%= 28meV/cation), and c/BOP+ KRR (Δ95%=
34meV/cation). These results indicate a consistently larger Δ95%
when the NN and LGBM regression models are used because
these regressors are potentially more prone to overfitting in this
application. This observation is consistent with the expectation
that overfitting is more likely with highly nonlinear functions that
have more flexibility when learning a target. However, this might
be resolved by a more careful hyperparameter optimization.
The Pearson correlation (r) between signed errors in the test-set

predictions is used to quantify correlations between test-set errors
for all combinations of representation (c/BOP, SOAP, and 4-gram)
and regression models (LGBM, NN, or KRR/GPR) to elucidate the
dominant factors of the model performance through a compar-
ison of the nine models (Fig. 3). The Pearson correlation is chosen
for this analysis because it is a simple parameter-free measure of
the linear correlation between two variables (i.e., the residuals
between two models) to indicate where two ML models have
similar predictions for the test set. As we noted above, a practically
identical error in the formation energy is observed among the
predictions from all the three regression models (KRR/GPR, NN,

and LGBM) by using the c/BOP, SOAP, and 4-gram representations,
with a maximum difference of 4 meV/cation, 2 meV/cation, and
2meV/cation, respectively. The minor variation in the average
error is attributed to the dominant effect of the representation in
the overall accuracy. However, the range of r values between
errors of the three models by using these representations
combined with the three different regression models (r=
0.74–0.80, r= 0.72–0.87, and r= 0.82–0.92 for 4-gram, SOAP, and
c/BOP models, respectively) indicates that the accuracy of the
three ML models is correlated but not identical. In addition, the
highest Pearson correlations in the formation energy errors is
observed for the predictions obtained with the c/BOP representa-
tion, indicating that these models have a strongly correlated
description of the test set. Furthermore, among all three
representations, the highest Pearson coefficients are consistently
obtained for the residuals in the formation energy between
predictions by using KRR/GPR and NN, with 4-gram+ KRR vs. 4-
gram+ NN (r= 0.80), SOAP+ GPR vs. SOAP+ NN (r= 0.87), and c/
BOP+ KRR vs. c/BOP+ NN (r= 0.92). In general, the high Pearson
correlation among errors of the same representation indicates that
the choice of the representation is a determining factor in the
performance of these approaches.
In contrast to what is observed for the formation energy where

the predictions made from the same representations are the most
correlated and largely independent of the regression model, the
bandgap energies are less correlated overall. Compared with what
is found in the errors in the formation energy, an overall decrease
in the correlation in the residuals of the models by utilizing the

Fig. 2 A comparison of the distribution of the absolute errors for the training set (blue) and test set (red) of the formation energy (Ef, left) and
bandgap energy (Eg, right) from the three winning representations (4-gram, c/BOP, and SOAP) of the competition combined with the KRR/GPR,
NN, and LGBM regression models. The mean absolute errors (MAE) of the test set (orange cross) and training set (orange filled circle) are
provided. Boxplots are included for each training and test-set distribution to indicate the 25, 50, and 75% percentiles of the absolute errors.
The box and violin plots only extend to the 95% percentile. For the training-set predictions, the maximum absolute error in the formation
(bandgap) energy for 4-gram+ KRR, c/BOP+ LGBM, and SOAP+NN is 103meV/cation (1047meV), 185meV/cation (606meV), and 376meV/
cation (497meV), respectively. The corresponding maximum absolute test errors are 282meV/cation (1112meV), 276meV/cation (1680meV),
and 286meV/cation (1198meV) for the 4-gram+ KRR, c/BOP+ LGBM, and SOAP+NN models, respectively
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KRR/GPR and NN regressors is observed: 4-gram+ KRR vs. 4-gram
+ NN (r= 0.69), c/BOP+ KRR vs. c/BOP+ NN (r= 0.73), and SOAP
+ GPR vs. SOAP+ NN (r= 0.80). These lower Pearson correlation
scores for the bandgap errors both indicate that even with the
same representation, the three respective ML models perform
differently for the bandgap predictions, which is potentially a
result of the larger errors in this target property.
With an understanding of the correlation for each representa-

tion but using different regressors, a key question becomes how
correlated the prediction errors are between all nine ML models.
The highest correlation is observed when the LGBM regression
model is used with the three representations. For the formation
energy residuals, the correlations between 4-gram+ LGBM vs.
SOAP+ LGBM (r= 0.78), and c/BOP+ LGBM vs. SOAP+ LGBM
(r= 0.83) show a higher correlation compared with the predictions
with 4-gram+ LGBM vs. c/BOP+ LGBM (r= 0.74). For the errors in
the bandgap energies, the highest correlations (r= 0.82–0.85) are
observed between each representation and combined with LGBM,
which further demonstrates that this regression model dominates
the prediction of this target property. This is rationalized to occur
because the LGBM algorithm builds an accurate ML model by
ensembling weak learners, which are flowchart-like structures that
allow for input data points to be classified based on questions
learned from the data.76 To improve the model predictions,
gradient boosting is used to iteratively train additional models on
the error. This process specifically addresses the weak points of
the previous models, and therefore, the improved correlation
indicates that the larger errors are more consistently described by
these regression models.
A new model obtained by averaging two models with

uncorrelated errors (i.e., small r values) can perform better than
individual ML models, which is the basic idea behind the so-called
ensembling.77–79 To demonstrate that this idea holds for the
present dataset and set of learners, we have combined various ML
models with both small and large Pearson correlations. More
specifically, an equivalent test-set error in the formation energy of
the 4-gram+ KRR model (MAE= 15meV/cation) can be achieved
by averaging the predictions from the 4-gram+ NN (MAE=
16meV/cation) and c/BOP+ NN (MAE= 19meV/cation) models,
which have an r= 0.59. In contrast, averaging two models with a
high correlation such as c/BOP+ KRR model (MAE= 17meV/
cation) with c/BOP+ NN (MAE= 19meV/cation), which have an
r= 0.92, gives an MAE= 17meV/cation. This result indicates that
the ensembling two correlated models cannot lower the

prediction errors. Furthermore, a test-set MAE= 12meV/cation –

i.e., less than the error of the winning model in the actual
competition – can be obtained by averaging the predictions from
4-gram+ KRR model (MAE= 15meV/cation) with SOAP+ GPR
(MAE= 13meV/cation), which have r= 0.64. For the bandgap
energy, averaging the 4-gram+ NN (MAE= 124 meV) and SOAP
+ GPR (MAE= 97meV) models, (r= 0.47) yields an MAE= 96meV,
which is lower than the first-place 4-gram+ KRR model (MAE=
114meV). Overall, these results demonstrate that the Pearson
correlation allows for an identification of models with weakly
correlated predictions, which can be combined to obtain even
lower errors.

Training and test-set errors using features derived from relaxed
structures
For the purposes of efficient predictions in high-throughput
screening, it is important to incorporate structural features without
performing a geometry optimization. If atomic structural informa-
tion were required from optimized geometries, then most other
quantities would be known as well, and no predictions were
necessary. The discussion has so far been limited to a dataset
constructed by using geometries generated from the weighted
average of the optimized pure binary crystalline systems (i.e.,
applying Vegard’s law68,69 to generate the input structures).
However, the target formation and bandgap energies correspond
to the fully optimized structures with the lattice vectors and
atomic positions allowed to relax self-consistently. Therefore, to
examine the additional challenge for the ML description by using
this structure generation procedure, the performance of the top-
three ML approaches by using the fully relaxed geometries is also
examined.
Differences in the test-set MAEs of 2, 1, and 2meV/cation for the

formation energy are calculated for the 4-gram+ KRR, c/BOP+
LGBM, and SOAP+ NN models, respectively, by using features
generated from the relaxed structures compared with the
Vegard’s law starting structures (Table 2). For the bandgap energy,
there exist differences of 1, 3, and 14meV, respectively, between
the MAE values by using the two sets of geometries. The
increasing error of predictions from the 4-gram model when
features are built from the relaxed geometry is attributed to the
rigid definition of the coordination environment, which is
determined as the number of interatomic distances within
predetermined cutoff values based on the sum of ionic radii. In

Fig. 3 Pearson correlation in the test-set errors of the formation energy (left) and bandgap energy (right) between each of the nine
combinations of representation and regression models examined in this study. The predictions obtained for the same representation are
outlined in black
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the 4-gram representation, the parameterization of the coordina-
tion environment for each of the lattice symmetries augments the
additional challenge of the Vegard’s law starting structure by
inputting bias into the model; however, this then leads to a
representation that is less flexible to different input structures. In
contrast, the SOAP representation is strongly dependent on the
geometry used for building the descriptor, which leads to a larger
difference in errors between the two sets of structures.

Examining the model generalizability to lattices outside of the
training set
Each model was retrained on a dataset that contained only five
out of six lattice structures and then tested on a dataset
containing only the lattice excluded from the training set. The
Ia3 lattice was chosen as the test set in this investigation because
it displays one of the largest differences in the bandgap minimum
and maximum values of all the lattices (4.42 eV) with a standard
deviation of 0.98 eV (for the combined set of values in the training
and test set). The model performance for this re-partitioned
training set (2384 structures encompassing five lattice symme-
tries) and the test set (616 structures of the Ia3 symmetry) results
in significantly larger MAE values for the formation energy of
53meV/cation, 40 meV/cation, and 132 meV/cation in the 4-gram
+ KRR, c/BOP+ LGBM, and SOAP+ NN models, respectively
(Table 3). A large increase in the bandgap energies is also
observed for 4-gram+ KRR (MAE= 179 meV), c/BOP+ LGBM
(MAE= 180 meV), and SOAP+ NN (MAE= 527meV), respectively.
The significant increase in the errors compared with the original
dataset is attributed to the absence of common local atomic-
environment descriptors between the training and test sets.
To examine if an improved generalizability of each model can

be obtained by training a model for each lattice type separately,
the c/BOP+ LGBM model is retrained by performing the feature
selection and hyperparameter optimization procedure for each
spacegroup separately and then tested on the left-out Ia3 lattice.

This procedure results in a test-set MAE score of 36 meV/cation
(111meV) for the formation (bandgap) energy, which is improved
compared with the MAE of 40 meV/cation (180 meV) when
training the model to the entire training set.
To give an indication of the prediction quality of these three ML

models for the left-out lattice, a CE model was trained by using a
random training/test 75%/25% split of the 616 structures with the
Ia3 lattice symmetry using the software CELL [https://sol.physik.
hu-berlin.de/cell/]. For a CE model that includes two-point clusters
up to six angstroms, a test-set MAE of 23meV/cation for the
formation energy is obtained. A saturation in the learning curve
with a training-set size of only 50 samples for the CE approach
(Fig. S5), indicates that this approach is largely incapable of
achieving a higher accuracy with more data. In comparison with
the CE test-set accuracy, the 4-gram+ KRR and c/BOP+ LGBM
have about twice the error when the Ia3 lattice is completely left
out of the training set. For the bandgap energy, the 4-gram+ KRR
and c/BOP+ LGBM models are much more accurate compared
with what is achieved with CE (229 meV). These results indicate
that the simple CE representation still provides a reasonable
accuracy when examining only one lattice; however, the
disadvantage of the CE approach is that the model is not
transferable, and therefore, a new model must be trained for each
symmetry.

DISCUSSION

We have presented the three top-performing machine-learning
models for the prediction of two key properties of transparent
conducting oxides during a public crowd-sourced data-analytics
competition organized by NOMAD and hosted by the online
platform Kaggle. One key outcome of this competition was the
development of a new representation for materials science based
on the n-gram model. Because of the diverse set of methods and
regression techniques, the interplay between the combination of
the representation and regression methods was also analyzed. In
particular, consistently large differences between the mean
absolute errors and the 95 percentile distributions of the training
and test-set errors are consistently observed when a neural
network and light gradient-boosting machine is used at the
regression models, which indicates a higher potential for over-
fitting for these methods. The Pearson correlation was used to
investigate correlations between the estimates of the test-set
values among the various ML models to give additional insight
into the model performance. By using this analysis, the largest
Pearson correlations were observed for predictions from the same
representations combined with different regressors for the
formation energy. In particular, the highest predictions were
observed for the same representations by using neural network
and kernel ridge regression (Gaussian process regression). The
Pearson correlation allows for an identification of models with

Table 3. Comparison of test-set MAE values for the three winning

models trained for a re-partitioned dataset containing five of six lattice

symmetries (2384 samples) and a test set (616 samples) comprising

only one lattice symmetry (Ia3)

Representation Regressor Formation energy
(meV/cation)

Bandgap
energy (meV)

4-gram KRR 53 179

c/BOP LGBM 40a/36b 180a/111b

SOAP NN 132 527

aFeature selection and model hyperoptimization according to fivefold CV

with splits generated randomly
bFeature selection and model hyperoptimization according to fivefold CV

with splits generated based on the spacegroup number

Table 2. Comparison of test-set MAEs for the different regression methods retrained using fully relaxed geometries for the NOMAD 2018 Kaggle

dataset compared with idealized geometries

Representation Regression method Formation energy Bandgap energy

Mean absolute error
(meV/cation)

Mean absolute error (meV)

4-gram KRR 17a 15b 113a 114b

c/BOP LGBM 14a 15b 96a 93b

SOAP NN 11a 13b 84a 98b

aCalculated by using features generated from the fully optimized structure
bCalculated by using features generated from the Vegard’s law structure
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weakly correlated predictions to obtain even lower errors through
ensembling.

METHODS

The two target properties of the NOMAD 2018 Kaggle competition were
the formation energy and bandgap energy. The bandgap energy was
taken to be the minimum value (either direct or indirect). The formation
energy was calculated relative to pure In2O3, Al2O3, and Ga2O3 phases and
were normalized per number of cations according to

Ef ¼ E ðAlxGay InzÞ2O3
� �

� xE Al2O3½ � � yE Ga2O3½ � � zE In2O3½ �

where, x, y, and z are the corresponding relative concentrations of Al, Ga,
and In, respectively defined as x ¼ NAl

NAlþNGaþNIn
; y ¼ NGa

NAlþNGaþNIn
; z ¼ NIn

NAlþNGaþNIn
.

E ðAlxGay InzÞ2O3
� �

is the energy of the mixed system, E Al2O3½ �; E Ga2O3½ �,
and E In2O3½ � are the energies of the pure binary crystalline systems in their
thermodynamic ground-state lattices α-Al2O3 (R3c), β-Ga2O3 (C/2m), and c-
In2O3 (Ia3), respectively. Thus, this relative formation energy provides an
estimate of the stability of the mixed system with respect to the stable
ground state of the binary components and differs from the usual
definition that instead uses the atomic energies for reference values. By
using the bulk energies of the pure binary components as reference values
(instead of the atomic energy references that are typically used), the
relative formation energy is a more difficult property to learn.
The formation energy and bandgap energy were computed by using the

PBE exchange-correlation DFT functional with the all-electron electronic
structure code FHI-aims with tight settings.80 In a separate study, we have
carefully compared the performance of different exchange-correlation
functionals (e.g., PBE, PBEsol, and HSE06) for group-III oxides and observed
that the PBE functional provides a qualitatively correct prediction of the
minimum energy structures for Al2O3, Ga2O3, and In2O3 as R3c, C/2m, and
Ia3, respectively out of five polymorphs included in this dataset (Fig. S6). In
addition, a comparison of the computed and experimental lattice
parameters for seven experimentally reported Al2O3, Ga2O3, and In2O3

structures shows that the PBE-computed volumes overestimate the
experimental values by an average error of 4.2% (see Fig. S7). In terms
of the bandgap energies computed by using different exchange-
correlation functionals, we note that the differences between the PBE
and correct bandgaps can indeed be significant. In the absence of reliable
experimental values, we have instead compared PBE with HSE06 and
found that the PBE bandgap energies systematically underestimate the
HSE06 values by 1.5–2 eV. We emphasize that the differences between PBE
and HSE06 (or even GW bandgaps) display regularities. For example, a
largely systematic shift was reported for a dataset of 250 epasolites81 and
for a broad class of inorganic systems.6 Therefore, PBE values are still useful
to screen materials because they provide a first indication of the bandgap
energies (but not much more). Clearly, a few of the possibly interesting
materials will then need to be studied with more accurate methods (e.g.,
GW approach). Furthermore, it is possible to use machine learning for
describing the differences (see, e.g., ref. 81), but this is beyond the scope of
the present study.

n-gram model
The first step to construct an n-gram representation of a crystalline system
is to map the real-space 3-dimensional (3D) periodic structure onto a
crystal graph (see Fig. 4 for an illustration), where the nodes represent
atoms in a given lattice position and the edges represent bonds. In the
present implementation, a node is labeled by the atomic species and the
number of bonded neighbors (e.g., Ga-4 indicates indium in a four-
coordinate environment for gallium). For this material class, the cations
(i.e., Al, Ga, and In) are only bonded to oxygen atoms and vice versa;
therefore, an edge between nodes in the crystalline graph occurs if the
cation-oxygen distance in the 3D crystal is less than a lattice-specific and
linearly scaled (discussed in more detail below) threshold that is based on
the sum of the ionic radii of the two species. The empirically tabulated
Shannon ionic radii were used in this study, which are oxidation-state and
coordination-environment specific values, and thus, have to be defined
beforehand.82 The two-coordinate O2– radius (1.35 Å) and the six-
coordinate radii for Al3+ (0.535 Å), Ga3+ (0.62 Å), and In3+ (0.8 Å) were
used. Because the lattice structures in the dataset have coordination
environments that vary from these values, lattice-specific scaling factors of
the radii of 1.3 [P63/mmc], 1.4 [C/2m, Pna21, and Fd3m (for the subset of
lattices within this spacegroup with γ < 60)], and 1.5 [R3c, Ia3, and Fd3m

(for the subset of lattices within this spacegroup with γ > 60)] were used.
The optimal scaling factors used in the generation of the crystal graph
were found for each lattice symmetry through trial and error. We note that
previously a similar crystal-graph representation of solid-state lattices was
already introduced,83 but the graph itself was used as a descriptor and
combined with a convolutional neural network to learn several properties
of materials. In our case, the information contained in the crystal graph is
transformed into features through histograms, as explained below.
The 1-gram features are generated from counting the unique

coordination environments in the graph (i.e., one four-coordinate gallium
[Ga-4], three five-coordinate indium atoms [In-5], one two-coordinate
oxygen [O-2], three three-coordinate oxygen atoms [O-3], and two four-
coordinate oxygen atoms [O-4]). The higher-order n-grams are the
contiguous sequences of the cation-oxygen-directed edges in the crystal
graph varying from 1 (2-gram), 2 (3-gram), and 3 (4-gram). We note that a
directed-graph notation is used here, where parallel edges indicate
equivalent sites because of the symmetry present in crystalline systems.
To illustrate how the higher-order n-gram features are generated, we

focus on only the 2-grams, 3-grams, and 4-grams associated with a single
node Ga-4 in the example presented in Fig. 4. The 2-gram set is
determined by counting the edges of the Ga-4 node: Ga-4 to O-2 (labeled
as e1), Ga-4 to O-2 (e2), Ga-4 to O-3 (e3), and Ga-4 to O-3 (e4), resulting in a
histogram of two Ga-4/O-2 and two Ga-4/O-3 2-grams. The 3-gram set for
the Ga-4 node is obtained from the six unique combinations of edges [(e1,
e2), (e2, e3), (e2, e4), (e1, e4), (e1, e3), and (e3, e4)], giving histograms of the
following 3-grams: O-2/Ga-4/O-2, O-2/Ga-4/O-3, and O-3/Ga-4/O-3. The 4-
gram can be built by combining three contiguous edges. For example, the
edge labeled e4 (Ga-4/O-3) can be combined with e3 (O-3/Ga-4) on the
left, and on the right, an edge connecting O-3 to In-5 to create the 4-gram:
O-3/Ga-4/O-3/In-5. An additional 4-gram (O-2/Ga-4/O-3/In-5) can be built
from e4 by combining either e1 or e2 (i.e., the left edge O-2/Ga-4) and the
right edge O-3/In-5.
For each structure in the dataset, this procedure is applied to generate

histograms of all 1-grams and 3-grams for every node and all 2-grams and
4-grams for every edge in the crystal graph. The resulting histograms are
then normalized by the unit cell volume to account for the varying unit cell
sizes in the dataset.
For the NOMAD 2018 Kaggle dataset, a total of 13 unique 1-grams were

used that range from 4 to 6 and unique oxygen coordination numbers that
range from 2 to 5. To illustrate the histogram features generated from the
n-gram model by using the 1-gram for two 80-atom structures with the
formula (Al0.25Ga0.28In0.47)2O3 and (Al0.63Ga0.34In0.03)2O3 and C/2m and P63/
mmc symmetry types are shown in Fig. 5.
The n-gram features are combined with a KRR model by using the

Gaussian radial basis function kernel. The values of the two hyperpara-
meters (the regularization constant λ and the length scale of the Gaussian
γ, which controls the degree of correlation between training points) were
determined by performing grid searches with fivefold CV and compare
well with the private leaderboard score (Table 4). Similar to what was

In
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O
In

O

O

Ga

O

In

O

e1

e2

e3

e4

In-5

In-5

Ga-4

O-3

O-2

O-3

Fig. 4 Unit cell of the In3Ga1O6 structure (left) depicted as a crystal-
graph representation (right), which shows the connections between
each node that are defined by the chemical bonds
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discussed in the context of ensembling different models with low
correlation, here too the highest accuracies are obtained from an
ensemble score of the 3-gram and 4-gram predictions: Pmix= αmixP(3-
gram)+ (1− αmix) P(4-gram), where a mixing parameter of 0.64 and 0.69
for the formation and bandgap energies was used, respectively. Although
such an ensemble gives the lowest CV-score RMSLE, the concatenated list
of 1-gram, 2-gram, 3-gram, and 4-gram features was used throughout this
paper to facilitate a comparison between each of the different regression
methods. This is a convenient choice to avoid having to retrain the mixing
parameter for each analysis.
The n-gram features were combined with a NN architecture consisting of

10 dense layers with 100, 50, 50, 20, 20, 20, 20, 10, 10, and 10 neurons,
respectively, and LeakyReLU activation functions. The NN was implemen-
ted in PyTorch82 and optimized by using Adam84 with a learning rate of
0.005. The n-gram features were combined with LGBM with the model
hyperparameter optimization performed as described in the “Atomic and
bond-order-potential derived features” section of the Methods.

Atomic and bond-order-potential derived features
For the second-place model, many descriptor candidates are examined
from a set of compositional, atomic-environment-based, and average

structural properties (Fig. 6). Of this list, the optimal 175 (212) features are
selected for the prediction of the bandgap (formation) energy based on an
iterative procedure by using the auxiliary gradient-boosting regression tree
(XGBoost) and used with the LGBM learning algorithm.
The weighted chemical properties are computed from reference data by

using either the overall stoichiometry or the nearest neighbors. This
approach is motivated by the concepts of structure maps that chart the
structural stability of compounds in terms of chemical properties of the
constituent atoms and the overall chemical composition.85–87 For
generating per-structure features, the weighted arithmetic mean of
bandgap and of formation energy is computed from the stoichiometry
by using the respective values for In2O3 (R3c, Ia3, and Pnma), Ga2O3 (C/2m
and R3c), and Al2O3 (C/2m, Pna21, R3c, and P4232) from the Materials
Project.88 In addition, the average and difference of several free-atom
properties such as the electronic affinity, ionization potential, atomic
volume, and covalent radius (all values were obtained from mendeleev
[https://bitbucket.org/lukaszmentel/mendeleev]) are computed between
each atom and each of its nearest neighbors to generate per-atom
features. The list of nearest atomic neighbors is generated by using the
ASE package89 and determined based on the distance between two atoms
being smaller than the sum of the computed free-atom radii.
The representations of the atomic environment are incorporated by

using BOP-based properties and simple geometric measures. The latter
comprise averaged atomic bond distances, averaged cation-oxygen
nearest-neighbor bond distances, centrosymmetric parameters (deter-
mined from a sum of the vectors formed between atom i and its nearest
neighbors), and the volume per atom. The characterization of atomic
environments by the BOP methodology relies on moments and the closely
related recursion coefficients that connect the local atomic environment
and local electronic structure (DOS) by the moments theorem.90 Within the
analytic BOP formalism, these properties can be computed efficiently in an
approximate way71,73 and used as per-atom features that discriminate and
classify the local atomic environment.74,91 For each atom j, the nth moment
µn

(j) is computed by multiplying pairwise model Hamiltonians along self-
returning paths (i.e., start and end at the same atom) up to length n. The
representation of local atomic environments uses scaled recursion
coefficients ai

(j) and bi
(j) obtained from µn

(j) with scaled volumes vj as
described in refs. 74,91 In this work, a total of 12 moments corresponding to
the atomic environment up to the sixth nearest-neighbor shell were used.
This procedure is to some degree comparable to the n-gram approach of
the first-place solution with regard to sampling the environment. More
specifically, a 4-gram feature would correspond to one-half of a self-
returning path in an eighth-moment calculation. One of the differences in
the two methodologies is that all path segments are used explicitly in the
n-gram approach, whereas only the individual self-returning paths are
subsumed in the moments of the c/BOP approach.
For each atom in the structure, this procedure generates a list with a

length that is equivalent to the number of neighbors. A clustering scheme
is then applied to the average, and standard deviation of these features is
used to generate a fixed-length representation. These properties were
clustered into seven groups based on the atomic environments described
by a1

(j), b2
(j), and vj by using the k-means clustering algorithm applied

separately to O and Al, Ga, and In for each structure in the dataset. These
clusters of varying lengths were then projected into a fixed-length vector
by taking only the mean and standard deviation. If one of the seven
atomic-environment groups is not present in a given structure, then the
corresponding feature is set to zero.
In total, this approach resulted in a set of 6,950 features (ca. 120 atomic

properties per atom × 7 atomic-environment groups × 4 element types ×
2 statistical aggregation measures), which were reduced to a set of 175

Table 4. Fivefold CV RMSLE values of the formation energies and bandgap energies and public and private leaderboards for n-grams of various

lengths (normalized by unit cell volume)

n-gram lengths Formation energy RMSLE Bandgap RMSLE Public RMSLE Private RMSLE

1-gram 0.0229 0.0817 0.0518 0.0560

2-gram 0.0230 0.0811 0.0472 0.0540

3-gram 0.0223 0.0814 0.0381 0.0514

Ensemble of 3- and 4-gram 0.0222 0.0806 0.0514 0.0510

4-gram 0.0237 0.0829 0.0394 0.0506

Fig. 5 Histogram of the complete set of 13 1-gram features formed
from the total list of the unique coordination environment for each
atom type for two training-set structures (Al0.25Ga0.28In0.47)2O3 and
(Al0.63Ga0.34In0.03)2O3
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and 212 features for the prediction of the bandgap and formation energies
that produced the highest accuracy based on an iterative procedure by
using XGBoost.92 The final set of features where then combined with
LGBM75 for the final model with the hyperparameters tuned by using 10-
fold CV within the hyperopt package93 and a suggestion algorithm by
using tree-structured Parzen estimators,94 which resulted in RMSLE values
of 0.0462 and 0.0521 for the public and private leaderboards.
The selection of the optimal set of features requires attributing an

importance to each of the 6,950 features. However, recently, popular
feature attribution methods were shown to have a lower assigned
importance relative to the true impact of that feature in modeling the
target property.95 The SHapley Additive exPlanations (SHAP) method96 was
proposed to give more accurate relative feature importances and was
calculated here as a normalized mean absolute value of the SHAP values
for each feature (see Fig. S8). For prediction of the bandgap energy, the
features with the largest relative importance (ca. 17% each) are the
weighted bandgap of Al2O3, Ga2O3, and In2O3 and the volume per atom. In
contrast, all features have a relatively small importance for the prediction
of the formation energy; only geometrical information describing the
environment of indium and the length centrosymmetric parameter has the
highest importance. The per-atom features have a total relative importance
of 40 and 33% for formation energy and bandgap energy, respectively,
including ca. 20 and 15% of the relative feature importance for the BOP-
related features.
The same set of top features used with LGBM to achieve the second-

place score were also combined with KRR and NN. The features used with
the KRR and NN regressors were rescaled to have a zero mean and unit
variance. The KRR model employed a Gaussian radial basis function kernel
with the λ and γ hyperparameters tuned by using a 5-fold CV grid search.
The Keras package [https://keras.io] with the Tensorflow backend97 was
used to generate a three-layer NN containing 1,024, 256, and 256 neurons
with batch normalization, hyperbolic tangent activation function, and 20%
dropout in each layer. The output layer contained one neuron only, had no
batch normalization, and used an ReLU activation function.98 The NN was
trained for 500 epochs.

Smooth overlap of atomic positions
The third-place solution used the smooth overlap of atomic positions
(SOAP) kernel developed by Bartók et al. that incorporates information on
the local atomic environment through a rotationally integrated overlap of
Gaussian densities of the neighboring atoms.14,15 The SOAP kernel
describes the local environment for a given atom through the sum of
Gaussians centered on each of the atomic neighbors within a specific
cutoff radius. The SOAP vector was computed with the QUIPPY package

[https://libatoms.github.io/QUIP/index.html] by using a real-space radial
cutoff fcut of 10 Å, the smoothing parameter σatom= 0.5 Å, and the basis set
expansion values of l= 4 and n= 4. For each structure, a single-feature
vector was used by averaging the per-atom SOAP vector for each atom in
the unit cell, which resulted in a vector with a length of 681 values. These
aggregated mean feature vectors for the dataset were then scaled so that
each dimension has a mean equal to zero and variance equal to one.
The average SOAP features were used in a three-layer feed-forward NN

by using PyTorch99 [https://pytorch.org/] with batch normalization and
20% dropout in each layer. For predicting the bandgap energies and the
formation energies, the initial layer had 1024 and 512 neurons,
respectively. In both cases, the remaining two layers had 256 neurons
each. The neural networks were trained for 200 or 250 epochs, and the
final predictions were based on 200 independently trained NNs by using
the same architecture but with different initial weights.
The average SOAP vector of each structure was combined with Gaussian

Process Regression (GPR),19 where the covariance function between two
structures was defined as a polynomial kernel

k Ri ;Rj

� �

¼ ðaRi � Rj þ bÞc

where Ri and Rj are descriptor vectors for structure i and j; a, b, and c are
kernel coefficients. Several values for the Polynomial kernel degree c
(ranging from 1 to 6) with a= 1.0 and b= 0.0 were examined until the
lowest RMSLE was obtained. This resulted in two hyperparameters for the
model construction: regularization term and the degree of the kernel.
Optimal hyperparameters were identified by using repeated random
subsampling CV for 100 training and validation splits. Finally, the final GPR
model was averaged over all 100 splits. The SOAP vector was also
combined with LGBM regression with the model hyperparameter
optimization performed as described in the section “Atomic and bond-
order-potential derived features” of the Methods.

DATA AND CODE AVAILABILITY

The dataset used in the Kaggle competition are publicly available in the NOMAD
Repository (http://dx.doi.org/10.17172/NOMAD/2019.06.14-1), the Kaggle competition
website (https://www.kaggle.com/c/nomad2018-predict-transparent-conductors), and
the labeled training and test set can be found on github (https://github.com/csutton7/
nomad_2018_kaggle_dataset). The three winning models are available at https://
analytics-toolkit.nomad-coe.eu.
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Fig. 6 Illustration of feature engineering and subsequent stages for the construction of the second-place c/BOP+ LGBM model
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