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Abstract

We present and investigate a Newton type method for online optimization in nonlinear model predic-

tive control, the so called “real-time iteration scheme”. In this scheme only one Newton type iteration

is performed per sampling instant, and the control of the system and the solution of the optimal control

problem are performed in parallel. In the resulting combined dynamics of system and optimizer, the ac-

tual feedback control in each step is based on the current solution estimate, and the solution estimates are

at each sampling instant refined and transferred to the next optimization problem by a specially designed

transition. This approach yields an efficient online optimization algorithm that has already been suc-

cessfully tested in several applications. Due to the close dovetailing of system and optimizer dynamics,

however, stability of the closed-loop system is not implied by standard nonlinear model predictive control

results. In this paper, we give a proof of nominal stability of the scheme which builds on concepts from

both, NMPC stability theory and convergence analysis of Newton type methods. The principal result is

that – under some reasonable assumptions – the combined system-optimizer dynamics can be guaranteed

to converge towards the origin from significantly disturbed system-optimizer states.

1 Introduction

Nonlinear model predictive control (NMPC) is a feedback control technique that is based on the real-time

optimization of a nonlinear dynamic process model. It has attracted increasing attention over the past

decade, in particular in chemical engineering [QB01, Hen98, MRRS00]. Among the advantages of NMPC

are the flexibility provided in formulating the objective and the process model and the capability to directly

handle equality and inequality constraints on states and inputs.

One important precondition for the application of NMPC, however, is the availability of reliable and

efficient numerical dynamic optimization algorithms, since at every sampling time a nonlinear dynamic

optimization problem must be solved. Solving such an optimization problem efficiently and fast, however,
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is not a trivial task and has attracted strong research interest in recent years (see e.g. [Wri96, BWB00,

TR01, Bie00, LB89, OB95b, TWR02, MBF02]).

Most approaches use classical off-line dynamic optimization algorithms to solve the optimization prob-

lems arising in NMPC. They do this as fast as possible, and once the solution has been computed, the

obtained control is applied to the system to be controlled. If the system is slow and the computer fast, the

feedback delay due to the computation time is short compared to the timescale of the system, and classical

stability theory for NMPC [MM90, ABQ+99, DMS00] can be assumed to hold true. In practical appli-

cations, however, in particular for large-scale systems, the optimizer cannot be assumed to be infinitely

fast compared to the system. A possible approach to take account of the computation time is to predict

the state at the time we expect the optimization to be finished and carry out the optimization for this pre-

diction [FA03, CBO00], allowing to prove nominal stability; however, this approach may still result in a

considerable delay of the feedback response to disturbances.

In contrast to the classical approaches, the “real-time iteration” scheme [DBS+02, Die02, DFS+02] –

that is the focus of this paper – reduces sampling times and feedback delay by a dovetailing of the dynamics

of the system with the dynamics of the optimization algorithm. In principle only one optimization iteration

is performed per sampling instant and the obtained estimate for the optimal solution is shifted suitably

to allow overall fast convergence. The approach allows to efficiently treat large-scale systems [FDU+02]

or systems with short timescales [DBS03] on standard computers, thus pushing forward the frontier of

practical applicability of NMPC. In its actual implementation for continuous time systems, the scheme is

based on the direct multiple shooting method within the optimal control package MUSCOD-II (Leinewe-

ber [Lei99]), and it has already been successfully applied for the NMPC of a real pilot plant distillation

column [DUF+01, DFS+03].

However, to concentrate on the essential features of the method and – most important – on a proof of

nominal stability of the scheme, we restrict the presentation in this paper to a strongly simplified NMPC

scheme for discrete time systems, as follows.

1.1 Discrete Time Nonlinear Model Predictive Control

Throughout this paper, we consider the following nonlinear discrete time system:

xk+1 = f(xk, uk), k = 0, 1, 2, . . . , (1)

with system states xk ∈ R
nx and controls uk ∈ R

nu . We assume that f : R
nx × R

nu → R
nx is twice

continuously differentiable, and, without loss of generality, that the origin is a steady state for (1), i.e.

f(0, 0) = 0.

The aim of NMPC is to find controls uk = u(xk) that depend on the current system state xk and that are

optimal with respect to a specified objective on a moving horizon, which implicitly captures the desire that

the system converges towards the steady state. We will denote the predicted states and controls by si and

qi, in order to distinguish them from the states xk and controls uk of the real system. For the derivations

considered in this paper we assume that the objective minimized at every time instant k is given by

N
∑

i=0

L(si, qi),

where si, i = 0, . . . , N is the predicted state over the fixed prediction horizon N ∈ N starting from xk
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considering a predicted input sequence (q0, q1, . . . , qN ):

si+1 = f(si, qi), i = 0, . . . , N, s0 = xk.

We assume that the stage cost L : R
nx × R

nu → R is twice continuously differentiable, that L(0, 0) = 0,

and that there is a m > 0 such that

L(x, u) ≥ m‖x‖2, ∀ x ∈ R
nx , u ∈ R

nu . (2)

A typical choice for L is e.g. L(x, u) = xT Qx + uT Ru with positive definite matrices Q and R.

Given this setup, the input applied in NMPC is defined as the first input q∗0 of the optimal1 predicted

input sequence (q∗0 , . . . , q∗N ):
u(xk) := q∗0(xk). (3)

The closed loop system then obeys the “ideal-NMPC dynamics”

xk+1 = f(xk, u(xk)), (4)

and one central question in NMPC is if the closed loop system (4) is stable. This question has been

examined extensively over recent years and a variety of NMPC schemes exist that can guarantee stability,

see e.g. [MM90, ABQ+99, DMS00]. For the purposes of this paper we enforce stability using a so called

zero terminal constraint in the prediction, i.e.

sN+1 = 0, (or, equivalently, f(sN , qN ) = 0)

and we will provide a nominal stability result in Theorem 4.1.

Summarizing, in NMPC we proceed by solving a sequence of optimization problems P (xk) of the

following form:

Definition 1.1 (P (x))

min
s0, . . . , sN ,

q0, . . . , qN

N
∑

i=0

L(si, qi) (5a)

subject to

x − s0 = 0, (5b)

f(si, qi) − si+1 = 0, i = 0, . . . , N − 1, (5c)

f(sN , qN ) = 0. (5d)

As said, the vectors si, qi are introduced to avoid confusion with the real system states x and the inputs u.

Note that the optimal solution (s∗0(x), . . . , s∗N (x), q∗0(x), . . . , q∗N (x)) of P (x), if it exists, satisfies s∗0(x) =
x, and – because of the definition of the “ideal NMPC control” in (3) – also q∗0(x) = u(x).

1Optimal values are in the following denoted by a star.
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Assumption 1 For all initial values x in an open set X ⊂ R
nx that contains the origin, problem P (x)

has a unique optimal solution (s∗0(x), . . . , s∗N (x), q∗0(x), . . . , q∗N (x)), and the value function V (x) which

is defined via the optimal cost for every x by

V (x) :=

N
∑

i=0

L(s∗i (x), q∗i (x)) (6)

is continuous on this set X . Furthermore, there is a (possibly large) M > 0 such that V (x) ≤ M‖x‖2

∀x ∈ X .

Note that the steady state trajectory (0, 0, . . . , 0) is the solution of P (0) and has optimal cost V (0) = 0, and

that because of V (x) ≥ L(x, q∗0(x)) ≥ m‖x‖2 we also have V (x) > 0, ∀x ∈ X\{0}. In the remainder of

this paper we are not interested in the set X , but rather in the largest compact level set of V that is contained

in X . Thus in the following we consider a fixed α > 0 such that

Xα := {x ∈ X|V (x) ≤ α} ⊂ X, (7)

is maximal and that Xα is compact. Clearly, Xα contains a neighborhood of the origin. This set Xα

corresponds to the region of attraction of the ideal NMPC controller: for all x0 ∈ Xα we can prove

asymptotic stability of the ideal NMPC dynamics (4), i.e., limk→∞ xk = 0, as will be stated in Theorem 4.1

in Section 4.1.

Remark: In practical applications, inequality path constraints of the form h(xi, qi) ≥ 0, like bounds

on controls or states, are of major interest, and should be included in the formulation of the optimization

problems P (x). For the purpose of this paper we leave such constraints unconsidered, since general con-

vergence results for Newton type methods with changing active sets are difficult to establish. However, we

note that in the practical implementation of the real-time iteration scheme they are included.

1.2 Sequential versus Simultaneous Solution Approaches

Existing numerical schemes for NMPC optimization can roughly be subdivided into sequential and simulta-

neous solution strategies [BBB+01, BR91b, Pyt99]. In the sequential approach, the system equations (5b)

and (5c) are used to eliminate the states (s0, . . . , sN ) from the optimization problem, regarding them as a

function of the controls (q0, . . . , qN ), and substitutes these functions into the objective (5a) and the terminal

constraint (5d); thus, the system equations and the optimization problem are treated sequentially, one after

the other, in each optimization iteration. Many real-time optimization schemes for NMPC are based on this

approach. However, sequential optimization schemes for NMPC often suffer from the drawback that poor

initial guesses for the control trajectory may lead the predicted state trajectories far away from the desired

reference trajectory; in particular, it may be difficult to satisfy the terminal constraint (5d); therefore, the

sequential approach often causes an unnecessarily strong nonlinearity of the resulting optimization problem

and poor convergence behaviour, especially for unstable systems. In some cases, an open-loop simulation

on a longer horizon is even impossible.

In contrast to this, the simultaneous approach avoids this difficulty by keeping both, the control and

the state in the optimization problem, and treating the problem P (x) exactly as it is formulated in (5), thus

solving system equations and optimization problem simultaneously. Though the resulting optimization
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Figure 1: Problem P (x): initial value x and NLP variables s0, . . . , sN and q0, . . . , qN .

problem in the variables (s0, . . . , sN , q0, . . . , qN ) may be large-scale, it has a favourable structure and can

be efficiently solved, and instability and nonlinearity of the dynamic model can be better controlled. Note

that for some guess of the optimization variables, the state trajectory (s0, . . . , sN ) need not necessarily

satisfy the system equations (5b) and (5c) (for a visualization, see Fig. 1), but that a solution trajectory of

course satisfies all constraints. The real-time iteration scheme is based on this simultaneous approach.

1.3 Online NMPC and System-Optimizer Dynamics

In ideal NMPC it is assumed that the feedback u(xk) is available instantaneously at every sampling time

k. However, in practice usually no explicit solution to the problem P (xk) is available, and the numerical

solution requires a non negligible computation time and involves some numerical errors. We typically

know each initial value xk only at the time k when the corresponding control uk is already required for

implementation. Thus, instead of implementing the ideal NMPC control u(xk) we have to use some quickly

available approximation ũ(xk, wk), where the additional argument wk indicates a data vector wk ∈ R
n

that we use to parameterize the control approximation. These data are generated by an online optimization

algorithm, and they may be updated from one time step to the next one, according to the law wk+1 =
F (xk, wk), where the argument xk takes account of the fact that the update shall of course depend on the

current system state. To achieve this the computations performed are thus divided in two parts

1. Preparation: computation of wk = F (xk−1, wk−1), and generation of the feedback approximation

function ũ(·, wk), during the transition of the system from state xk−1 to xk.

2. Feedback Response: At time k, give the feedback approximation uk := ũ(xk, wk) to the system,

which then evolves according to xk+1 = f(xk, uk).

From a system theoretic point of view, instead of the ideal NMPC dynamics (4), we now have to investigate

the combined system-optimizer dynamics

xk+1 = f(xk, ũ(xk, wk)), (8a)

wk+1 = F (xk, wk). (8b)
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The difficulty in the analysis of the closed-loop behavior of this system stems from the fact that the two

subsystems mutually depend on each other.

The real-time iteration scheme investigated in this paper is one specific approach to online NMPC,

where the data vector wk is essentially a guess for the optimal solution trajectory of P (xk). The data update

law wk+1 = F (xk, wk) shall provide iteratively refined solution guesses, and is derived from a Newton

type optimization scheme. The approximate feedback law ũ(xk, wk) can be considered an (essential) by-

product of this Newton type iteration scheme.

1.4 Organisation of the Paper

The principal aim of the paper is to prove a nominal stability result for the system-optimizer dynamics (8)

due to the real-time iteration scheme. The investigation has to combine concepts from both, classical

stability theory for NMPC as well as from convergence theory for Newton type optimization methods.

In Section 2 we introduce the real-time iteration scheme and its combined system-optimizer dynamics

in xk and wk. Section 3 contains a detailed discussion of the convergence properties of Newton type

methods for NMPC and a convergence result for ideal NMPC optimization with a shift initialization for

each new optimization problem. In Section 4 we review a nominal stability result for ideal NMPC that

is based on a decrease of the optimal value function V (xk) in each time step, and in Subsection 4.2 we

give a bound on the errors due to the feedback approximation ũ(xk, wk) in the real-time iteration scheme,

with respect to the decrease of the value function. In Section 5 we analyze the contraction properties of the

optimizer states wk under the assumption that the system states xk stay in the level set Xα. In Section 6

we finally combine the results of Section 4.2 and Section 5 to prove convergence of the real-time iteration

NMPC scheme, and in Section 7 we conclude the paper with a short summary.

2 Real-Time Iteration Scheme

In order to characterize the solution of the optimization problem P (x) we introduce the Lagrange mul-

tipliers λ0, . . . , λN for the constraints (5c) and λN+1 for (5d), and define the Lagrangian function

Lx(λ0, s0, q0, . . .) of problem P (x) as

Lx(·) :=
∑N

i=0 L(si, qi) + λ0
T (x − s0) +

∑N−1
i=0 λi+1

T (f(si, qi) − si+1) + λN+1
T f(sN , qN ).

We assume in the following that Lx is twice continuously differentiable in its arguments over the consid-

ered regions. Summarizing all variables in a vector w := (λ0, s0, q0, . . . , λN , sN , qN , λN+1) ∈ R
n, the

necessary optimality conditions of first order for P (x) are:

∇wLx(w) =



























x − s0

∇xL(s0, q0) + ∂f
∂x

(s0, q0)
T λ1 − λ0

∇uL(s0, q0) + ∂f
∂u

(s0, q0)
T λ1

...

f(sN−1, qN−1) − sN

∇xL(sN , qN ) + ∂f
∂x

(sN , qN )T λN+1 − λN

∇uL(sN , qN ) + ∂f
∂u

(sN , qN )T λN+1

f(sN , qN )



























= 0. (9)
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One possible solution method for this set of nonlinear equations is to use Newton type iterations, as outlined

in the following.

2.1 Newton Type Iterations

Starting at some guess w for the optimal solution of P (x), the Newton type methods investigated in this

paper compute a corrected iterate w′ = w + ∆w(x, w) towards the exact solution by

∆w(x,w) := −J(w)−1 ∇wLx(w), (10)

where J(w) is an approximation of the second derivative ∇2
wLx(w). Note that ∇2

wLx – often called

Karush-Kuhn-Tucker (KKT) matrix – is independent of the initial value x, which enters the Lagrangian

Lx(w) only linearly. The index argument x can therefore be omitted for the KKT matrix, i.e., we will

write ∇2
wL(w) in the sequel. Of course, its approximation J(w) shall also be independent of x, and

we assume in the following that J(w) is continuous over the considered regions. Moreover, the steps

∆w(x,w) = (∆λ0(x,w), s0(x,w), . . .) shall have the property that s′0 = s0 + ∆s0(x,w) = x, i.e., that

the linear initial value constraint (5b), x−s0 = 0, is satisfied after one Newton type iteration. This is easily

accomplished by noting that the first nx rows of ∇2
wL(w) are constant, cf. (11), and choosing them to also

be the first nx rows of J(w).
We mention here that the Lagrangian function Lx of the optimal control problem is partially separable

and its second derivative therefore has a block diagonal structure,

∇
2

wL(w)=

266666664
−I

−I Q0 M0 AT
0

MT
0

R0 BT
0

A0 B0

. . .
−I

−I QN MN AT
N

MT
N RN BT

N

AN BN

377777775 , (11)

which should also be chosen to be the structure of J(w), and which should be exploited in the actual

implementation of the Newton type method.

2.2 Real-Time Iteration Algorithm with Shift

Let us assume that during the transition from one sampling instant to the next we only have time to perform

one Newton type iteration. To allow fast convergence while the process evolves, the real-time iteration

scheme is based on a suitable transition between subsequent problems. After an initial disturbance it

subsequently delivers approximations uk for the optimal feedback control that allow to steer the system

close to the desired steady state, as will be shown in Section 6, under suitable conditions.

Furthermore, as shown in [Die02], the computations of the real-time iteration belonging to problem

P (xk) can largely be prepared without knowledge of the value of xk, so that the approximation uk of the

optimal feedback control is practically available at the time k. To underline the basic idea, suppose that

the inverse J(w)−1 is available in explicit form (which is in practice never computed). Therefore one can
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write (10) as










∆λ0

∆s0

∆q0

...











= −











· · · ·
−Inx

· · ·
K(w) · · ·

...
. . .











[

x − s0

...

]

. (12)

The real-time iteration scheme with shift initialization proceeds now as follows:

1. Preparation: Based on the current guess wk = (λk
0 , sk

0 , qk
0 , λk

1 , sk
1 , qk

1 , . . . , λk
N , sk

N ) compute all

components of the vector ∇wLxk(wk) apart from the first one, and compute the matrix J(wk).
Prepare the linear algebra computation for the implicit representation of the inverse-vector product

J(wk)−1∇wLxk(wk) as much as possible without knowledge of the value of xk (a detailed de-

scription how this can be achieved is given in [DBS+02] or [Die02]). Essentially, this amounts to

providing the matrix K(wk) as in (12).

2. Feedback Response: At the time k, when xk measured, compute the feedback approximation uk =
ũ(xk, wk) := qk

0 − K(wk)(xk − sk
0) and apply the control uk immediately to the real system.

3. Transition: Compute the next initial guess wk+1 by first adding the step vector ∆wk to wk and then

shifting all variables to account for the movement in time. That is, compute wk+1 as

wk+1 := S
(

wk + ∆wk) = S( wk − J(wk)−1 ∇wLxk(wk)
)

,

where S is a shifting matrix operating on

w =













































λ0

s0

q0

λ1

s1

q1

·
·
·

λN

sN

qN

λN+1













































such that Sw =













































λ1

s1

q1

·
·
·

λN

sN

qN

λN+1

0
0
0













































.

Continue by setting k = k + 1 and going to 1.

In contrast to the ideal NMPC feedback closed loop (4), in the real-time iteration scheme we have to regard

combined system-optimizer dynamics of the form (8), which are given by

xk+1 = f
(

xk, qk
0 − K(wk)(xk − sk

0)
)

=f
(

xk, qk
0 + ∆q0(x

k, wk)
)

(13a)

wk+1 = S
(

wk − J(wk)−1 ∇wLxk(wk)
)

=S
(

wk + ∆w(xk, wk)
)

. (13b)

In the remainder of the paper we concentrate on investigating the nominal stability of these system-

optimizer dynamics.
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2.3 Connection to Existing Approaches

Several features of the algorithm have been presented by other researchers for real-time optimization in

NMPC. In particular, a one-iteration scheme has been proposed by Li and Biegler in [LB89] for the se-

quential approach. For this scheme even a stability result is derived, that is, however, only applicable to

stable systems. In the application of classical off-line optimization schemes to on-line control, the question

of how to initialize subsequent problems has found some attention in the literature [BR91a, LEL92], and a

shift strategy has been proposed, e.g., by de Oliveira and Biegler [OB95a] for the sequential approach.

3 Local Convergence of Newton Type Optimization

In this section we present results on the convergence properties of Newton type methods for optimization

in NMPC that lay the basis for the discussion in all subsequent sections.

3.1 Local Convergence for a Single Optimization Problem

In a first step we review a local convergence result of Newton type optimization for the solution of one

fixed optimization problem (i.e. no shift of w after each iteration). Thus we consider in this subsection a

fixed x ∈ Xα and we will denote in the following by w0 an (arbitrary) initial guess for the primal-dual

variables of problem P (x). A standard Newton type scheme proceeds by computing iterates w1, w2, . . .

according to

wi+1 := wi + ∆wi, ∆wi := ∆w(x,wi) = −J(wi)
−1∇wLx(wi).

The following standard result states conditions that ensure the convergence of the iterates (for fixed x) from

the initial guess w0 to a point that satisfies the first order necessary conditions:

Theorem 3.1 (Local Convergence of Newton Type Optimization)

Assume that J(w) is invertible for all w ∈ D, where D ⊂ R
n. Furthermore, assume that there exist

constants κ < 1, ω < ∞ such that for all w′, w ∈ D, ∆w = w′ − w and all t ∈ [0, 1]
∥

∥J(w′)−1
(

J(w + t∆w) −∇2
wL(w + t∆w)

)

∆w
∥

∥ ≤ κ‖∆w‖, (14a)
∥

∥J(w′)−1 (J(w + t∆w) − J(w))∆w
∥

∥ ≤ ωt‖∆w‖2, (14b)

that the the first step ∆w0 := −J(w0)
−1∇wLx(w0) is sufficiently small, such that

δ0 := κ +
ω

2
‖∆w0‖ < 1, (14c)

and that the ball B0 :=
{

w ∈ R
n| ‖w − w0‖ ≤ ‖∆w0‖

1−δ0

}

is completely contained in D. Then the Newton

type iterates w0, w1, . . . are well-defined, stay in the ball B0, and converge towards a point w∗ ∈ B0

satisfying ∇wLx(w∗) = 0.

Remark: We would like to mention that the assumptions made are standard assumptions for the con-

vergence of Newton type methods (see e.g. [Boc87]). One should note that in general it is rather difficult

to check the conditions a priori, but that a posteriori estimates can be obtained when the Newton type

iterations are carried out.

For the proof of the theorem we need the following lemma:
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Lemma 3.2 (Contraction Rate)

Under the same assumptions as in Theorem 3.1 the Newton type iterates satisfy the contraction property

‖∆wi+1‖ ≤
(

κ +
ω

2
‖∆wi‖

)

‖∆wi‖ =: δi‖∆wi‖. (15)

Proof of Lemma3.2: We prove the lemma using a standard arguments for convergence of Newton type

methods (see e.g. [Boc87]):

‖∆wi+1‖ = ‖J(wi+1)
−1 · ∇wLx(wi+1)‖

= ‖J(wi+1)
−1 · (∇wLx(wi+1) −∇wLx(wi) − J(wi) · ∆wi)‖

= ‖J(wi+1)
−1 ·

∫ 1

0
(∇2

wL(wi + t∆wi) − J(wi)) · ∆wi dt‖
= ‖J(wi+1)

−1 ·
∫ 1

0
(∇2

wL(wi + t∆wi) − J(wi + t∆wi))∆wi dt

+J(wi+1)
−1 ·

∫ 1

0
(J(wi + t∆wi) − J(wi))∆wi dt‖

≤
∫ 1

0
‖J(wi+1)

−1 (∇2
wL(wi + t∆wi) − J(wi + t∆wi))∆wi‖ dt

+
∫ 1

0
‖J(wi+1)

−1 (J(wi + t∆wi) − J(wi))∆wi‖ dt

≤ κ‖∆wi‖ +
∫ 1

0
ωt‖∆wi‖2 dt

=
(

κ + ω
2 ‖∆wi‖

)

‖∆wi‖ = δi‖∆wi‖.

Proof of Theorem 3.1: Using Lemma 3.2 we first observe that δi+1 ≤ δi and that

‖∆wi‖ ≤ δi−1δi−2 . . . δ0‖∆w0‖ ≤ (δ0)
i‖∆w0‖.

so that

‖wi − wi+m‖ ≤ ‖∆wi‖ + . . . + ‖∆wi+m−1‖ ≤ (δ0)
i‖∆w0‖

1 − δ0

i.e., w0, w1, w2, . . . is a Cauchy sequence and remains in the (compact) ball B0, and thus converges towards

a point w∗ ∈ B0. This point satisfies ∇wLx(w∗) = 0 due to continuity of ∇wLx(·) and boundedness of J

on the compact ball B0, as

‖∇wL(w∗)‖ = lim
i→∞

‖∇wL(wi)‖ = lim
i→∞

‖J(wi)∆wi‖ ≤ ‖J‖max lim
i→∞

‖∆wi‖ = 0.

3.2 Local Convergence for a Class of Optimization Problems

We will tailor in this subsection the results of the previous subsection to the NMPC problem. For this

purpose we need to define two sets DC ⊂ D2C which are defined in terms of a fixed C > 0

DC := {w ∈ R
n |∃x ∈ Xα, ‖w − w∗(x)‖ ≤ C } (16)

D2C := {w ∈ R
n |∃x ∈ Xα, ‖w − w∗(x)‖ ≤ 2C } , (17)

where w∗(x) is the primal-dual solution of problem P (x), and where Xα is the maximum level set of V

in X as introduced in 1.1. Given these sets we can now state the assumptions necessary for the following

corollary.
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Assumption 2 Each solution w∗(x) is unique in D2C , i.e.,

∀x ∈ Xα,∀w ∈ D2C\{w∗(x)} : ∇wLx(w) 6= 0, (18a)

and J(w) is invertible on ∈ D2C . Furthermore there exist constants ω < ∞, κ < 1 such that for all

w′, w ∈ D2C , ∆w = w′ − w and all t ∈ [0, 1]

∥

∥J(w′)−1
(

J(w + t∆w) −∇2
wL(w + t∆w)

)

∆w
∥

∥ ≤ κ‖∆w‖ (18b)
∥

∥J(w′)−1 (J(w + t∆w) − J(w))∆w
∥

∥ ≤ ωt‖∆w‖2. (18c)

The following two scalars d and δ will be used throughout the paper.

Definition 3.1 Given a fixed C > 0, that shall be chosen as large as possible such that Assumption 2

holds, we define the positive scalars

d :=
C(1 − κ)

1 + ω
2 C

and δ := κ +
ω

2
d. (19)

Note that

δ =
κ + ω

2 C

1 + ω
2 C

< 1. (20)

Now we can state the following corollary giving conditions for the convergence of Newton type methods

for NMPC:

Corollary 3.3 (Local Convergence of Newton type methods for NMPC problems)

Suppose Assumption 2. If for some x ∈ Xα and some w0 ∈ DC it holds that ‖∆w(x,w0)‖ ≤ d, then the

Newton type iterates wi for the solution of ∇wLx(w) = 0, initialized with the initial guess w0, converge

towards the solution w∗(x). Furthermore, the iterates remain in DC .

Proof: We start by noting that C = d
1−δ

. The ball B0 of Theorem 3.1 is contained in the ball {w′ ∈
R

n| ‖w′ − w0‖ ≤ C}, which itself is contained in the set D2C , as w0 ∈ DC . Therefore, there is a

solution w∗ ∈ D2C satisfying ∇wLx(w∗) = 0, which must be equal to w∗(x) due to the uniqueness

assumption (18a). Furthermore, the distance of iterate wi from w∗(x) is bounded by

‖wi − w∗(x)‖ ≤ ‖∆wi‖
1 − δi

≤ d

1 − δ
= C, (21)

i.e., wi ∈ DC .

In the remainder of the paper we will consider fixed values for α and C and assume that Assumption 2

is satisfied. Furthermore, we will often refer to the set Ξ defined as follows:

Definition 3.2 (Ξ)

Ξ := {(x,w) ∈ R
nx × R

n |x ∈ Xα, w ∈ DC , ‖∆w(x,w)‖ ≤ d} (22)

This set Ξ contains all pairs (x,w) for which Corollary 3.3 ensures numerical solvability. Note that Ξ is

nonempty, as it contains at least the points (x,w∗(x)), ∀x ∈ Xα, and their neighborhoods.
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3.3 Local Convergence for Ideal NMPC with Shift Initialization

We are now interested what influence a shift initialization has on the Newton type solution of two con-

secutive ideal NMPC problems P (xk+1) and P (xk). In other words, we want to investigate under which

conditions a shifted version of the previous solution, w∗(xk), i.e., setting wk+1
0 := Sw∗(xk), leads to

convergence of the Newton scheme at time k. Here w∗(xk) denotes the optimal solution at time k, while

wk+1
0 denotes the initialization of the Newton type iteration wk+1

0 , wk+1
1 , . . ., at time k + 1, which is given

by the iteration rule wk+1
i+1 := wk+1

i + ∆w(xk+1, wk+1
i ) and satisfy wk+1

i → w∗(xk+1) if the initial guess

wk+1
0 is sufficiently close to the solution, i.e., if (xk, wk+1

0 ) ∈ Ξ.

Note that the shifted initialization has the advantage that the initial value constraint (5b) of the new

problem is already satisfied. But is this initialization close enough to the exact solution w∗(xk) to guarantee

local convergence?

The following theorem gives a partial answer to this question; roughly speaking, the shift provides a

good initialization if the length N of the optimization horizon is chosen sufficiently big, so that the zero

terminal constraint (5d) is not to strongly active, i.e., that the last multiplier λN+1 is sufficiently small.

Theorem 3.4 (Numerical Solvability for Ideal NMPC with Shift)

Assume that for all w∗(x) = (λ∗
0, s

∗
0, . . . , λ

∗
N+1), x ∈ Xα

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

J(Sw∗(x))−1



















0
...

0
λ∗

N+1(x)
0
0



















∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

≤ d. (23)

Then (xk+1, Sw∗(xk)) ∈ Ξ, i.e., the shift initialization wk+1
0 := Sw∗(xk) for each new problem P (xk+1)

guarantees convergence of the Newton type scheme towards the new optimal solution w∗(xk+1).

Proof: First note that f(x, u(x)) = f(s∗0(x), q∗0(x)) and Sw∗(x) = (λ∗
1(x), s∗1(x), . . . , λ∗

N+1, 0, 0, 0).
Thus it holds that

∇wLf(x,u(x))(Sw∗(x)) =



















f(s∗0(x), q∗0(x)) − s∗1(x)
...

f(s∗N (x), q∗N (x)) − 0

∇xL(0, 0) + ∂f
∂x

(0, 0)T 0 − λ∗
N+1(x)

∇uL(0, 0) + ∂f
∂u

(0, 0)T 0
f(0, 0)



















= S∇wLx(w∗(x)) +



















0
...

0
−λ∗

N+1(x)
0
0



















= 0 +



















0
...

0
−λ∗

N+1(x)
0
0



















.
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Therefore, condition (23) is equivalent to

‖J(Sw∗(x))−1∇wLf(x,u(x))(Sw∗(x))‖ ≤ d, ∀x ∈ Xα,

i.e.,

(f(x, u(x)), Sw∗(x)) ∈ Ξ, ∀x ∈ Xα, (24)

and in particular

(f(x, u(xk)), Sw∗(xk)) = (xk+1, Sw∗(xk)) ∈ Ξ, ∀k ∈ N.

A direct consequence of the theorem is that under certain conditions one cannot only guarantee closed loop

stability, but also numerical solvability for all optimization problems P (xk), if the initial state x0 is in Xα

and if the first initial guess w0
0 ∈ DC is such that ‖∆w(x0, w0

0)‖ ≤ d (i.e. that (x0, w0
0) ∈ Ξ). However,

this favorable result was obtained under the assumption that computation times are negligible, i.e., that the

Newton type method can be iterated until convergence at every sampling time.

Remark: A major difference of the real-time iteration scheme as described in Section 2.2 to the ideal

scheme considered in Theorem 3.4 is that the iterations wk
0 , wk

1 , . . . for problem P (xk), wk
i → w∗(xk), are

terminated prematurely, namely after the first iteration. Instead of initializing each new problem P (xk+1)
by wk+1

0 := S(limi→∞ wk
i ) = Sw∗(xk), we initialize with wk+1

0 := Swk
1 = S( wk

0 + ∆w(xk, wk
0 ) ). For

the real-time iterations, we simply drop the lower iteration index and set wk := wk
0 .

4 Nominal Stability and Decrease of the Optimal Value Function

In this section we will first review a well known result for nominal stability of ideal NMPC, which is based

on a guaranteed decrease of the value function. The line of proof allows us then to examine the influence

of the “input disturbance” introduced by the feedback approximation of the real-time iteration scheme

(compared to ideal NMPC). We will give a bound on the error of the feedback approximation with regard

to the decrease of the value function.

4.1 Nominal Stability for Ideal NMPC

Let us first review the following result for nominal stability of ideal NMPC (cf. [MM90, ABQ+99,

DMS00]):

Theorem 4.1 (Nominal Stability for Ideal NMPC) Let Assumption 1 hold, and assume that x0 ∈ Xα.

Then the closed-loop dynamics xk+1 = f(xk, u(xk)), k = 0, 1, . . ., generated by the ideal NMPC law (3)

leads the system state towards the origin, limk→∞ xk = 0.

Proof: We give an outline of the well known proof here, since this allows us to see that under the for-

mulated assumptions NMPC has some inherent robustness properties, which can be utilized for showing
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stability of the real-time iteration scheme. As standard in NMPC we use the optimal value function V (x)
as a Lyapunov function for the closed-loop system. First note that

V (x) − L(x, u(x)) =

N
∑

i=1

L(s∗i (x), q∗i (x)).

Furthermore it is clear that the shifted state and control vector (s∗1(x), . . . , s∗N (x), 0) and

(q∗1(x), . . . , q∗N (x), 0), is a feasible (but not optimal) solution for the next optimal control problem

P (f(x, u(x)), with associated costs

N
∑

i=1

L(s∗i (x), q∗i (x)) + L(0, 0).

Since the optimal cost V (f(x, u(x)) can only be lower than this value, it follows that

V (f(x, u(x))) ≤ V (x) − L(x, u(x)) ≤ V (x) − m‖x‖2, (25)

and it is clear that f(x, u(x)) ∈ Xα if x ∈ Xα, so that V (f(x, u(x)) is indeed well defined. Note also that

V (xk+1) ≤ V (xk) − m‖xk‖2 ∀xk ∈ Xα.

As Xα is assumed to be compact, the sequence (xk)k∈N has at least one accumulation point x∗ ∈ Xα. By

continuity of V and ‖ · ‖2 we obtain

V (x∗) ≤ V (x∗) − m‖x∗‖2

which can only be satisfied if x∗ = 0.

Remark: Recent results on the robustness of Lyapunov functions for discontinuous difference equa-

tions and results on the stability of NMPC under perturbations suggest that the ideal NMPC controller has

some inherent robustness properties with respect to disturbances under the stated assumptions (in partic-

ular because V is continuous). The main observation is that the term −L(x, u(x)) in (25) provides some

robustness with respect to disturbances that might lead to a lower decrease – but no increase – of the value

function V from time step to time step [SRM97, KT02, Fin03, FIAF02]. Thus, considering the error of an

approximate feedback compared to the ideal NMPC input u(xk) as a disturbance, it can be assumed that

under certain conditions the closed loop should be stable. We will build on somewhat similar arguments in

the proof of the main result of this paper in Section 6. To prepare this proof, we will first provide a bound

on the error of the feedback approximation due to the real-time iteration scheme.

4.2 An Error Bound for the Feedback Approximation

In the real-time iteration scheme, instead of applying, at state x, the ideal NMPC control u(x) := q∗0(x) to

the plant, we employ a feedback approximation ũ(x,w) := q0 + ∆q0(x,w) that depends not only on the

system state x but also on the current optimizer parameter vector w = (λ0, s0, q0, . . .). Here, ∆q0(x,w)
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is the first control of the Newton type step vector ∆w(x,w) = (∆λ0(x,w),∆s0(x,w), ∆q0(x,w), . . .).
What matters is the error ǫ(x,w) with respect to the descent property (25)

V (f(x, ũ(x,w))) ≤ V (x) − L(x, ũ(x,w)) + ǫ(x,w). (26)

The decrease (and thus convergence to the origin) in the value function along the disturbed trajectory is

ensured as long as −L(x, ũ(x,w)) + ǫ(x,w) < 0. The following theorem establishes a bound on the error

ǫ(x,w), which is quadratic in the Newton type step size ∆w(x,w). It will be used in the proof of stability

for the real-time iteration scheme in Section 6.

Theorem 4.2 (Error Bound for Approximate Feedback)

Suppose Assumptions 1, 2 and 5 hold. Then there is a µ > 0 such that for each (x,w) ∈ Ξ

V (f(x, q0 + ∆q0(x,w))) ≤ V (x) − L(x, q0 + ∆q0(x, w)) + µ‖∆w(x, w)‖2.

The theorem is proven in the appendix, where also a specific value for the constant µ is given, in Eq. (42).

The purely technical Assumption 5 is also stated in the appendix.

As the theorem states that the error ǫ(x,w) is small if the Newton type step size ∆w(x,w) is small, we

will in the following section investigate the behaviour of ‖∆w(xk, wk)‖ during the real-time iterations.

5 Contractivity of the Real-Time Iterations

Before being able to prove stability of the real-time iteration schem in Section 6 we need to establish some

convergence properties of the Newton type iterations in the real-time iteration scheme. For this purpose we

recall that the system and optimizer states of the real-time iteration algorithm with shift obey the system-

optimizer dynamics (13):

xk+1 = f(xk, qk
0 + ∆q0(x

k, wk)),

wk+1 = S( wk + ∆w(xk, wk) ).

To investigate the stability of these combined dynamics we will in this section establish a bound on the size

of the steps ∆wk := ∆w(xk, wk), which is based on a stricter version of condition (23) in Theorem 3.4.

Assumption 3 There exist constants σ > 0, η > 0 with σ < 1 − δ and

η ≤
√

m

α
(1 − (δ + σ))d, η ≤ 1

2

m(1 − (δ + σ))
√

32(M + m)µ
, (28)

such that for all (x,w) ∈ Ξ, w′ = w + ∆w(x,w)

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

J(Sw′)−1



















0
...

0
λ′

N+1

0
0



















∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

≤ η‖x‖ + σ‖∆w(x,w)‖. (29)
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Remark: This assumption is critical for the subsequent reasoning. In particular the fact that η might be

required to be quite small deserves some discussion. If w = w∗(x), then ∆w(x,w) = 0 and w′ = w∗(x),
so the bound can essentially be seen as a bound on the last multiplier λ∗

N+1(x) whose modulus can be

interpreted the “shadow price” of the final state constraint f(sN , qN ) = 0. For a sufficiently large size N

of the optimization horizon we expect the multiplier λ∗
N+1(x) to decrease, as the cost function itself drives

the system to the steady state, and the constraint becomes less and less important. Therefore, we can argue

that it is reasonable to assume that η can be made sufficiently small by enlarging the optimization horizon

– of course, such an enlargement changes the dimensions of the problem and therefore also the matrix J

and its inverse, but numerical experiments with large N have shown that – for controllable systems – the

vectors J(w)−1(0, . . . , 0, 1T , 0, 0)T only have significant nonzero elements at the end of the horizon and

are decaying in backwards direction, i.e., their norms do practically not depend on the dimension N . Note

that the conditioning of J is independent of N for controllable systems.

A second, more technical assumption is the following modification of Assumption 2, where the shifting

matrix S is introduced

Assumption 4 For all w′, w ∈ D2C , ∆w = w′ − w and all t ∈ [0, 1]

∥

∥J(Sw′)−1S
(

J(w + t∆w) −∇2
wL(w + t∆w)

)

∆w
∥

∥ ≤ κ‖∆w‖ (30a)
∥

∥J(Sw′)−1S (J(w + t∆w) − J(w)) ∆w
∥

∥ ≤ ωt‖∆w‖2. (30b)

As before it should be noted that checking Assumption 4 a priori is in general difficult, if not impossible.

The obtained results should rather be seen as a theoretical underpinning of the real-time iteration scheme

than as a constructive approach to pick suitable controller parameters for stability. Under the above two

assumptions we can prove the following lemma.

Lemma 5.1 (Stepsize Contraction for Real-Time Iterations)

Suppose Assumptions 3 and 4 are satisfied. Furthermore, assume that (xk, wk) ∈ Ξ and xk+1 :=
f(xk, qk

0 + ∆q0(x
k, wk)) ∈ Xα. Then, using the shorthands ∆wk := ∆w(xk, wk) and wk+1 :=

S(wk + ∆wk), the following holds

‖∆w(xk+1, wk+1)‖ ≤
(

κ + σ +
ω

2
‖∆wk‖

)

‖∆wk‖ + η‖xk‖ ≤ (δ + σ)‖∆wk‖ + η‖xk‖. (31)

In particular, ‖∆w(xk+1, wk+1)‖ ≤ d, i.e., (xk+1, wk+1) ∈ Ξ.

Proof: First note that for any w = (λ0, s0, q0, . . . , λN+1) ∈ R
n and regardless of x ∈ Rnx ,

∇wLf(s0,q0)(Sw) = S∇wLx(w) +



















0
...

0
−λN+1

0
0



















.
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Let us now introduce for a moment the shorthand w′ := wk +∆wk and observe that wk+1 = Sw′ and that

xk+1 = f(xk, qk
0 + ∆qk

0 ) = f(s′0, q
′
0). Therefore, we can deduce similar as in Lemma 3.2 that

‖∆w(xk+1, wk+1)‖ = ‖∆w(f(s′0, q
′
0), Sw′)‖

= ‖J(Sw′)−1 · ∇wLf(s′

0
,q′

0
)(Sw′)‖

=

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

J(Sw′)−1 ·















S∇wLxk(w′) +















...

0
−λ′

N+1

0
0





























∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

≤ ‖J(Sw′)−1 · S∇wLx(w′)‖ + η‖xk‖ + σ‖∆wk‖
≤

(

κ + ω
2 ‖∆wk‖

)

‖∆wk‖ + η‖xk‖ + σ‖∆wk‖
≤

(

κ + σ + ω
2 ‖∆wk‖

)

‖∆wk‖ + η‖xk‖
≤ (δ + σ) ‖∆wk‖ + η‖xk‖,

where we have made use of Assumption 3 in the 4th transformation and of Assumption 4 in the 5th, as

in the proof of Lemma 3.2. From m‖x‖2 ≤ V (x) ≤ α it follows for all x ∈ Xα that ‖x‖ ≤
√

α
m

, and

from ‖∆wk‖ ≤ d and from the left inequality of (28), we can finally deduce that ‖∆w(xk+1, Swk+1)‖ ≤
(δ + σ) d + η

√

α
m

≤ (δ + σ) d +
√

m
α

(1 − (δ + σ))d
√

α
m

= d.

The lemma allows us to conclude the following contraction property for the real-time iterations (xk, wk)
(as defined in Eqs. (13)), which we use in the following section.

Corollary 5.2 (Shrinking Stepsize for Real-Time Iterations)

Let in addition to Assumptions 1-4 assume that the real-time iterations start with an initialization

(x0, w0) ∈ Ξ, and that for a given α0 ≤ α and for some k0 > 0 we have that ∀k ≤ k0 : xk ∈ Xα0
. Then

∀k ≤ k0 : (xk, wk) ∈ Ξ and

‖∆wk‖ ≤ (δ + σ)k‖∆w0‖ +
ρ

2

√
α0 with ρ :=

2η√
m(1 − (δ + σ))

. (32)

Proof: Inductively applying Lemma 5.1 to the iterates (xk+1, wk+1), we immediately obtain that

(xk, wk) ∈ Ξ, for k = 1, 2, . . . , k0. Similarly one obtains inductively from the contraction inequality (31),

‖∆wk+1‖ ≤ (δ + σ)‖∆wk‖ + η‖xk‖, and the fact that ‖xk‖ ≤
√

α0

m
that

‖∆wk‖ ≤ (δ + σ)k‖∆w0‖ + η

√

α0

m

k−1
∑

i=0

(δ + σ)i ≤ (δ + σ)k‖∆w0‖ +
η
√

α0

m

1 − (δ + σ)
.

We may furthermore ask how many iterations we need to reduce the stepsize such that it becomes smaller

than a given level. However, considering Corollary 5.2 we must expect that they will not become smaller

than the constant ρ
2

√
α0 in Eq. (32). But how many iterations do we need, for example, to push the stepsize

under twice that level?
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Corollary 5.3 (Iterations needed for Stepsize Reduction)

Let us in addition to Assumptions 1-4 assume that the real-time iterations start with an initialization

(x0, w0) ∈ Ξ, and that for a given α0 ≤ α we have that ∀k ≤ k0 : xk ∈ Xα0
for some

k0 ≥ logδ+σ

(

ρ
√

α0

2‖∆w0‖

)

. (33)

Then

‖∆wk0‖ ≤ ρ
√

α0. (34)

Proof: From (33) we conclude that

(δ + σ)k0‖∆w0‖ ≤ ρ

2

√
α0.

This together with (32) yields (34).

6 Nominal Stability of the Real-Time Iteration Scheme

Equipped with the error bound from Section 4.2 and the contractivity of the real-time iterations from

Section 5 we can finally prove nominal stability of the real-time iteration closed-loop scheme. However,

since the error ǫ(xk, wk) in the decrease in the value function depends on the real-time stepsize ∆wk, we

have to investigate two competing effects: on the one hand, the feedback errors may allow an increase

in V (xk), instead of the desired decrease that was needed to prove nominal stability for ideal NMPC in

Theorem 4.1. On the other hand, we know that the stepsizes ∆wk shrink during the iterations, and thus

we also expect the errors to become smaller. Since an increase in the value function might imply that we

leave the level set Xα, we will not be able to stabilize with the real-time iteration scheme the whole set Xα

(at least not if ∆w0 is too large). Thus, we have to back of a little from the boundary of Xα to allow an

increase in the value function without leaving Xα until ∆wk is small enough to guarantee a decrease of

the value function. For this reason we will distinguish two phases:

• In the first phase we may have an increase of the value function V (xk), therefore we must allow for

a safety back-off. However, the stepsizes ‖∆wk‖ can be shown to shrink.

• In the second phase, finally, the numerical errors are small enough to guarantee a decrease of both,

V (xk) and ‖∆wk‖ and we can prove convergence of iterates (xk, wk) towards the origin (0, 0).

6.1 Phase 1: Increase in Objective, but Decrease in Stepsize

Exploiting Corollary 5.3, let us define the number kα of iterations that are at maximum needed for reduction

of the stepsize under the value ρ
√

α if all iterates stay in the level set Xα.

Definition 6.1 (kα and Ξattr) We define kα to be the smallest integer such that

kα ≥ logδ+σ

(

ρ
√

α

2d

)

. (35)
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Furthermore, we define our safety back-off set as the set

Ξattr :=
{

(x,w) ∈ Ξ
∣

∣V (x) ≤ α − kαµd2
}

. (36)

Figure 2 tries to clarify the appearing regions and the key ideas of the complete stability proof.

Theorem 6.1 (Increase of Objective, Decrease of Stepsize) Assume that Assumptions 1-4 and 5 hold

and that (x0, w0) ∈ Ξattr. Then for k = 0, . . . kα it holds that (xk, wk) ∈ Ξ. Furthermore,

‖∆wkα‖ ≤ ρ
√

α.

Proof: We make use of Corollary 5.2 and 5.3. To apply them, we first observe that (x0, w0) ∈ Ξ. It

remains to be shown that x0, . . . , xkα ∈ Xα. We do this inductively, and show: if for some k ≤ kα it

holds that (xk, wk) ∈ Ξ and V (xk) ≤ α + (k − kα)µd2 then also (xk+1, wk+1) ∈ Ξ and V (xk+1) ≤
α + (k + 1 − kα)µd2. To show this we first note that ‖∆wk‖ ≤ d as an immediate consequence of

Corollary 5.2. Now from Theorem 4.2 we know that

V (xk+1) ≤ V (xk) − L(xk, uk) + µd2

from which we conclude

V (xk+1) ≤ V (xk) + µd2 ≤ α + (k − kα)µd2 + µd2 = α + (k + 1 − kα)µd2.

Remark: The restriction of the initial system state x0 to the level set
{

x ∈ X
∣

∣V (x) ≤ α − kαµd2
}

is

unnecessarily restrictive. On the one hand we neglected the decrease −L(xk, uk) in each step; and on

the other hand an initial stepsize ‖∆w(x0, w0)‖ considerably smaller than d would allow the errors in

the decrease condition be considerably smaller than µd2. Note in particular that an initial iterate (x0, w0)
where the optimizer is initialized so well that ‖∆w(x0, w0)‖ ≤ ρ

√
α directly qualifies for Phase 2, if only

V (x0) ≤ α, without requiring any safety back-off at all. However, to keep the discussion as simple as

possible, we chose to stick to our above definition of the set Ξattr of states attracted by the origin.

6.2 Phase 2: Convergence towards the Origin

We now show that the real-time iterations – once the errors have become small enough – not only remain

in their level sets, but moreover, are attracted by even smaller level sets. For convenient formulation of the

results of this subsection we first define two constant integers.

Definition 6.2 (k1 and k2) Let us define the constants k1 and k2 to be the smallest integers that satisfy

k1 ≥ 6(M + m)

m
and k2 ≥ logδ+σ

(

1

4

)

.
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x

V (x) = α − kα µd2

V (x) = α

Ξattr

Ξ

(x1, w1)
(x2, w2)

(x0, w0)

w

w∗(x)

k → ∞

Figure 2: Illustration of the sets Ξ and Ξattr in the system-optimizeer space of variables (x,w), and visu-

alization of the iterates during the two phases of the stability proof.
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Theorem 6.2 (Objective and Stepsize Reduction)

Let in addition to Assumptions 1-5 assume that for an α0 ≤ α and a k0 ≥ 0 it holds that

V (xk0) ≤ α0 and ‖∆wk0‖ ≤ ρ
√

α0.

Then all iterates k ≥ k0 are well-defined and also satisfy V (xk) ≤ α0 and ‖∆wk‖ ≤ ρ
√

α0. Moreover,

for k ≥ k0 + k1 + k2

V (xk) ≤ 1

4
α0 and ‖∆wk‖ ≤ ρ

√

1

4
α0.

Proof: We prove the theorem in three steps: invariance of level sets, attractivity of a small level set for

xk and reduction of the Newton steps ‖δwk‖
Step 1: Well-definedness of all iterates and invariance of the level sets.

The proof is by induction. We assume that for some k ≥ k0 it holds that V (xk) ≤ α0 and ‖∆wk‖ ≤
ρ
√

α0. We will show that then the next real-time iterate is well-defined and remains in the level sets, i.e.,

V (xk+1) ≤ α0 and ‖∆wk+1‖ ≤ ρ
√

α0.

First note that by the definition of ρ in (32), by α0 ≤ α, and by the left inequality of (28)

‖∆wk‖ ≤ 2η√
m(1 − (δ + σ))

√
α ≤

2 1
2

√

m
α

(1 − (δ + σ))d√
m(1 − (δ + σ))

√
α = d,

i.e., (xk, wk) ∈ Ξ and the real-time iterate is well-defined. Now, due to Assumption 1 ‖xk‖ ≤
√

α0

m
. By

Lemma 5.1 we know that if xk+1 ∈ Xα then

‖∆wk+1‖ ≤ (δ + σ)‖∆wk‖ + η‖xk‖ ≤ (δ + σ)ρ
√

α0 + η

√

α0

m

and therefore, using the definition of ρ in (32),

‖∆wk+1‖ ≤ ρ
√

α0

(

(δ + σ) +
1

2
(1 − (δ + σ))

)

= ρ
√

α0
1 + δ + σ

2
≤ ρ

√
α0.

It remains to be shown that xk+1 ∈ Xα0
⊂ Xα. To show this we first observe that due to the right

inequality of (28) in Assumption 3 we have

ρ ≤
√

m

8(M + m)µ

and therefore

ǫ(xk0 , wk0) ≤ µ‖∆wk0‖2 ≤ m

8(M + m)
α0 =: ǫ0. (37)

By Theorem 4.2 we obtain V (xk+1) ≤ V (xk) + ǫ0 − m‖xk‖2. We now distinguish two cases:

a) m‖xk‖2 ≥ 2ǫ0: we have V (xk+1) ≤ V (xk) − ǫ0 ≤ α0 − ǫ0 ≤ α0.

b) m‖xk‖2 ≤ 2ǫ0: because of V (xk) ≤ M‖xk‖2 we have that V (xk) ≤ 2M
m

ǫ0 and therefore

V (xk+1) ≤ 2M
m

ǫ0 + ǫ0 = 1
4α0 ≤ α0 by the definition of ǫ0 in (37).
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This completes the first step of the proof.

Step 2: Attraction of the states xk for k ≥ k0 + k1 by the level set X 1

4
α0

.

We already showed that all iterates are well-defined and satisfy V (xk) ≤ α0 and ‖∆wk‖ ≤ ρ
√

α0, and

furthermore, that ǫ(xk, wk) ≤ ǫ0.

To prove the stronger result that the states xk are for k ≥ k0 + k1 in the reduced level set X 1

4
α0

, we

first show that once one iterate xk′

is inside X 1

4
α0

, all following system states also remain inside. Again,

we distinguish the two cases:

a) m‖xk′‖2 ≥ 2ǫ0: we have V (xk′+1) ≤ V (xk′

) − ǫ0 ≤ V (xk′

) ≤ 1
4α0

b) m‖xk′‖2 ≤ 2ǫ0: as before, we have V (xk+1) ≤ 1
4α0.

So let us see how many states xk can at maximum remain outside X 1

4
α0

. First note that if V (xk) ≥ 1
4α0

we also have M‖xk‖2 ≥ 1
4α0 = 2M+m

m
ǫ0 ≥ 2M

m
ǫ0, i.e., m‖xk‖2 ≥ 2ǫ0. Therefore, for each iterate

that remains outside X 1

4
α0

, case a) holds, and V (xk+1) ≤ V (xk) − ǫ0. We deduce that V (xk0+∆k) ≤
α0 −∆kǫ0, and therefore for k ≥ k0 + 6(M+m)

m
that V (xk) ≤ α0 − 6(M+m)

m
ǫ0 = 1

4α0 by definition (37).

Step 3: Reduction of the steps ‖∆wk‖ for k ≥ k0 + k1 + k2 under the level ρ
√

1
4α0.

We already know that all iterates k ≥ k0 +k1 satisfy V (xk) ≤ 1
4α0 and ‖∆wk‖ ≤ ρ

√
α0. We can now

use Corollary 5.3 with ‖∆w0‖ replaced by ρ
√

α0, α0 replaced by 1
4α0, and k0 replaced by k − (k0 + k1),

which yields the proposition:

If k − (k0 + k1) ≥ logδ+σ





ρ
√

1
4α0

2ρ
√

α0



 then ‖∆wk‖ ≤ ρ

√

1

2
α0.

By definition of k2 this implies ‖∆wk‖ ≤ ρ
√

1
2α0 for all k ≥ k0 + k1 + k2.

Theorem 6.2 allows us to conclude that each k1 + k2 iterations, the level of the objective is reduced by a

factor of 1
4 . This allows us to state the main result of this paper.

Theorem 6.3 (Nominal Stability of the Real-Time Iteration Scheme)

Let us suppose Assumptions 1-5 and assume that (x0, w0) ∈ Ξattr. Then all system-optimizer states are

well-defined, i.e., satisfy (xk, wk) ∈ Ξ, and for all integers p ≥ 0 and k ≥ kα + p(k1 + k2) it holds that

V (xk) ≤ α 1
4p (respectively, ‖xk‖ ≤

√

α
m

1
2p ) and ‖∆wk‖ ≤ ρ

√
α 1

2p .

Proof: The theorem is an immediate consequence of Theorem 6.1 followed by an inductive application

of Theorem 6.2. Furthermore, because m‖x‖2 ≤ V (x), the inequality V (x) ≤ α
4p implies again

‖x‖ ≤
√

α
4pm

.

6.3 Discussion

From a practical point of view, the derived result can be interpreted as follows: whenever the system state

is subject to a disturbance, but such that after the disturbance the combined system-optimizer state is in
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the region Ξattr, the subsequent closed-loop response will lead the system towards the origin with a linear

convergence rate, until another disturbance occurs. We would like to stress again, however, that the proof

should not be seen as a construction rule for designing suitable real-time iteration schemes. Instead it gives

a theoretical underpinning of the real-time iteration scheme.

Similar convergence results as for the real-time iteration scheme would also hold true for numerical

schemes where more than one Newton type iteration is performed per sampling time, sacrificing, however,

the instantaneous feedback of the real-time iteration scheme. In the limit of infinitely many iterations per

optimization problem, the set Ξattr would approach the set Ξ and the whole region of attraction of the ideal

NMPC controller would be recovered.

The result can in principle be expanded to other NMPC schemes without a zero terminal con-

straint. However, one should note that we assume that the value function is continuous. As is well

known [MHER95, Fon00], NMPC can also stabilize systems that cannot be stabilized by feedback that

is continuous in the state. This in general also implies a discontinuous value function. In this case the

robustness properties utilized in Section 4.2 and used in Theorem 4.2 do not hold [KT02, GMTT03a,

GMTT03b, SRM97] and further precautions must be taken.

7 Summary and Conclusions

We have presented a Newton type method for optimization in NMPC – the real-time iteration scheme

with shift – and have proven nominal stability of the resulting system-optimizer dynamics. The scheme

is characterized by a dovetailing of the dynamics of the system with those of the optimizer, resulting in

an efficient online optimization algorithm which, however, shows intricate dynamics that do not allow to

apply readily available standard stability results from NMPC.

The proof of nominal stability makes use of results from both, classical stability theory for NMPC

as well as from convergence theory for Newton type optimization methods. Among several technical as-

sumptions is one essential one (Assumption 3) that basically requires the disturbances in the optimization

procedure – which are introduced by the movement of the optimization horizon – to be sufficiently small.

We claim that this assumption can in practice always be satisfied by choosing a sufficiently long optimiza-

tion horizon.

The proof of nominal stability gives a theoretical underpinning of the real-time iteration scheme that

has already successfully been applied to several example systems, among them a real pilot-plant distilla-

tion column [DUF+01, DFS+03]. Experience has shown that in practice the real-time iteration scheme

is able to bring the system-optimizer dynamics back into the region of attraction even after rather large

disturbances (cf. [DBS03]).
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Appendix: Proof of Theorem 4.2

In order to be able to prove Theorem 4.2, we will compare approximate solutions of the full problem P (x)
with those of a shrunk problem P̃ (f(x, ũ(x,w))), defined as follows.

Definition 7.1 (P̃ (x′))

min
s1, . . . , sN ,

q1, . . . , qN

N
∑

i=1

L(si, qi) (38a)

subject to

x′ − s1 = 0, (38b)

f(si, qi) − si+1 = 0, i = 1, . . . , N − 1, (38c)

f(sN , qN ) = 0. (38d)

Let us also define the projection operator Π : R
n → R

n−(2nx+nu) = R
ñ

Πw = Π























λ0

s0

q0

λ1

s1

...

λN+1























=











λ1

s1

...

λN+1











=: w̃

which simply removes the first components from w ∈ R
n, to yield a vector w̃ ∈ R

ñ in the primal-dual

space of problem P̃ (·), and we assume compatible norms in R
n and R

ñ in the sense that ‖Πw‖ ≤ ‖w‖
and ‖ΠT w̃‖ = ‖w̃‖. Let us define the Lagrangian L̃x(w̃) of P̃ (x) in a straightforward way, and the

corresponding second derivative approximation J̃(w̃), which can be shown to be J̃(w̃) = ΠJ(ΠT w̃)ΠT .

We define the set

X̃ := {x′ ∈ R
nx |∃(x,w) ∈ Ξ : x′ = f(x, q0 + ∆q0(x,w))}

and assume solvability of P̃ (x′) for all x′ ∈ X̃ , and we define

D̃2C :=
{

w̃ ∈ R
ñ

∣

∣

∣∃x′ ∈ X̃ : ‖w̃ − w̃∗(x′)‖ ≤ 2C
}

and make the analogon to Assumption 2 on D̃2C , plus some additional technical assumptions.

Assumption 5 We assume that the Lagrangian function L̃x is twice continuously differentiable on D̃2C

and that each solution w̃∗(x) exists and is uniquely determined in D̃2C , i.e.,

∀x ∈ X̃, ∀w̃ ∈ D̃2C\{w̃∗(x)} : ∇w̃L̃x(w̃) 6= 0. (39a)
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We also assume that J̃ is continuous on D̃2C and that J̃(w̃) is invertible for all w̃ ∈ D̃2C , and that for all

w̃′, w̃ ∈ D̃2C , ∆w̃ = w̃′ − w̃ and all t ∈ [0, 1] it holds that

∥

∥

∥J̃(w̃′)−1
(

J̃(w̃ + t∆w̃) −∇2
w̃L̃(w̃ + t∆w̃)

)

∆w̃
∥

∥

∥ ≤ κ‖∆w̃‖ (39b)

and that
∥

∥

∥
J̃(w̃′)−1

(

J̃(w̃ + t∆w̃) − J̃(w̃)
)

∆w̃
∥

∥

∥
≤ ωt‖∆w̃‖2. (39c)

Let us furthermore assume that for all w′, w ∈ D2C , ∆w = w′ − w and all t ∈ [0, 1] it holds that

∥

∥

∥
J̃(Πw′)−1Π

(

J(w + t∆w) −∇2
wL(w + t∆w)

)

∆w
∥

∥

∥
≤ κ‖∆w‖ (40a)

and that ∥

∥

∥
J̃(Πw′)−1Π(J(w + t∆w) − J(w)) ∆w

∥

∥

∥
≤ ωt‖∆w‖2. (40b)

We also assume the following bound on the Hessian of the Lagrangian L·(w):

‖∇2
wL(w)‖ ≤ B, ∀w ∈ D2C . (41)

By assumptions (39), we can guarantee numerical solvability of P̃ (x) by the Newton type scheme as in

Corollary 3.3, if for some w̃0 it holds that ‖J̃(w̃0)
−1∇w̃L̃x(w̃0)‖ ≤ d. Note that P̃ (x) needs never be

solved in practice, but that this is only a hypothetical scheme which helps to establish the error bound.

Proof of Theorem 4.2 Now we are able to prove the theorem, with

µ := 2B

(

δ

1 − δ

)2

. (42)

We first define the shorthands x′ := f(x, q0 + ∆q0(x,w)) and ∆w := ∆w(x,w). We will compare three

vectors in R
n:

• the solution w∗(x) of P (x),

• the first step w′ := w + ∆w towards this solution, and

• an augmented version of the solution vector w̃∗(x′) of P̃ (x′) defined as

w̃∗′

:= ΠT w̃∗(x′) + (In − ΠT Π)w′,

so that, more intuitively, w̃∗′

= (λ′
0, s

′
0, q

′
0, λ̃

∗
1(x

′), s̃∗1(x
′), . . .).

We will show that all three vectors are in D2C , and, to obtain a bound on the distance between w∗(x) and

w̃∗′

that

‖w∗(x) − w′‖ ≤ δ‖∆w‖
1 − δ

, and ‖w̃∗′ − w′‖ ≤ δ‖∆w‖
1 − δ

. (43)

Clearly, the vector w∗(x) is in D2C and because (x,w) ∈ Ξ the first step w′ is also in D2C . Furthermore,

the left inequality for w∗(x) was already proven in Corollary 3.3. For w̃∗′

, we first note that ‖w̃∗′ −w′‖ =
‖ΠT (w̃∗(x′) − Πw′)‖ = ‖w̃∗(x′) − Πw′‖. We consider hypothetical Newton type iterates w̃0, w̃1, . . . for
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solution of P̃ (x′), started at the initial guess w̃0 := Πw′. To show that these iterates are well-defined, let

us first bound the size of the first step, ∆w̃0 := ∆w̃(x′, w̃0). Because

∇w̃L̃x′(w̃0) = ∇w̃L̃x′(Πw′) =

[

x′ − s′1
...

]

=

[

f(x, q0 + ∆q0(x,w)) − s′1
...

]

=

[

f(s′0, q
′
0) − s′1
...

]

= Π∇wLx(w′),

we have by adding 0 = ∇wLx(w) + J(w)∆w to the defining equation of ∆w̃0

−∆w̃0 = J̃(w̃0)
−1∇w̃L̃x′(w̃0)

= J̃(w̃0)
−1

(

∇w̃L̃x′(w̃0) − Π(∇wLx(w) + J(w)∆w)
)

= J̃(w̃0)
−1Π

(

∇wLx(w′) −∇wLx(w) − J(w)∆w
)

.

(44)

Therefore we can bound

‖∆w̃0‖ = ‖J̃(w̃0)
−1Π(∇wLx(w′) −∇wLx(w) − J(w)∆w) ‖

= ‖J̃(w̃0)
−1Π

∫ 1

0
(∇2

wL(w + t∆w) − J(w))∆w dt‖
= ‖

∫ 1

0
J̃(Πw′)−1Π(∇2

wL(w + t∆w) − J(w + t∆w))∆w dt

+
∫ 1

0
J̃(Πw′)−1Π(J(w + t∆w) − J(w))∆w dt‖

≤ κ‖∆w‖ +
∫ 1

0
ωt‖∆w‖2 dt =

(

κ + ω
2 ‖∆w‖

)

‖∆w‖ ≤ δ‖∆w‖,

due to assumptions (40). After having established a bound on the first step ∆w̃0 of the hypothetical iterates,

we conclude with assumptions (39) from the standard convergence result for Newton type iterates that the

limit limi→∞ w̃i = w̃∗(x
′) satisfies

‖w̃∗(x
′) − w̃0‖ ≤ ‖∆w̃0‖

1 − δ
≤ δ‖∆w‖

1 − δ
,

so that we have shown the right inequality of (43). With (43) we can now conclude that

‖w̃∗′ − w∗(x)‖ ≤ 2
δ‖∆w‖
1 − δ

(45)

in particular that w̃∗′ ∈ D2C . We now compare the objective values of the two vectors w∗(x) and w̃∗′

. The

objective contributions can be expressed in terms of the Lagrangian Lx(·), because both, w∗(x) and w̃∗′

are feasible points for P (x):

V (x) =

N
∑

i=0

L(s∗i (x), q∗i (x)) = Lx(w∗(x))

and

L(x, q0 + ∆q0(x, w)) + Ṽ (x′) = L(s′0, q
′
0) +

N
∑

i=1

L(s̃∗i (x
′), q̃∗i (x′)) = Lx(w∗′

).
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Therefore, we can compare

‖Lx(w̃∗′

)−Lx(w∗(x))‖ = ‖
∫ 1

0
∇wLx(w∗(x) + t1(w̃

∗′ − w∗(x)))T (w̃∗′ − w∗(x)) dt1‖
= ‖

∫ 1

0

(

∫ t1

0
∇2

wL(w∗(x) + t2(w̃
∗′−w∗(x)))(w̃∗′−w∗(x)) dt2

)T

(w̃∗′−w∗(x)) dt1‖

= ‖(w̃∗′−w∗(x))T
(

∫ 1

0

∫ t1

0
∇2

wL(w∗0 + t2(w̃
∗′−w∗(x))) dt2 dt1

)T

(w̃∗′−w∗(x))‖
≤ B

2 ‖w̃∗′−w∗(x)‖2,

where we have made use of the fact that ∇wLx(w∗(x)) = 0. Together with (45) we can now obtain the

bound

L(x, q0 + ∆q0(x, w)) + Ṽ (x′) − V (x) ≤ B

2

(

2
δ‖∆w‖
1 − δ

)2

and together with the property that V (x′) ≤ Ṽ (x′) =
∑N

i=1 L(s̃∗i (x
′), q̃∗i (x′)), as in the proof of

Theorem 4.1, we immediately obtain the error bound of Theorem 4.2, with µ given by (42).
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